Multiple Quantum Wells - Georgia Institute of...

46
1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture by Shamas M. Ummer School of Electrical and Computer Engineering Georgia Institute of Technology

Transcript of Multiple Quantum Wells - Georgia Institute of...

Page 1: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 1

Multiple Quantum Wells

Reading: Brennan - 2.5.

Lecture by Shamas M. Ummer

School of Electrical and Computer EngineeringGeorgia Institute of Technology

Page 2: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 2

Multiple Quantum Wells

• This technology is used extensively in semiconductor laser technology

• Multiple Quantum Wells are grown using MBE, CBE and MOCVD

• Typical materials used:– GaAs/AlGaAs– InGaAs/InP– GaN/AlGaN

Page 3: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 3

I II III IV V VI VII

0 b a+b a+2b 2(a+b) 2a+3b

I II III IV V VI VII

0 b a+b a+2b 2(a+b) 2a+3b

V=V0

V=0

V=V0

V=0

Multiple Quantum Wells – General Structure (E<V0)

We already have the necessary tools to solve this problem. We take the same approach as we did for the potential well and potential barrier problem, i.e., we solve for the wave function in each region and then we apply the boundary conditions between the regions and finally, solve for the reflection and transmission probabilities.

The general structure of a Multiple Quantum well with potential V0, barrier width “b” and well width “a” is shown below:

Let us consider the case when an electron with energy less than V0 is incident on the structure:

V=V0 V=V0

Page 4: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 4

Multiple Quantum Wells – Assumptions (for both cases)

Two important Assumptions are made for this problem:

– Electron effective mass is assumed to be the same in all regionsThis allows us to use the simple boundary conditions we have been using for

solving our barrier and well problems

– No field is applied to the structure Therefore, the device is translationally symmetric, i.e., the electron energy

doesn’t change according to position.

Page 5: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 5

Multiple Quantum Wells – Wave Functions Review (E<V0)

Now, we can begin solving the problem. For all the regions, the wave function can be found by solving the Schrödinger Equation. For region I:

xikxik eRe 111

−+=Ψ⇒

efficientcoreflectionR

mEk

−=

= 212h

11021

22

2Ψ=Ψ+

Ψ− EVdx

dmh

where,

0 b a+b a+2b 2(a+b)2a+3b

Incidentwave

Reflectedwave

V0 V0 V0

0 0

Page 6: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 6

Multiple Quantum Wells – Wave Functions Review (E<V0)

For region II, we have a potential of V0:

22022

22

2Ψ=Ψ+

Ψ− EVdx

dmh

xkxk eCeC 22222

−−+ +=Ψ⇒ 20

2)(2

h

EVmk −=

For region III,

where,

where,

xkCxkC 22222 sinhcosh −+ +=ΨOr, in terms of hyperbolic functions,

33023

22

2Ψ=Ψ+

Ψ− EVdx

dmh

212h

mEk =

xkCxkC 13133 sincos −+ +=Ψ

xikxik eCeC 11333

−−+ +=Ψ

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

0

+x directionwave

-x directionwave

0

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

0

Or,

Similarly, we can solve for the wave functions for the other regions with each region with a potential having similar solutions as Ψ2 and the regions without a potential having solutions similar to Ψ3

+x directionwave

-x directionwave

Page 7: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 7

Multiple Quantum Wells – Wave Functions Review (E<V0)

For Region IV:

,11555

xikxik eCeC −−+ +=Ψ

,22666

xkxk eCeC −−+ +=Ψ

,17

xikTe=Ψ

,22444

xkxk eCeC −−+ +=Ψ

212h

mEk =

20

2)(2

h

EVmk −=

20

2)(2

h

EVmk −=

212h

mEk =

xkCxkC 15155 sincos −+ +=Ψ

xkCxkC 24244 sinhcosh −+ +=Ψ

xkCxkC 26266 sinhcosh −+ +=Ψ

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

0

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

0

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

0

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

0

For Region V:

For Region VI:

For Region VII:

Note: For region VII, only a +x component exists as the wave extends out to infinity and there is no barrier to reflect the wave back

Page 8: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 8

Multiple Quantum Wells – Boundary Conditions (I-II interface) (E<V0)

Now, we can apply the boundary conditions between each region. For regions I and II, we can use two boundary conditions:

( ) ( )

( )

( )

