Munson FundFluidMech 6th Contenido

6

description

fluidos

Transcript of Munson FundFluidMech 6th Contenido

Page 1: Munson FundFluidMech 6th Contenido
Page 2: Munson FundFluidMech 6th Contenido

xvii

Contents

1INTRODUCTION 1

Learning Objectives 1

1.1 Some Characteristics of Fluids 3

1.2 Dimensions, Dimensional

Homogeneity, and Units 4

1.2.1 Systems of Units 7

1.3 Analysis of Fluid Behavior 11

1.4 Measures of Fluid Mass and Weight 11

1.4.1 Density 11

1.4.2 Specific Weight 12

1.4.3 Specific Gravity 12

1.5 Ideal Gas Law 12

1.6 Viscosity 14

1.7 Compressibility of Fluids 20

1.7.1 Bulk Modulus 20

1.7.2 Compression and Expansion

of Gases 21

1.7.3 Speed of Sound 22

1.8 Vapor Pressure 23

1.9 Surface Tension 24

1.10 A Brief Look Back in History 27

1.11 Chapter Summary and Study Guide 29

References 30

Review Problems 30

Problems 31

2FLUID STATICS 38

Learning Objectives 38

2.1 Pressure at a Point 38

2.2 Basic Equation for Pressure Field 40

2.3 Pressure Variation in a Fluid at Rest 41

2.3.1 Incompressible Fluid 42

2.3.2 Compressible Fluid 45

2.4 Standard Atmosphere 47

2.5 Measurement of Pressure 48

2.6 Manometry 50

2.6.1 Piezometer Tube 50

2.6.2 U-Tube Manometer 51

2.6.3 Inclined-Tube Manometer 54

2.7 Mechanical and Electronic Pressure

Measuring Devices 55

2.8 Hydrostatic Force on a Plane Surface 57

2.9 Pressure Prism 63

2.10 Hydrostatic Force on a Curved

Surface 66

2.11 Buoyancy, Flotation, and Stability 68

2.11.1 Archimedes’ Principle 68

2.11.2 Stability 71

2.12 Pressure Variation in a Fluid with

Rigid-Body Motion 72

2.12.1 Linear Motion 73

2.12.2 Rigid-Body Rotation 75

2.13 Chapter Summary and Study Guide 77

References 78

Review Problems 78

Problems 78

3ELEMENTARY FLUID DYNAMICS—THE BERNOULLI EQUATION 93

Learning Objectives 93

3.1 Newton’s Second Law 94

3.2 F ma along a Streamline 96

3.3 F ma Normal to a Streamline 100

3.4 Physical Interpretation 102

3.5 Static, Stagnation, Dynamic,

and Total Pressure 105

3.6 Examples of Use of the Bernoulli

Equation 110

3.6.1 Free Jets 110

3.6.2 Confined Flows 112

3.6.3 Flowrate Measurement 118

3.7 The Energy Line and the Hydraulic

Grade Line 123

3.8 Restrictions on Use of the

Bernoulli Equation 126

3.8.1 Compressibility Effects 126

3.8.2 Unsteady Effects 128

3.8.3 Rotational Effects 130

3.8.4 Other Restrictions 131

3.9 Chapter Summary and Study Guide 131

References 133

Review Problems 133

Problems 133

��

JWCL068_fm_i-xxii.qxd 11/7/08 5:00 PM Page xvii

Page 3: Munson FundFluidMech 6th Contenido

4FLUID KINEMATICS 147

Learning Objectives 147

4.1 The Velocity Field 147

4.1.1 Eulerian and Lagrangian Flow

Descriptions 150

4.1.2 One-, Two-, and Three-

Dimensional Flows 151

4.1.3 Steady and Unsteady Flows 152

4.1.4 Streamlines, Streaklines,

and Pathlines 152

4.2 The Acceleration Field 156

4.2.1 The Material Derivative 156

4.2.2 Unsteady Effects 159

4.2.3 Convective Effects 159

4.2.4 Streamline Coordinates 163

4.3 Control Volume and System Representations 165

4.4 The Reynolds Transport Theorem 166

4.4.1 Derivation of the Reynolds

Transport Theorem 168

4.4.2 Physical Interpretation 173

4.4.3 Relationship to Material Derivative 173

4.4.4 Steady Effects 174

4.4.5 Unsteady Effects 174

4.4.6 Moving Control Volumes 176

