Nacl

54
WATER VAPOR SORPTION ISOTHERMS AND THE CAKING OF FOOD POWDERS WATER VAPOR SORPTION ISOTHERMS AND THE CAKING OF FOOD POWDERS Laboratoire de Chimie Physique Industrielle B.P. 1039- 51687 Reims Cedex2 M. Mathlouthi , B. Rogé M. Mathlouthi , B. Rogé

description

heh

Transcript of Nacl

  • WATER VAPOR SORPTION

    ISOTHERMS AND THE

    CAKING OF FOOD POWDERS

    WATER VAPOR SORPTION

    ISOTHERMS AND THE

    CAKING OF FOOD POWDERS

    Laboratoire de Chimie Physique Industrielle

    B.P. 1039- 51687 Reims Cedex2

    M. Mathlouthi , B. RogM. Mathlouthi , B. Rog

  • WATER VAPOR SORPTION ISOTHERMS

    WATER VAPOR SORPTION ISOTHERMS

    CAKING OF FOOD POWDERS CAKING OF FOOD POWDERS

    FACTORS AFFECTING THE CAKING OF SUGAR (control of flowability)

    DECAKING OF SUGAR CONCLUSION

    FACTORS AFFECTING THE CAKING OF SUGAR (control of flowability)

    DECAKING OF SUGAR CONCLUSION

  • WATER VAPOR SORPTION

    ISOTHERMS

    WATER VAPOR SORPTION

    ISOTHERMS

  • WATER VAPOR SORPTION ISOTHERMSBRUNAUER et al. (1938)

    WATER VAPOR SORPTION ISOTHERMSWATER VAPOR SORPTION ISOTHERMSBRUNAUER BRUNAUER et al.et al. (1938)(1938)

    5 types of isotherms5 types of isotherms2 %

    Aw1

    Type 1Type 1

    Type 2Type 2

    1Aw

    0

    2 %

    Type 3Type 3

    Aw1

    2 %

    Type 4Type 4

    Aw10

    2 %Type 5Type 5

    Aw

    1

    2 %

    BET isotherm (1+2) ex : swellable grainBET isotherm (1+2) ex : swellable grain

    Langmuir isotherm: one layer Langmuir isotherm: one layer

    BET S- shaped isotherm : multilayerBET S- shaped isotherm : multilayer

    Flory-Huggins isotherm,ex: glycerolFlory-Huggins isotherm,ex: glycerol

    BET isotherm: capillary+multilayerBET isotherm: capillary+multilayer

  • WATER VAPOUR SORPTION ISOTHERMWATER VAPOUR SORPTION ISOTHERM

  • Water vapour sorption isotherm : definition of the 3 regions

    Water vapour sorption isotherm : definition of the 3 regions

    REGION AREGION A corresponds to hydration monolayer where water molecules are bound to the product by strong H-bonds.

    REGION CREGION C is that of the so-called free or solvent water. Water molecules in this region are much less strongly bound than in regions A and B. This fraction of water is available for mould growth or dissolving of soluble solutes.

    REGION BREGION B corresponds to the linear part of sorption isotherm . Water is adsorbed as multilayers of molecules hydrogen bonded to the monolayer, or entrapped in the food by capillarity, Van der Waals forces,

  • SORPTION ISOTHERMS OF ANHYDROUS CRYSTALS

    SORPTION ISOTHERMS OF ANHYDROUS CRYSTALS

    0

    0,05

    0,1

    0,15

    0,2

    0,25

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9Aw

    W

    a

    t

    e

    r

    c

    o

    n

    t

    e

    n

    t

    (

    g

    /

    g

    M

    .

    S

    .

    ) NaCl

    Sucrose20C

  • SORPTION ISOTHERMS OF SALT HYDRATES

    SORPTION ISOTHERMS OF SALT HYDRATES

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0 10 20 30 40 50 60 70ERH %

    W

    a

    t

    e

    r

    c

    o

    n

    t

    e

    n

    t

    (

    g

    /

    1

    0

    0

    g

    M

    .