)2.(

coshsinh,

coshsinh2

2

)1.(1

sinhcosh

)0()0(

2211

022

222

2

0

11

222

222*

222*22

11*111

*11

0201

2

022220

21

11

11

11

EqCmkR

mik

mik

xkCmkxkC

mkeR

mike

mik

xkCmkxkC

mk

mij

eRmike

mik

mij

jj

EqCR

xkCxkCeRe

xx

xx

xikxik

x

xikxikx

xxxx

xx

xikxik

=

−+

=

−+

==

+

=

−+

=

=−

+=

−∴

+=Ψ∇Ψ−Ψ∇Ψ=

−=Ψ∇Ψ−Ψ∇Ψ=

=

=+

+=+

=Ψ==Ψ

vvh

vvh

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

• Boundary Condition 1 (Continuity of the wave function):

• Boundary Condition 2 (Probability Current Density):

NOTE: For every interface, the boundary conditions are similar. The only parameter that changes is the x value at the interface.

Page 9: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 9

Multiple Quantum Wells – Boundary Conditions (I-II interface) (E<V0)

)2.(

)1.(1

2211

2

EqCmkR

mik

mik

EqCR

+

=−

=+

−−

−=

−=

=

+

+−

+

2

22

1

1

1

2

22

1

11

2

2211

001

1

1

21

001111

,1

001111

CC

mk

mikmik

ikm

R

CC

mk

mik

mik

R

RforSolving

CC

mk

Rmik

mik

But, equation 1 and 2 can also be expressed in matrix form

−−

=

=

==

acbd

bcadAthen

dcba

Aif

CABthenCABifHEREUSEDIDENTITIESMATRIX

1,.2

,.1:

1

1

(CONTD……)

Page 10: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 10

Multiple Quantum Wells – Boundary Conditions (I-II interface) (E<V0)

−=

−−

−=

+

+

2

22

1

1

2

22

1

1

1

001

221

221

1

001

1

1

21

CC

mk

ikm

ikm

R

CC

mk

mikmik

ikm

R

[ ] )3.(1

2

2 EqCC

YR III

=

+

(CONTD.)

where, YI-II is a 2x2 matrix that is obtained by multiplying [a] and [b]. YI-II is called the transfer matrix for the region I-II interface (A transfer matrix describes the boundary conditions at each interface).

Note: The subscripts of Y#1-#2 stands for the regions #1-#2 interface it represents

[a] [b]x

Page 11: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 11

Multiple Quantum Wells – Boundary Conditions (II-III interface) (E<V0)

We can follow the same procedure we did for the regions I-II interface for obtaining the transfer matrix for the region II-III. Again, we start by using the boundary conditions @ x = b for regions II and III:

( )

( )

bkCmkbkC

mkbkC

mkbkC

mk

xkCmkxkC

mk

mij

xkCmkxkC

mk

mij

jjBC

bkCbkCbkCbkC

bxbxBC

x

x

bxxbxx

131

131

222

222

131

131*

333*33

222

222*

222*22

32

13132222

32

cossincoshsinh,

cossin2

coshsinh2

:2

sincossinhcosh,

)()(:1

−+−+

−+

−+

==

−+−+

+−=+∴

+−=Ψ∇Ψ−Ψ∇Ψ=

+=Ψ∇Ψ−Ψ∇Ψ=

=

+=+∴

=Ψ==Ψ

vvh

vvh

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

−=

+

+

3

3

11

11

11

2

2

22

22

22

cossin

sincos

coshsinh

sinhcosh

CC

bkmkbk

mk

bkbk

CC

bkmkbk

mk

bkbk

Again, we can represent these two equations in in the matrix form:

(CONTD……)

Page 12: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 12

Multiple Quantum Wells – Boundary Conditions (II-III interface) (E<V0)

[ ]

[ ] [ ][ ] )4.(1

,3.

cossin

sincos

coshsinh

sinhcosh

3

3

2

2

3

3

2

2

3

3

11

11

11

222

222

22

2

EqCC

YYCC

YR

haveweEqinabovethengSubstitutiCC

YCC

CC

bkmk

bkmk

bkbk

bkbkmk

bkbkmk

km

CC

IIIIIIIIIII

IIIII

=

=

=

−=

+

−−−

+

+

−−

+

+

+

,

cossin

sincos

coshsinh

sinhcosh

2

2

3

3

11

11

11

2

2

22

22

22

−=

+

+

+

CC

forSolving

CC

bkmkbk

mk

bkbk

CC

bkmkbk

mk

bkbk

(CONTD.)

x

Note: Now, it should be obvious to see why we use the Y#1-#2 notation - we avoid rewriting the rather nasty matrix multiplication with this notation.

