Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion...

24
Nanoindentation of Tungsten for Nuclear Fusion Applications David E.J. Armstrong Xiaoou Yi Angus J. Wilkinson Steve G. Roberts FEMaS1&PMFMC13

Transcript of Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion...

Page 1: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

Nanoindentation of Tungsten

for Nuclear Fusion

Applications

David E.J. Armstrong

Xiaoou Yi

Angus J. Wilkinson

Steve G. Roberts

FEMaS1&PMFMC13

Page 2: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

2

• First Wall

• Breeder blanket

• Structural materials

• Divertor• Key component for removal

of He “ash”

• 14MeV neutrons –

20-50dpa/year

• Helium -10-15appm/dpa

• Hydrogen - 40-50appm/dpa

• Temperature – 775-3475K

• Tungsten has potential for

both plasma facing and

structural roles

Materials issues for fusion power

Page 3: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

3

Why tungsten alloys?

• Neutron damage causes chemical

and microstructural changes

• Brittle s-phases can be formed

• W-Re-Os alloys are highly

expensive - bulk samples not

available

Element W Re Os

At%

0 years 100 0 0

2.5 Years 95.4 1.7 0.5

5 years 91 5.1 3.9

Data from Cottrell, Journal of Nuclear Materials, 334, pg 166, 2004

• Tungsten is brittle at RT

• Formability is a problem

• Re alloying additions can improve

ductility

• Can other elements?

Page 4: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

Fusion reactor materials

1-100 displacements per

atom

100’s ppm helium

Transmutation radioactivity

Large penetration depths

Neutron damage

Test Reactor

But...

•Expensive

•Slow

•Radioactive

Page 5: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

Fusion reactor materials

1-100 displacements per

atom

100’s ppm helium

Transmutation radioactivity

W+

2MeV

~200-300nm

Model

Tungsten

Alloys

Simulating neutron damage

Page 6: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

6

Simulating neutron damage

• Implantations carried out at National Ion Beam Centre, University of Surrey, UK

• Temperature 400oC

• Single energy @ 2MeV

• Doses: (rate≈3dpa/hour)

Dose (Ion/cm2) DPA Temp oC

5.5x1012 0.07 400

3.3x1013 0.4 400

1.05x1014 1.2 400

1.0x1015 13 400

2.5x1015 33 400

Page 7: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

7

TEM of Implantation Damage

33 dpa UHP W

50nm

1-10

1.2 dpa W5Re

TEM analysis X. Yi Oxford Materials Poster 55B

Page 8: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

8

Fusion reactor materialsNanoindentation

• Basic nanoindentation carried out on implanted samples

• Modulus and hardness calculated as a function of depth

• Poorly defined strain field makes interpreting results difficult

• EBSD used to find implanted region

• Implanted materials include, pure tungsten and W5Re and W5Ta alloys

Page 9: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

9

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Hard

ne

ss

(G

Pa

)

Displacement Into Surface (nm)

High Dose (15dpa)

Unimplanted

Low Dose (5dpa)

Unimplanted

Fusion reactor materialsNanoindentation results -W

Pure

Tungsten

13dpa

1.3dpa

Page 10: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

10

Fusion reactor materialsNanoindentation results - WX

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Hard

ne

ss

(G

Pa

)

Displacement Into Surface (nm)

W Implanted

W Unimplanted

W5Re Implanted

W5Re Unimplanted

W5Ta Implanted

W5Ta Unimplanted

Dose approx

13dpa

Page 11: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

11

AFM Scans 200nm indents - W

Un-Implanted

0.07dpa 1.2dpa

All grains close to

[111] surface normal

Page 12: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

12

AFM Scans- W x dpa

1.2dpa

Unimplanted

Page 13: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

13

Page 14: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

14

Nanoindentation results 200nm indents - W

Page 15: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

15

Nanoindentation results 1000nm indents - W

Unimplanted Implanted 1.3dpa

Page 16: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

16

Nanoindentation results 1000nm indents - W

Page 17: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

“Nano” cantilevers?

• Can we machine

cantilevers into the

implanted layer?

• Work in progress……

• Some success in

FeCr alloys

• Deeper implantation

depths soon

2m

Page 18: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

28/06/2011D.E.J Armstrong 2010

18

• Pillars machined into the ion implanted layers, using multi stage approach

• Width approx 500nm

• Height 3m

• Flat Punch type nanoindenter tip used to compress the pillars

FeCr Micro Pillars

Data from Ms E Grievson

Page 19: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

28/06/2011D.E.J Armstrong 2010

19

FeCr Micro Pillars

Unimplanted Implanted

Data from Ms E Grievson

Page 20: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

28/06/2011D.E.J Armstrong 2010

20

FeCr Micro Pillars

Data from Ms E Grievson

Page 21: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

2121

Summary and Future Work

• Nanoindentation alloys differences in hardness measured

• Only small volumes of materials needed for many results

• Doesn’t tell us about yield stress, work hardening rates

• Substrate effects need explaining

Page 22: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

2222

2011 and Beyond

• Problems in working in such small specimens

• Are the results representative of bulk samples?

• Contact area problems

• Modelling and experimental work is ongoing to further understand these results

• High temperature tests now being developed

• Nanoindentation alloys differences in hardness measured

• Only small volumes of materials needed for many results

• Doesn’t tell us about yield stress, work hardening rates

• Substrate effects need explaining

Page 23: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

Thanks to

• CCFE for Fellowship Funding

• National Ion Beam Facility for Access

• Andy Bushby, Sergei Dudarev Michael

Rieth, Emmanuelle Marquis and

Reinhard Pippan for useful discussions

23

Page 24: Nanoindentation of Tungsten for Nuclear Fusion Applications · Nanoindentation results Fusion reactor materials- WX 0 2 4 6 8 10 12 14 0 200 400 600 800 1000) Displacement Into Surface

24