    S

    .

    )

    LiClCaCl2

    20C

    LiCl, H2 O

    CaCl2, H2 O

    CaCl2, 2H2 O

  • 00,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

    Aw

    W

    a

    t

    e

    r

    c

    o

    n

    t

    e

    n

    t

    (

    g

    /

    1

    0

    0

    g

    M

    .

    S

    .

    )

    SORPTION ISOTHERMS OF BETAINESORPTION ISOTHERMS OF BETAINE

    Plateau between 12 % and 45 % ERH (Monohydrate)Water content = 0.15 g /g 1 H2O / betaine molecule Anhydrous stable between 0 et 7 % ERH

    Plateau between 12 % and 45 % ERH (Monohydrate)Water content = 0.15 g /g 1 H2O / betaine molecule Anhydrous stable between 0 et 7 % ERH

    Anhydrous

    Monohydrate

    Anhydrous 'Monohydrate

  • SORPTION ISOTHERMS OF DEXTROSE AND FRUCTOSESORPTION ISOTHERMS OF DEXTROSE AND FRUCTOSE

    0

    20

    40

    60

    80

    100

    120

    40 50 60 70 80 90 100ERH %

    DextroseDextrose

    FructoseFructose

    20C

  • SORPTION ISOTHERMS OF SUGAR HYDRATES : Effect of temperatureSORPTION ISOTHERMS OF SUGAR HYDRATES : Effect of temperature

    Anhy

    drou

    s

    Monohy

    drate

  • SORPTION ISOTHERMS OF HYDROPHILIC FOOD POLYMERS

    SORPTION ISOTHERMS OF HYDROPHILIC FOOD POLYMERS

    1 : Apple pectin 3 : potato starch2 : Casein 4 : Wheat starch5 : Cellulose

    1 : Apple pectin 3 : potato starch2 : Casein 4 : Wheat starch5 : Cellulose

    For For aaww < 0.4< 0.4 : : cellcell < pot < cas < < pot < cas < pectpect< < whewhe

    For For aaww >0,4>0,4 ::celcel < cas < < cas < whewhe < pot < < pot < pectpect

  • APPLIED ASPECTS OF SORPTION ISOTHERMS

    THERMODYNAMICAL ASPECTS- Sorption and desorption enthalpies- Water activity , sucrose solubility equilibrium- Heats of solution and crystallization

    THERMODYNAMICAL ASPECTS- Sorption and desorption enthalpies- Water activity , sucrose solubility equilibrium- Heats of solution and crystallization

    STRUCTURAL ASPECTS- Specific Area- Grain size and pores volume- Amorphous state and transition

    STRUCTURAL ASPECTS- Specific Area- Grain size and pores volume- Amorphous state and transition

    TECHNOLOGICAL ASPECTS-Drying conditions- Maturation and Stability- Handling, Storage and Packaging

    TECHNOLOGICAL ASPECTS-Drying conditions- Maturation and Stability- Handling, Storage and Packaging

  • Method Observation Drawbacks

    Microclimate 8-10 days for equilibration stability of temperatureaccurancy of water contentstability of saturated salt solutions

    Method Observation DrawbacksElectrical hygrometer size of particles dissolution

    high R.H. > 95 %

    DETERMINATION OF SORPTION ISOTHERMDETERMINATION OF SORPTION ISOTHERM

  • CAKING CAKING

  • WATER ADSORPTION AND CAKINGWATER ADSORPTION AND CAKING

    Schematic steps of lumpingSchematic steps of lumping

    Solide

    Air

    Eau

    Solide

    Eau

    SolideEau

    a)

    b)

    c)

    d)