Page 13: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 13

Multiple Quantum Wells – Boundary Conditions (III-IV interface) (E<V0)

We continue finding the transfer matrices. Using the boundary conditions @ x = a + b for regions III and IV:

( )

( )

)(cosh)(sinh)(cos)(sin,

coshsinh2

cossin2

:2

)(sinh)(cosh)(sin)(cos,

)()(:1

242

242

131

131

242

242*

444*44

131

131*

333*33

43

24241313

43

bakCmkbakC

mkbakC

mkbakC

mk

xkCmkxkC

mk

mij

xkCmkxkC

mk

mij

jjBC

bakCbakCbakCbakC

baxbaxBC

x

x

baxxbaxx

+++=+++−

+=Ψ∇Ψ−Ψ∇Ψ=

+−

=Ψ∇Ψ−Ψ∇Ψ=

=

+++=+++∴

+=Ψ=+=Ψ

−+−+

−+

−+

+=+=

−+−+

vvh

vvh

++

++=

++−

++

+

+

4

4

22

22

22

3

3

11

11

11

)(cosh)(sinh

)(sinh)(cosh

)(cos)(sin

)(sin)(cos

CC

bakmkbak

mk

bakbak

CC

bakmkbak

mk

bakbak

Again, these equations can be represented in matrix form,

0 b a+b a+2b

2(a+b)

2a+3b

V0 V0 V0

(CONTD………)

Page 14: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 14

Multiple Quantum Wells – Boundary Conditions (III-IV interface) (E<V0)

[ ]

[ ][ ] [ ][ ][ ] )5.(1

4.

)(cosh)(sinh

)(sinh)(cosh

)(cos)(sin

)(sin)(cos

,

)(cosh)(sinh

)(sinh)(cosh

)(cos)(sin

)(sin)(cos

4

4

3

3

4

4

3

3

4

4

22

22

22

111

111

13

3

3

3

4

4

22

22

22

3

3

11

11

11

EqCC

YYYCC

YYR

EqinthisngSubstituti

CC

YCC

CC

bakmkbak

mk

bakbak

bakbakmk

bakbakmk

km

CC

CC

forsolving

CC

bakmkbak

mk

bakbak

CC

bakmkbak

mk

bakbak

IVIIIIIIIIIIIIIIIIIII

IVIII

=

=

=

++

++

++

+−+=

++

++=

++−

++

+

−−−−

+

−−

+

−−

+

+

+

+

+

+

(CONTD.)

x

This calculation continues iteratively until the carrier crosses through all the interfaces.

Page 15: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 15

Multiple Quantum Wells – Boundary Conditions (IV-V interface) (E<V0)

( )

( )

)2(cos)2(sin)2(cosh)2(sinh,

cossin2

coshsinh2

:2

)2(sin)2(cos)2(sinh)2(cosh,

)2()2(:1

151

551

242

242

151

551*

555*55

242

242*

444*44

2524

15152424

34

bakCmkbakC

mkbakC

mkbakC

mk

xkCmkxkC

mk

mij

xkCmkxkC

mk

mij

jjBC

bakCbakCbakCbakC

baxbaxBC

x

x

baxxbaxx

+++−=+++∴

+−=Ψ∇Ψ−Ψ∇Ψ=

+=Ψ∇Ψ−Ψ∇Ψ=

=

+++=+++∴

+=Ψ=+=Ψ

−+−+

−+

−+

+=+=

−+−+

vvh

vvh

Using the boundary conditions @ x = a + 2b for regions IV and V we have:

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

(CONTD……..)

++−

++=

++

++

+

+

5

5

11

11

11

4

4

22

22

22

)2(cos)2(sin

)2(sin)2(cos

)2(cosh)2(sinh

)2(sinh)2(cosh

CC

bakmkbak

mk

bakbak

CC

bakmkbak

mk

bakbak

Again, these equations can be represented in matrix form,

Page 16: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 16

Multiple Quantum Wells – Boundary Conditions (IV-V interface) (E<V0)

[ ]

[ ][ ][ ] [ ][ ][ ][ ] )6.(1

,5.

