nano

9
UTILISE NANOTECHNOLOGY TO EXPLOIT RESERVOIRS BEOYND TODAY’S RECOVERY LIMITS

Transcript of nano

UTILISE  NANOTECHNOLOGY    TO  EXPLOIT  RESERVOIRS    BEOYND  TODAY’S  RECOVERY  LIMITS  

Nanotechnology  can  be  used  to  squeeze  more  oil  and  gas  out  from  subsurface  formaKons.    

Primary  goal  must  be  to  develop  intelligent  subsurface  micro  and  nano  sensors  that  can  be  injected  into  reservoirs  to  help  characterize  the  space  in  three  dimensions  and  improve  the  recovery  of  exisKng  and  new  hydrocarbon  resources.  The  hope  is  that  these  sensors  will  enable  the  mapping  of  the  reservoirs  in  3-­‐D  and  improve  the  ability  to  extract  oil  and  gas  from  the  porous  rock.    

Nanotechnology  is  poised  to  impact  dramaKcally  on  all  sectors  of  industry.  Nanotechnology  could  be  used  to  enhance  the  possibiliKes  of  developing  convenKonal  and  stranded  gas  resources.  Nanotechnology  can  be  used  to  improve  the  drilling  process  and  oil  and  gas  producKon  by  making  it  easier  to  separate  oil  and  gas  in  the  reservoir.  Nanotechnology  can  make  the  industry  considerably  greener.  There  are  numerous  areas  in  which  nanotechnology  can  contribute  to  more-­‐efficient,  less-­‐expensive,  and  more-­‐environmentally  sound  technologies  than  those  that  are  readily  available.    

Nanotechnology  

Nano”  denotes  a  thousand  millionths  (10−9),  with  a  nanometer  equaling  a  millionth  of  a  millimeter.  That  corresponds  to  the  width  of  10  hydrogen  atoms.  A  nanometer  is  merely  ten  angstroms  long  where  an  angstrom  is  named  a^er  Swedish  astronomer  and  physicist,  Ångström,  Anders  Jonas  (1814–1874),  who  was  one  of  the  early  formulators  of  the  science  of  modern  spectroscopy.  Ångström  wrote  extensively  on  terrestrial  magneKsm,  the  conducKon  of  heat,  and  especially  spectroscopy.  He  published  a  monumental  map  of  the  normal  solar  spectrum  that  expressed  the  length  of  light  waves  in  units  of  one  ten-­‐millionth  of  a  millimeter.  This  unit  of  length  usually  used  to  specify  radiaKon  wavelengths  is  now  known  as  the  angstrom  (10-­‐10  meters).  He  discovered  that  hydrogen  is  present  in  the  sun's  atmosphere,  and  he  was  the  first  to  examine  the  spectrum  of  the  aurora  borealis.  Although,  the  diameter  of  atoms  varies  and  the  basic  unit  is  taken  to  be  the  Bohr  radius  (5.2917725  x  10-­‐11  m),  the  diameter  of  an  atom  depending  upon  the  element  is  approximately  one  to  five  angstroms.  This  puts  from  2  to  10  atoms  in  a  nanometer  and  2000  to  10000  atoms  in  a  micrometer.  For  example,  there  are  about  3  silicon  atom  diameters  in  a  nanometer.    

Nanotechnology  in  Oil  and  Gas  

The  oil  industry  needs  strong,  stable  materials  in  virtually  all  of  its  processes.  By  building  up  such  substances  on  a  nanoscale,  it  could  produce  equipment  that  is  lighter,  more  resistant,  and  stronger.  Development  of  silicon  carbide,  a  ceramic  powder,  in  nano  size  was  the  first  step  on  its  way,  it  yields  excepKonally  hard  materials.  Now  invesKgaKngs  are  ongoing  creaKng  other  composites  and  that  has  nanocrystalline  substances  which  can  contribute  to  harder,  more  wear-­‐resistant  and  more  durable  drilling  equipment  .  Nanotubes  have  many  potenKal  applicaKons  within  the  oil  industry.  For  instance,  nanotubes  could  be  used  to  create  lighter,  stronger,  and  more  corrosion-­‐resistant  structural  materials  in  plakorms  for  offshore  drilling.  Nanotechnology  could  help  improve  oil  and  gas  producKon  by  making  it  easier  to  separate  oil  and  gas  in  the  reservoir—for  instance,  through  improved  understanding  of  processes  at  the  molecular  level.  There  are  many  other  potenKal  clean  energy  sources  that  could  be  enhanced  through  the  use  of  nanotechnology.  The  pracKcal  applicaKon  of  nanotechnology  in  the  oil  sector  is,  fortunately,  less  frightening.  It  opens  interesKng  prospects  for  improved  oil  recovery,  not  least  through  bener  understanding  of  processes  at  the  interface  between  liquids  and  solids.  The  aim  is  to  understand  how  oil  and  water  can  be  separated  more  effecKvely.  Nanotechnology  could  be  applied  to  improved  oil  recovery  in  the  form  of  tailoring  surfactants.  These  can  then  be  added  to  the  reservoir  in  a  more  controlled  way  than  with  exisKng  substances,  thereby  releasing  more  oil.  It  could  also  help  develop  new  metering  techniques  with  Kny  sensors  to  provide  improved  informaKon  about  the  reservoir.    