    Solide

    Air

    Eau

    A- Pendular stepA- Pendular step

    B- funicular stepB- funicular step

    C- capillary stepC- capillary step

    D- drop stepD- drop step

    ERH

  • METHODS OF CHARACTERIZATION OF CAKING

    METHODS OF CHARACTERIZATION OF CAKING

    Flow rateFlow rate Flowability AngleFlowability Angle

    Angle of reposeAngle of repose

    Cohesion : Jenike cellCohesion : Jenike cell

    Microscopical observationsMicroscopical observations

  • TRANSITION TEMPERATURE vs MOISTURE

    Aguillera et al.,TIFS, 1995,6, 149

    Tg of Sucrose using Gordon Taylor eq. ________

  • METHODS FOR PREVENTION OF CAKINGMETHODS FOR PREVENTION OF CAKING

    Storage at low temperature Stabilisation of powder moisture and Temperature by maturation on indirect cooling

    Drying to low moisture content Decaking : controlled humidification and dehydration

    Addition of anti-caking agent

    Storage at low temperature Stabilisation of powder moisture and Temperature by maturation on indirect cooling

    Drying to low moisture content Decaking : controlled humidification and dehydration

    Addition of anti-caking agent

  • CAKING OF

    CRYSTALLINE

    WHITE SUGAR

    CAKING OF

    CRYSTALLINE

    WHITE SUGAR

  • 1 mm

    Pendular stepPendular step

    0% < HRE < 44%0% < HRE < 44%

    CAKING OF CRYSTALLINE WHITE SUGARCAKING OF CRYSTALLINE WHITE SUGAR

    Solid

    Air

    Syrup

  • 500 m

    44% < HRE < 75%44% < HRE < 75%

    Liquid bridge

    Funicular stepFunicular step

    CAKING OF CRYSTALLINE WHITE SUGARCAKING OF CRYSTALLINE WHITE SUGAR

    Solid

    Air

    Liquid

  • 75% < HRE < 85%75% < HRE < 85%

    Solid bridge

    Capillary stepCapillary step

    CAKING OF CRYSTALLINE WHITE SUGARCAKING OF CRYSTALLINE WHITE SUGAR

    Solid

    Syrup

  • 500 m

    HRE> 85 %HRE> 85 %

    Syrup surrounding crystalsSyrup surrounding crystals

    SolidLiquid

    Drop stepDrop step

    CAKING OF CRYSTALLINE WHITE SUGARCAKING OF CRYSTALLINE WHITE SUGAR

  • WATER MIGRATION IN THE FILM OF SYRUP SURROUNDING THE CRYSTAL

    WATER MIGRATION IN THE FILM OF SYRUP SURROUNDING THE CRYSTAL

    Sugar crystal

    Bound syrup film

    Amorphous sugar layer

    Inherent water

    Water monomer

    Sucrose

    Water monomer

  • WATER IN SUGAR CRYSTALWATER IN SUGAR CRYSTAL

    Air MoistureAir MoistureSyrup Water

    Crystal sucrose

    Syrup sucrose

    Included water

  • PARAMETERS AFFECTING THE FLOW STABILITY OF SUGAR

    PARAMETERS AFFECTING THE FLOW STABILITY OF SUGAR

    GRAIN SIZE DISTRIBUTION SHAPE OF PARTICLES SURFACE IMPURITIES TEMPERATURE

    GRAIN SIZE DISTRIBUTION SHAPE OF PARTICLES SURFACE IMPURITIES TEMPERATURE

  • 00,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    0,3 0,4 0,5 0,6 0,7 0,8 0,9Aw

    W

    a

    t

    e

    r

    c

    o

    n

    t

    e

    n

    t

    (

    g

    /

    K

    g

    M

    .

    S

    .

    )

    < 250 m 400-500 m 500-800 m > 800 m

    < 250 mFraction 250-400 m

    > 800 m

    CRYSTAL SIZE DISTRIBUTIONCRYSTAL SIZE DISTRIBUTION

  • CRYSTAL SHAPE : Amorphous sucroseCRYSTAL SHAPE : Amorphous sucrose

    Roth D. (1976) Roth D. (1976)

  • Sugar crystals (< 100 m) (sugar dust from factory)SugarSugar crystalscrystals (< 100 m) ((< 100 m) (sugar dust from factorysugar dust from factory))

    single single crystalscrystals (< 100 m) (B.S. patent)(< 100 m) (B.S. patent)

    CRYSTAL SHAPE : CRYSTAL SHAPE :

  • CRYSTAL SHAPE : CRYSTAL SHAPE :

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    50 60 70 80 90 100HRE %

    T

    e

    n

    e

    u

    r

    e

    n

    e

    a

    u

    (

    g

    /

    1

    0

    0

    g

    M

    .