4.4.7 Selection of a Control Volume 177

4.5 Chapter Summary and Study Guide 178

References 179

Review Problems 179

Problems 179

5FINITE CONTROL VOLUME ANALYSIS 187

Learning Objectives 187

5.1 Conservation of Mass—The

Continuity Equation 188

5.1.1 Derivation of the Continuity

Equation 188

5.1.2 Fixed, Nondeforming Control

Volume 190

5.1.3 Moving, Nondeforming

Control Volume 196

5.1.4 Deforming Control Volume 198

5.2 Newton’s Second Law—The Linear

Momentum and Moment-of-

Momentum Equations 200

5.2.1 Derivation of the Linear

Momentum Equation 200

5.2.2 Application of the Linear

Momentum Equation 201

5.2.3 Derivation of the Moment-of-

Momentum Equation 215

xviii Contents

5.2.4 Application of the Moment-of-

Momentum Equation 216

5.3 First Law of Thermodynamics—The

Energy Equation 223

5.3.1 Derivation of the Energy Equation 223

5.3.2 Application of the Energy

Equation 225

5.3.3 Comparison of the Energy

Equation with the Bernoulli

Equation 229

5.3.4 Application of the Energy

Equation to Nonuniform Flows 235

5.3.5 Combination of the Energy

Equation and the Moment-of-

Momentum Equation 238

5.4 Second Law of Thermodynamics—

Irreversible Flow 239

5.4.1 Semi-infinitesimal Control

Volume Statement of the

Energy Equation 239

5.4.2 Semi-infinitesimal Control

Volume Statement of the

Second Law of Thermodynamics 240

5.4.3 Combination of the Equations

of the First and Second

Laws of Thermodynamics 241

5.4.4 Application of the Loss Form

of the Energy Equation 242

5.5 Chapter Summary and Study Guide 244

References 245

Review Problems 245

Problems 245

6DIFFERENTIAL ANALYSIS OF FLUID FLOW 263

Learning Objectives 263

6.1 Fluid Element Kinematics 264

6.1.1 Velocity and Acceleration

Fields Revisited 265

6.1.2 Linear Motion and Deformation 265

6.1.3 Angular Motion and Deformation 266

6.2 Conservation of Mass 269

6.2.1 Differential Form of

Continuity Equation 269

6.2.2 Cylindrical Polar Coordinates 272

6.2.3 The Stream Function 272

6.3 Conservation of Linear Momentum 275

6.3.1 Description of Forces Acting

on the Differential Element 276

6.3.2 Equations of Motion 278

6.4 Inviscid Flow 279

6.4.1 Euler’s Equations of Motion 279

6.4.2 The Bernoulli Equation 279

JWCL068_fm_i-xxii.qxd 11/7/08 5:00 PM Page xviii

Page 4: Munson FundFluidMech 6th Contenido

Contents xix

7.7.2 Problems with Two or More

Pi Terms 352

7.8 Modeling and Similitude 354

7.8.1 Theory of Models 354

7.8.2 Model Scales 358

7.8.3 Practical Aspects of

Using Models 358

7.9 Some Typical Model Studies 360

7.9.1 Flow through Closed Conduits 360

7.9.2 Flow around Immersed Bodies 363

7.9.3 Flow with a Free Surface 367

7.10 Similitude Based on Governing

Differential Equations 370

7.11 Chapter Summary and Study Guide 373

References 374

Review Problems 374

Problems 374

8VISCOUS FLOW IN PIPES 383

Learning Objectives 383

8.1 General Characteristics of Pipe Flow 384

8.1.1 Laminar or Turbulent Flow 385

8.1.2 Entrance Region and Fully

Developed Flow 388

8.1.3 Pressure and Shear Stress 389

8.2 Fully Developed Laminar Flow 390

8.2.1 From F ma Applied to a

Fluid Element 390

8.2.2 From the Navier–Stokes

Equations 394

8.2.3 From Dimensional Analysis 396

8.2.4 Energy Considerations 397

8.3 Fully Developed Turbulent Flow 399

8.3.1 Transition from Laminar to