)2(cos)2(sin

)2(sin)2(cos

)2(cosh)2(sinh

)2(sinh)2(cosh

,

5

5

4

4

5

5

4

4

5

5

11

11

11

222

222

24

4

4

4

EqCC

YYYYCC

YYYR

EqinabovethengSubstitutiCC

YCC

CC

bakmkbak

mk

bakbak

bakbakmk

bakbakmk

km

CC

CC

forSolving

VIVIVIIIIIIIIIIIIVIIIIIIIIIII

VIV

=

=

=

++−

++

++−

+−+=

+

−−−−−

+

−−−

+

−−

+

+

+

+

(CONTD.)

++−

++=

++

++

+

+

5

5

11

11

11

4

4

22

22

22

)2(cos)2(sin

)2(sin)2(cos

)2(cosh)2(sinh

)2(sinh)2(cosh

CC

bakmkbak

mk

bakbak

CC

bakmkbak

mk

bakbak

x

Page 17: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 17

Multiple Quantum Wells – Boundary Conditions (V-VI interface) (E<V0)

( )

( )

)22(cosh)22(sinh)22(cos)22(sin,

coshsinh2

cossin2

:2

)22(sinh)22(cosh)22(sin)22(cos,

))(2())(2(:1

262

262

151

151

262

262*

666*66

151

151*

555*55

)(26)(25

26261515

65

bakCmkbakC

mkbakC

mkbakC

mk

xkCmk

xkCmk

mij

xkCmkxkC

mk

mij

jjBC

bakCbakCbakCbakC

baxbaxBC

x

x

baxxbaxx

+++=+++−

+=Ψ∇Ψ−Ψ∇Ψ=

+−

=Ψ∇Ψ−Ψ∇Ψ=

=

+++=+++∴

+=Ψ=+=Ψ

−+−+

−+

−+

+=+=

−+−+

vvh

vvh

Again, these equations can be expressed in matrix form,

Using the boundary conditions @ x = 2(a + b) for regions V and VI:

++

++=

++−

++

+

+

6

6

22

22

22

5

5

11

11

11

)22(cosh)22(sinh

)22(sinh)22(cosh

)22(cos)22(sin

)22(sin)22(cos

CC

bakmkbak

mk

bakbak

CC

bakmkbak

mk

bakbak

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

(CONTD……..)

Page 18: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 18

Multiple Quantum Wells – Boundary Conditions (V-VI interface) (E<V0)

[ ]

[ ][ ][ ][ ] [ ][ ][ ][ ][ ] )7.(1

,6.

)22(cosh)22(sinh

)22(sinh)22(cosh

)22(cos)22(sin

)22(sin)22(cos

,

6

6

5

5

6

6

5

5

6

6

22

22

22

111

111

15

5

5

5

EqCC

YYYYYCC

YYYYR

EqinabovethengSubstitutiCC

YCC

CC

bakmkbak

mk

bakbak

bakbakmk

bakbakmk

km

CC

CC

forSolving

VIVVIVIVIIIIIIIIIIIVIVIVIIIIIIIIIII

VIV

=

=

=

++

++

++

+−+=

+

−−−−−−

+

−−−−

+

−−

+

+

+

+

(CONTD.)

++

++=

++−

++

+

+

6

6

22

22

22

5

5

11

11

11

)22(cosh)22(sinh

)22(sinh)22(cosh

)22(cos)22(sin

)22(sin)22(cos

CC

bakmkbak

mk

bakbak

CC

bakmkbak

mk

bakbak

x

Page 19: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 19

Multiple Quantum Wells – Boundary Conditions (VI-VII interface) (E<V0)

( )

( )bik

xikx

x

baxxbaxx

bik

TeikbakCmkbakC

mk

Teikmi

j

xkCmkxkC

mk

mij

jjBC

TebakCbakC

baxbaxBC

1

1

1

1262

262

1*777

*77

262

262*

666*66

)32(7)32(6

2626

76

)32(cosh)32(sinh,

2

coshsinh2

:2

)32(sinh)32(cosh,

)32()32(:1

=+++∴

=Ψ∇Ψ−Ψ∇Ψ=

+=Ψ∇Ψ−Ψ∇Ψ=

=

=+++∴

+=Ψ=+=Ψ

−+

−+

+=+=

−+

vvh

vvh

Lastly, using the boundary conditions @ x = 2a + 3b for regions VI and VII:

=

++

++

+

000

)32(cosh)32(sinh

)32(sinh)32(cosh

1

1

16

6

22

22

22 TTeik

TeCC

bakmkbak

mk

bakbakbik

bik

0 b a+b a+2b 2(a+b) 2a+3b

V0 V0 V0

Again, these equations can be represented in matrix form,

(CONTD……)

Page 20: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 20

Multiple Quantum Wells – Boundary Conditions (VI-VII interface) (E<V0)

[ ]

[ ][ ][ ][ ][ ] [ ][ ][ ][ ][ ][ ] )8.(0

1

,7.