    S

    .

    )

    sucre Rfrence microcristaux(< 250 m) < 250 m (sucre standard)

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    50 60 70 80 90 100HRE %

    T

    e

    n

    e

    u

    r

    e

    n

    e

    a

    u

    (

    g

    /

    1

    0

    0

    g

    M

    .

    S

    .

    )

    sucre Rfrence microcristaux(< 250 m) 21% de broys

    70% de broys < 250 m (sucre standard)

    21 %Milled

    70 %

    Single crystals

    Manufactory crystals

  • SURFACE IMPURITIES(Alcaline cations in crystallization medium)

    SURFACE IMPURITIES(Alcaline cations in crystallization medium)

  • 0,000

    0,050

    0,100

    0,150

    0,200

    0,250

    0,300

    0,350

    0,400

    0,450

    0,500

    0 20 40 60 80 100 120 140

    Temps (heures)

    Q

    u

    a

    n

    t

    i

    t

    d

    '

    e

    a

    u

    a

    d

    s

    o

    r

    b

    e

    g

    %

    g

    M

    .

    S

    .

    A =0.013%

    REF =0%

    B =0.033%

    D=0.1%

    C=0.066%

    Increased surfactant

    DecreasedAdsorption

    SURFACE IMPURITIES(Surfactants in crystallization medium)

    SURFACE IMPURITIES(Surfactants in crystallization medium)

  • CONTROL OF

    FLOWABILITY

    CONTROL OF

    FLOWABILITY

  • 010

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    Aw

    A

    n

    g

    l

    e

    d

    e

    f

    r

    i

    a

    b

    i

    l

    i

    t

    < 0 ,25mm 0,40mm< < 0 ,50mm 0,50mm< < 0 ,80 mm > 0 ,80 mm

    >800m0.5

  • PRINCIPLES OF JENIKE CELLPRINCIPLES OF JENIKE CELL

    A : surface sheared

    Consolidated powder

    Normal Stress

    N

    Shear Stress

    Fc (kPa)

    c (kPa)

    i

  • Teunou et al. (1999)

    ESTIMATION OF FLOWABILITY(food powder)

    ESTIMATION OF FLOWABILITY(food powder)

  • Effet de la granulomtrie sur la prise en masse du sucre

    Effet de la granulomtrie sur la prise en masse du sucre

    0.000

    1.000

    2.000

    3.000

    4.000

    5.000

    6.000

    7.000

    8.000

    9.000

    10.000

    0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000

    sigma c (kPa)

    F

    c

    (

    k

    P

    a

    )

    100

  • 00,05

    0,1

    0,15

    0,2

    0,25

    0,3

    grain size m

    s

    l

    o

    p

    e

    i

    Pente i 0,0326 0,0412 0,0417 0,0568 0,0708 0,1087 0,154 0,1441 0,2653

    > 1000 800

  • 10C

    35C

    EFFECT OF TEMPERATURE ON ISOTHERMS

    (Crystalline sugar)

    EFFECT OF TEMPERATURE ON ISOTHERMS

    (Crystalline sugar)

  • EFFECT OF TEMPERATURE ON ISOTHERMS

    (Crystalline sugar)

    EFFECT OF TEMPERATURE ON ISOTHERMS

    (Crystalline sugar)

    dp T = 9C (T = 1C)dp T =13.5C (= 1.5)

    Tdp = 18C(= 2)Tdp = 23C (=2)

    Tdp= 27C(=3)Tdp =31C(=4 )