Turbulent Flow 399

8.3.2 Turbulent Shear Stress 401

8.3.3 Turbulent Velocity Profile 405

8.3.4 Turbulence Modeling 409

8.3.5 Chaos and Turbulence 409

8.4 Dimensional Analysis of Pipe Flow 409

8.4.1 Major Losses 410

8.4.2 Minor Losses 415

8.4.3 Noncircular Conduits 425

8.5 Pipe Flow Examples 428

8.5.1 Single Pipes 428

8.5.2 Multiple Pipe Systems 437

8.6 Pipe Flowrate Measurement 441

8.6.1 Pipe Flowrate Meters 441

8.6.2 Volume Flow Meters 446

8.7 Chapter Summary and Study Guide 447

References 449

Review Problems 450

Problems 450

6.4.3 Irrotational Flow 281

6.4.4 The Bernoulli Equation for

Irrotational Flow 283

6.4.5 The Velocity Potential 283

6.5 Some Basic, Plane Potential Flows 286

6.5.1 Uniform Flow 287

6.5.2 Source and Sink 288

6.5.3 Vortex 290

6.5.4 Doublet 293

6.6 Superposition of Basic, Plane Potential

Flows 295

6.6.1 Source in a Uniform

Stream—Half-Body 295

6.6.2 Rankine Ovals 298

6.6.3 Flow around a Circular Cylinder 300

6.7 Other Aspects of Potential Flow

Analysis 305

6.8 Viscous Flow 306

6.8.1 Stress-Deformation Relationships 306

6.8.2 The Naiver–Stokes Equations 307

6.9 Some Simple Solutions for Viscous,

Incompressible Fluids 308

6.9.1 Steady, Laminar Flow between

Fixed Parallel Plates 309

6.9.2 Couette Flow 311

6.9.3 Steady, Laminar Flow in

Circular Tubes 313

6.9.4 Steady, Axial, Laminar Flow

in an Annulus 316

6.10 Other Aspects of Differential Analysis 318

6.10.1 Numerical Methods 318

6.11 Chapter Summary and Study Guide 319

References 320

Review Problems 320

Problems 320

7DIMENSIONAL ANALYSIS, SIMILITUDE, AND MODELING 332

Learning Objectives 332

7.1 Dimensional Analysis 333

7.2 Buckingham Pi Theorem 335

7.3 Determination of Pi Terms 336

7.4 Some Additional Comments

About Dimensional Analysis 341

7.4.1 Selection of Variables 341

7.4.2 Determination of Reference

Dimensions 342

7.4.3 Uniqueness of Pi Terms 344

7.5 Determination of Pi Terms by Inspection 345

7.6 Common Dimensionless Groups

in Fluid Mechanics 346

7.7 Correlation of Experimental Data 350

7.7.1 Problems with One Pi Term 351

JWCL068_fm_i-xxii.qxd 11/7/08 5:00 PM Page xix

Page 5: Munson FundFluidMech 6th Contenido

xx Contents

9FLOW OVER IMMERSED BODIES 461

Learning Objectives 461

9.1 General External Flow Characteristics 462

9.1.1 Lift and Drag Concepts 463

9.1.2 Characteristics of Flow Past

an Object 466

9.2 Boundary Layer Characteristics 470

9.2.1 Boundary Layer Structure and

Thickness on a Flat Plate 470

9.2.2 Prandtl/Blasius Boundary

Layer Solution 474

9.2.3 Momentum Integral Boundary

Layer Equation for a Flat Plate 478

9.2.4 Transition from Laminar to

Turbulent Flow 483

9.2.5 Turbulent Boundary Layer Flow 485

9.2.6 Effects of Pressure Gradient 488

9.2.7 Momentum-Integral Boundary

Layer Equation with Nonzero

Pressure Gradient 492

9.3 Drag 493

9.3.1 Friction Drag 494

9.3.2 Pressure Drag 495

9.3.3 Drag Coefficient Data and Examples 497

9.4 Lift 509

9.4.1 Surface Pressure Distribution 509

9.4.2 Circulation 518

9.5 Chapter Summary and Study Guide 522

References 523

Review Problems 524

Problems 524

10OPEN-CHANNEL FLOW 534

Learning Objectives 534

10.1 General Characteristics of Open-

Channel Flow 535

10.2 Surface Waves 536

10.2.1 Wave Speed 536

10.2.2 Froude Number Effects 539