0

000

)32(cosh)32(sinh

)32(sinh)32(cosh

,

000

)32(cosh)32(sinh

)32(sinh)32(cosh

6

6

6

6

122

2

222

26

6

6

6

16

6

22

22

22

1

1

1

1

EqT

YYYYYYCC

YYYYYR

EqinabovethegSubsitutin

TY

CC

Teik

e

bakbakmk

bakbakmk

km

CC

CC

forSolving

TTeik

TeCC

bakmk

bakmk

bakbak

VIIVIVIVVIVIVIIIIIIIIIIIVIVVIVIVIIIIIIIIIII

VIIVI

bik

bik

bik

bik

=

=

=

++−

+−+=

=

++

++

−−−−−−−

+

−−−−−

−−

+

+

+

+

(CONTD.)

(CONTD…….)

x

We have finally got a useful relationship between the reflection co-efficient and transmissionco-efficient. However, multiplying the transfer matrices is very complex as will be seen from thenext slide.

Page 21: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 21

Multiple Quantum Wells – Final Matrix (E<V0)

[ ][ ][ ][ ][ ][ ] )8.(0

1EqYYYYYY

R VIIVIVIVVIVIVIIIIIIIIIII

=

−−−−−−

τ

The complexity in multiplying these transfer matrices can be seen from the final matrix below:

++−

+−+×

++

++

++

+−+×

++−

++

++−

+−+×

++

++

++

+−+×

−×

−=

000

)32(cosh)32(sinh

)32(sinh)32(cosh

)22(cosh)22(sinh

)22(sinh)22(cosh

)22(cos)22(sin

)22(sin)22(cos

)2(cos)2(sin

)2(sin)2(cos

)2(cosh)2(sinh

)2(sinh)2(cosh

)(cosh)(sinh

)(sinh)(cosh

)(cos)(sin

)(sin)(cos

cossin

sincos

coshsinh

sinhcosh

001

221

221

1

1

1

122

2

222

2

22

22

22

111

111

1

11

11

11

222

222

2

22

22

22

11

1

11

1

1

11

11

11

22

2

22

2

2

2

1

1

Teik

e

bakbakmk

bakbakmk

km

bakmk

bakmk

bakbak

bakbakmk

bakbakmk

km

bakmk

bakmk

bakbak

bakbakmk

bakbakmk

km

bakmk

bakmk

bakbak

bakkmbak

bakkmbak

km

bkmk

bkmk

bkbk

bkkmbk

bkkmbk

km

mk

ikm

ikm

R

bik

bik

YI-II

YII-III

YIII-IV

YIV-V

YV-VI

YVI-VII

Page 22: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 22

Multiple Quantum Wells – Reflection and Transmission Probabilities (E<V0)

[ ][ ][ ][ ][ ][ ] )8.(0

1EqYYYYYY

R VIIVIVIVVIVIVIIIIIIIIIII

=

−−−−−−

τ

ATAT 11 =⇒=

ACCTR ==

** 11

=

AATT

The Transmission Co-efficient, “T”, can then be found by using:

Therefore, the Transmission Probability and Reflection Probability is given by:*

**

** 1111

=

−=−=

AC

ACRROR

AATTRR

The Reflection Co-efficient, “R”, would then be given by:

(CONTD.)

)9.(0

1Eq

DCBA

R

=

τ

Equation 8 can now be used to calculate the transmission and reflection co-efficients. We would need a powerful math tool in order to multiply the complicated transfer matrices. After this multiplication is performed, we would obtain a 2x2 matrix as shown below:

Page 23: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 23

I II III IV V VI VII

0 b a+b a+2b 2(a+b) 2a+3b

V=V0

V=0

Multiple Quantum Wells – General Structure (E>V0)

Again, we take the same approach as we did earlier: we solve for the wave function in each region and then we apply the boundary conditions between the regions and finally, solve for the reflection and transmission probabilities.