Nanotechnology  -­‐  Sensors  

In  high-­‐temperature/high-­‐pressure  condiKons,  old  electrical  sensors  and  other  measuring  tools  o^en  are  not  reliable.  But  researchers  currently  are  developing  a  set  of  reliable  and  economical  sensors  from  opKcal  fibers  for  measuring  temperature  and  pressure,  oil-­‐flow  rate,  and  acousKc  waves  in  oil  wells.  These  new  sensors  are  small  in  size,  work  safely  in  the  presence  of  electromagneKc  fields,  are  able  to  work  in  high  temperatures  and  pressures,  and  can  be  changed  at  a  sensible  cost  without  interfering  in  the  procedure  of  oil  exploraKon.  Changing  and  displacing  old  sensors  in  oil  wells  is  very  costly.  But  this  technology  could,  with  its  accurate  and  reliable  measurements,  make  a  great  improvement  in  oil  exploraKon.  In  the  future,  the  industry  may  be  using  nanoscale  sensors  for  probing  properKes  deep  in  the  reservoir,  allowing  us  to  unravel  the  complex  nature  of  the  rock/fluid  interacKons  and  their  effects  on  mulKphase  flow  and  providing  the  ability  to  design  a  suitable  exploitaKon  plan  for  the  asset.  Another  area  of  significant  challenge  lies  in  the  upgrading  of  bitumen  and  heavy  crude  oil.  Because  of  their  high  density  and  viscosity,  it  is  difficult  to  handle  and  transport  them  to  locaKons  where  they  could  be  converted  into  valuable  products.  Significant  resources  and  intense  research  acKviKes  have  been  devoted  to  develop  processes  and  specifically  designed  catalysts  for  on-­‐site  field  upgrading  combined  with  hydrogen/methane  producKon.  These  processes  would  incorporate  a  minimized  and  controlled  carbon  rejecKon,  in  conjuncKon  with  a  catalyKcally  enhanced  hydrogen  generaKon  performed  on  the  rejected  carbon  from  the  upgrading  process.  This  central  acKvity  will  be  complemented  with  an  effort  to  integrate  the  research  for  ultradispersed  catalyKc  formulas  for  the  in-­‐situ  upgrading  of  bitumen  as  well  as  for  hydrogen  generaKon  from  coal/coke  or  petroleum  pitch.  The  former  requires  research  on  specifically  designed  adsorbents  and  catalysts  to  be  introduced  into  the  reservoir  porous  media  in  nanosized  form.  The  laner  requires  extensive  research  on  both  catalyKc  acKve  phases  and  process  setup  as  well  as  adopKng  different  catalyKc  forms  for  effecKve  contact  with  the  gasifying  materials.  This  research  has  the  potenKal  to  generate  significant  technology  to  convert  bitumen  and  heavy-­‐oil  reserves  into  products  cost-­‐effecKvely  .    

Nanotechnology  research.    

There  is  a  need  to  coordinate  research  aimed  at  improving  oil  and  gas  recovery.    At  present,  only  about  40%  of  the  oil  and  gas  in  reservoirs  can  be  recovered,  even  with  the  most  advanced  recovery  techniques  now  available.  

Goal  is  to  get  scienKsts  and    nano  technologists  together  to  find  a  soluKon.  

Nanotechnology  research  should  assist  exploraKon  of  oil  and  gas  reservoirs  that  could  potenKally  unleash  more  oil  than  the  current  technology  being  used  in  primary,  secondary,  and  even  in  some  cases,  terKary  recovery  methods.  

At  present,  the  only  way  to  study  hydrocarbon  reservoirs  is  through  seismic  techniques  and  by  actually  drilling  down.  Both  surface  and  downhole  seismic  have  limited  resoluKon,  while  drilling  can  only  take  readings  in  a  limited  area  around  the  bore  hole.  ExisKng  mature  fields,  and  exploraKon  companies  must  find  new  ways  to  extract  more  oil  and  gas  to  meet  ever-­‐increasing  global  demands.  There  is  a  need  for  new  technologies  that  will  enhance  producKon  yet  be  more  environmentally  friendly.  Bring  together  researchers  from  oil  and  gas  companies  as  well  as  academic  insKtuKons  and  other  organizaKons  to  pool  research  in  much  the  same  way  that  oil  companies  collaborated  on  offshore  technologies  in  the  early  days  of  offshore  exploraKon.  