  • Bulkflow Heat ExchangerBulkflow Heat Exchanger

    IndirectCooling of food powder

    No effectof air

  • EFFECT OF THE GLASS TRANSITIONEFFECT OF THE GLASS TRANSITION

  • DECAKING

    PROCEDURE

    DECAKING

    PROCEDURE

  • Vaprization ofwater Dry air

    P

    (1)

    (2)1

    (3)

    (4)

    (5)

    PILOT SILOPILOT SILO

  • Rate of water removal > rate of recristallization of sucroseRate of water removal > rate of recristallization of sucrose

    Caked, Shear stress = 83 kPa

    ERH = 55%, t = 5h

    ERH = 20%,, t= 5 hRESULT =CAKEDShear stress = 12

  • Rate of water removal rate of recrystallizationRate of water removal rate of recrystallization

    Caked, Shear stress = 85 kPa

    ERH = 55%

    ERH = 50 %

    ERH = 40 %RESULT =DECAKEDShear stress = 7

  • MORPHOLOGY OF SOME DECAKED CRYSTALS

    MORPHOLOGY OF SOME DECAKED CRYSTALS

  • SORPTION ISOTHERMSSORPTION ISOTHERMS

    0

    0,05

    0,1

    0,15

    0,2

    0,25

    0,3

    0 20 40 60 80 100HRE %

    T

    e

    n

    e

    u

    r

    e

    n

    e

    a

    u

    (

    g

    %

    g

    M

    .

    S

    .

    )

    Sucre microcristallin < 250 m sucre microcristallin mott < 250 m

    Single crystals

    Single crystals Caked

  • 01

    2

    3

    4

    5

    6

    7

    0 5 10 15 20 25Temps (h)

    W

    a

    t

    e

    r

    c

    o

    n

    t

    e

    n

    t

    (

    g

    /

    1

    0

    0

    g

    M

    .

    S

    .

    ) Caked sugarCaked sugardecaked sugar

    Reference

    KINETICS OF ADSORPTIONKINETICS OF ADSORPTION

  • MECHANISM OF ACTION OFANTICAKING AGENTS

    Properties Action- Porous hydrophilic preferential capillary -

    adsorption-------------------------------------------------------------------------- fine particles hydrophobic surface physical barrier

    (silicon dioxide) inhibiting crystal growth--------------------------------------------------------------------------- HMW hydrophilic increasing Tg

    (maltodextrins) antiplasticising effect--------------------------------------------------------------------------- Hydrophobic Moisture protective barrier

    (lipids) spread on the surface

    Properties Action- Porous hydrophilic preferential capillary -

    adsorption-------------------------------------------------------------------------- fine particles hydrophobic surface physical barrier

    (silicon dioxide) inhibiting crystal growth--------------------------------------------------------------------------- HMW hydrophilic increasing Tg

    (maltodextrins) antiplasticising effect--------------------------------------------------------------------------- Hydrophobic Moisture protective barrier

    (lipids) spread on the surface

  • SORPTION ISOTHERM OF MIXTURE OF POWDERS

    SORPTION ISOTHERM OF SORPTION ISOTHERM OF MIXTURE OF POWDERSMIXTURE OF POWDERS

    Salwyn and Slawson, 1959

    Mixture of powders A and B with different hygroscopicities

  • CONCLUSIONCONCLUSION

  • Conditions of flow stability of food powders :- crystals with large size, regular shape

    - homogeneous size distribution

    - No amorphous or fine particles

    Control and prevention of Caking :- Water vapor sorption isotherm

    - flow index from shear stress slope, i

    - Transition temperatue, Dew point temperatue

    - Controlled humidification and dehydration

    - Addition of anti-caking agent

    Conditions of flow stability of food powders :- crystals with large size, regular shape

    - homogeneous size distribution

    - No amorphous or fine particles

    Control and prevention of Caking :- Water vapor sorption isotherm

    - flow index from shear stress slope, i

    - Transition temperatue, Dew point temperatue

    - Controlled humidification and dehydration

    - Addition of anti-caking agent