10.3 Energy Considerations 541

10.3.1 Specific Energy 542

10.3.2 Channel Depth Variations 545

10.4 Uniform Depth Channel Flow 546

10.4.1 Uniform Flow Approximations 546

10.4.2 The Chezy and Manning

Equations 547

10.4.3 Uniform Depth Examples 550

10.5 Gradually Varied Flow 554

10.5.1 Classification of Surface Shapes 000

10.5.2 Examples of Gradually

Varied Flows 000

10.6 Rapidly Varied Flow 555

10.6.1 The Hydraulic Jump 556

10.6.2 Sharp-Crested Weirs 561

10.6.3 Broad-Crested Weirs 564

10.6.4 Underflow Gates 566

10.7 Chapter Summary and Study Guide 568

References 569

Review Problems 569

Problems 570

11COMPRESSIBLE FLOW 579

Learning Objectives 579

11.1 Ideal Gas Relationships 580

11.2 Mach Number and Speed of Sound 585

11.3 Categories of Compressible Flow 588

11.4 Isentropic Flow of an Ideal Gas 592

11.4.1 Effect of Variations in Flow

Cross-Sectional Area 593

11.4.2 Converging–Diverging Duct Flow 595

11.4.3 Constant-Area Duct Flow 609

11.5 Nonisentropic Flow of an Ideal Gas 609

11.5.1 Adiabatic Constant-Area Duct

Flow with Friction (Fanno Flow) 609

11.5.2 Frictionless Constant-Area

Duct Flow with Heat Transfer

(Rayleigh Flow) 620

11.5.3 Normal Shock Waves 626

11.6 Analogy between Compressible

and Open-Channel Flows 633

11.7 Two-Dimensional Compressible Flow 635

11.8 Chapter Summary and Study Guide 636

References 639

Review Problems 640

Problems 640

12TURBOMACHINES 645

Learning Objectives 645

12.1 Introduction 646

12.2 Basic Energy Considerations 647

12.3 Basic Angular Momentum Considerations 651

12.4 The Centrifugal Pump 653

12.4.1 Theoretical Considerations 654

12.4.2 Pump Performance Characteristics 658

12.4.3 Net Positive Suction Head (NPSH) 660

12.4.4 System Characteristics and

Pump Selection 662

12.5 Dimensionless Parameters and

Similarity Laws 666

12.5.1 Special Pump Scaling Laws 668

12.5.2 Specific Speed 669

12.5.3 Suction Specific Speed 670

JWCL068_fm_i-xxii.qxd 11/7/08 5:00 PM Page xx

Page 6: Munson FundFluidMech 6th Contenido

Contents xxi

12.6 Axial-Flow and Mixed-Flow Pumps 671

12.7 Fans 673

12.8 Turbines 673

12.8.1 Impulse Turbines 674

12.8.2 Reaction Turbines 682

12.9 Compressible Flow Turbomachines 685

12.9.1 Compressors 686

12.9.2 Compressible Flow Turbines 689

12.10 Chapter Summary and Study Guide 691

References 693

Review Problems 693

Problems 693

ACOMPUTATIONAL FLUID DYNAMICS AND FLOWLAB 701

BPHYSICAL PROPERTIES OF FLUIDS 714

CPROPERTIES OF THE U.S. STANDARD ATMOSPHERE 719

DCOMPRESSIBLE FLOW DATA FOR AN IDEAL GAS 721

ONLINE APPENDIX LIST 725

ECOMPREHENSIVE TABLE OFCONVERSION FACTORS See book web site, www.wiley.com/college/munson, for this material.

FVIDEO LIBRARYSee book web site, www.wiley.com/college/munson, for this material.

GREVIEW PROBLEMS See book web site, www.wiley.com/college/munson, for this material.

HLABORATORY PROBLEMSSee book web site, www.wiley.com/college/munson, for this material.

ICFD DRIVEN CAVITY EXAMPLESee book web site, www.wiley.com/college/munson, for this material.

JFLOWLAB TUTORIAL AND USER’S GUIDESee book web site, www.wiley.com/college/munson, for this material.

KFLOWLAB PROBLEMSSee book web site, www.wiley.com/college/munson, for this material.

ANSWERS ANS-1

INDEX I-1

VIDEO INDEX VI-1

JWCL068_fm_i-xxii.qxd 11/7/08 5:00 PM Page xxi