Oil  and  gas  companies  should  enter  into  partnerships  with  nanomaterial  developers  at  an  early  stage.  Both  sides  need  to  accept  that  some  necessary  investment  risk  must  be  taken  to  bring  nanomaterials  into  the  market.  There  are  numerous  areas  in  which  nanotechnology  can  contribute  to  more-­‐efficient,  less-­‐expensive,  and  more-­‐environmentally  sound  technologies  than  those  that  are  readily  available.  Although  the  most  significant  contribuKons  may  be  unglamorous  applicaKons  such  as  bener  materials  for  exploraKon  equipment  or  improved  catalysis,  nanotechnology  is  being  proposed  in  numerous  energy  domains.  Considering  the  substanKal  budgets  for  research  dedicated  to  nanoresearch,  much  of  this  potenKal  is  likely  to  be  realized  in  the  coming  decades.    

Present  methodologies  

At  present,  the  only  way  to  study  hydrocarbon  reservoirs  is  through  seismic  techniques  and  by  actually  drilling  down.    Both  surface  and  down  hole  seismic  have  limited  resoluKon,  while  drilling  can  only  take  readings  in  a  limited  area  around  the  bore  hole.  

As  exisKng  fields  mature,  exploraKon  companies  must  find  new  ways  to  extract  more  oil  and  gas  to  meet  ever-­‐increasing  global  demands.  

There  is  a  need  to  bring  together  researchers  from  all  oil  and  gas  companies  as  well  as  academic  insKtuKons  and  other  organizaKons  to  pool  research  in  much  the  same  way  that  oil  companies  collaborated  on  offshore  technologies  in  the  early  days  of  offshore  exploraKon.  

Possible  Nanotechnology  methodologies  within  Oil  and  Gas  Industry  

• Nanotechnology-­‐enhanced  materials  that  provide  strength  and  endurance  to  increase  performance  and  reliability  in  drilling,  tubular  goods,  and  rotaKng  parts.    

• Improved  elastomers,  criKcal  to  deep  drilling  and  to  improve  drilling  in  high-­‐  temperature/high-­‐pressure  environments.    

• Designer  properKes  to  enhance  hydro-­‐phobic  or  hydrophilic  behavior,  to  enhance  materials  for  waterflood  applicaKons.    

• NanoparKculate  werng  carried  out  using  molecular  dynamics,  which  shows  promise  in  solvents  for  heterogeneous  surfaces  and  porous  solids.  •     • Lightweight,  rugged  materials  that  reduce  weight  requirements  on  offshore  plakorms,  and  more-­‐reliable  and  more-­‐energy-­‐efficient  transportaKon  vessels.    

• Nanosensors  for  improved  temperature  and  pressure  raKngs  in  deep  wells  and  hosKle  environments.  •     • New  imaging  and  computaKonal  techniques  to  allow  bener  discovery,  sizing,  and  characterizaKon  of  reservoirs.    

• Nanosensors  deployed  in  the  pore  space  by  means  of  “nanodust”  to  provide  data  on  reservoir  characterizaKon,  fluid-­‐flow  monitoring,  and  fluid-­‐type  recogniKon.    

• Small  drill-­‐hole  evaluaKon  instruments  to  reduce  drilling  costs  and  to  provide  greater  environmental  sensiKvity  because  of  less  drill  waste.    

Author:  

SKg-­‐Arne  Kristoffersen  is  a  Corporate  exec  with  substanKal  corporate  experience.    SKg-­‐Arne  provide  preempKve  support  in  German  or  English,  with  basic  skill  set  in  Russian.    Kristoffersen  focus  on  Knowledge  Based  InformaKon  processes  and  systems  within  oil  and  gas  industry,  contract  dra^ing,  asset  negoKaKons  within  real  estate  and  energy  sectors.    SKg  Arne  has  a  broad  experience  in  all  aspects  of  Geo-­‐science,  telecom  and  markeKng/  sales  management.  Direct  experience  with  energy  business,  technical  consulKng  and  venture  capital.    Oil  and  Gas  SKg  has  extensive  experience  in  play  development  and  prospect  generaKon  in  various  basins  globally.  SKg  Arne  has  performed  a  large  variaKon  of    risk  assessment  as  part  of  prospect  maturaKon  with  HI-­‐end  tools  from  various  vendors  including  Petrel  and  SMT.  

Energy  SKg  Arne  has  parKcipated  in  mulKple  projects  with  efficient  ExploraKon  and  ProducKon  of  oil  and  gas  resources,  and  experience  in  making  quick  turnaround  from  resource  to  reserves.  UKlizing  acceptable  internaKonal  renown  techniques  to  achieve  the  goal  of  the  projects  are  always  the  goal.  

Renewable  Energy  SKg  Arne  Kristoffersen  has  insight  into  geothermal,  solar  power  and  wind  energy  usage  within  residenKal  as  well  as  commercial  aspects.  SKg  focus  on  networking  within  the  sphere  of  alternaKve  energy  forums  around  the  world  in  order  to  uKlize  latest  innovaKons  for  various  projects.  Focus  on  alternaKve  energy  usage  within  bio  fuel,  solar  energy  and  geothermal  energy  forms  

www.valioso.rocks