Now, let us consider the case when an electron with energy E greater than V0 is incident on the structure:

Page 24: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 24

Multiple Quantum Wells – Wave Functions Review (E>V0)

For region I, the wavefunction is the same as the E<V0 case as there is no potential involved here:

xikxik eRe 111

−+=Ψ⇒

efficientcoreflectionR

mEk

−=

= 212h

11021

22

2Ψ=Ψ+

Ψ− EVdx

dmh

where,

0 b a+b a+2b 2(a+b) 2a+3b

Incidentwave

Reflectedwave

V0

0

0

Page 25: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 25

Multiple Quantum Wells – Wave Functions Review (E>V0)

For region II, we have a potential of V0:

22022

22

2Ψ=Ψ+

Ψ− EVdx

dmh

xikxik eCeC 22222

−−+ +=Ψ⇒ 20

2)(2

h

VEmk

−=

For region III,

where,

where,

xkCxkC 22222 sincos −+ +=ΨOr, in terms of cosine and sine functions,

33023

22

2Ψ=Ψ+

Ψ− EVdx

dmh

212h

mEk =

xkCxkC 13133 sincos −+ +=Ψ

xikxik eCeC 11333

−−+ +=Ψ

+x directionwave

-x directionwave

0

Or,

Similarly, we can solve for the wave functions for the other regions with each region with a potential having similar solutions as Ψ2 and the regions without a potential having solutions similar to Ψ3

+x directionwave

-x directionwave

0 b a+b a+2b 2(a+b) 2a+3b

V0

0

0 b a+b a+2b 2(a+b) 2a+3b

V0

0

Page 26: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 26

Multiple Quantum Wells – Wave Functions Review (E>V0)

For Region IV:

,11555

xikxik eCeC −−+ +=Ψ

,22666

xikxik eCeC −−+ +=Ψ

,17

xikTe=Ψ

,22444

xikxik eCeC −−+ +=Ψ

212h

mEk =

20

2)(2

h

VEmk

−=

20

2)(2

h

VEmk

−=

212h

mEk =

xkCxkC 15155 sincos −+ +=Ψ

xkCxkC 24244 sincos −+ +=Ψ

xkCxkC 26266 sincos −+ +=Ψ

0 b a+b a+2b 2(a+b) 2a+3b

V0

0

0 b a+b a+2b 2(a+b) 2a+3b

V0

0

0 b a+b a+2b 2(a+b) 2a+3b

V0

0

0 b a+b a+2b 2(a+b) 2a+3b

V0

0

For Region V:

For Region VI:

For Region VII:

Note: For region VII, only a +x component exists as the wave extends out to infinity and there is no barrier to reflect the wave back

Page 27: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 27

Multiple Quantum Wells – Boundary Conditions (I-II interface) (E>V0)

Now, we can apply the boundary conditions between each region. For regions I and II, we can use two boundary conditions:

( ) ( )

( )

( )

)11.(

cossin,

cossin2

2

)10.(1

sincos

)0()0(

2211

022

222

2

0

11

222

222*

222*22

11*111

*11

0201

2

022220

21

11

11

11

EqCmk

Rmik

mik

xkCmkxkC

mkeR

mike

mik

xkCmk

xkCmk

mij

eRmike

mik

mij

jj

EqCR

xkCxkCeRe

xx

xx

xikxik

x

xikxikx

xxxx

xx

xikxik

=

−+

=

−+

==

+

=

−+

=

=−

+−=

−∴

+−=Ψ∇Ψ−Ψ∇Ψ=

−=Ψ∇Ψ−Ψ∇Ψ=

=

=+

+=+

=Ψ==Ψ

vvh

vvh

0 b a+b a+2b 2(a+b) 2a+3b

• Boundary Condition 1 (Continuity of the wave function):

• Boundary Condition 2 (Probability Current Density):

Page 28: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 28

Multiple Quantum Wells – Boundary Conditions (I-II interface) (E>V0)

)11.(

)10.(1

2211

2

EqCmk

Rmik

mik

EqCR

+

=−

=+

−−

−=

−=

=

+

+−

+

2

22

1

1

1

2

22

1

11

2

2211

001

1

1

21

001111

,1

001111

CC

mk

mikmik

ikm

R

CC

mk

mik

mik

R

RforSolving

CC

mk

Rmik

mik

But, equation 10 and 11 can also be expressed in matrix form

−−

=

=

==

acbd

bcadAthen

dcba

Aif

CABthenCABifHEREUSEDIDENTITIESMATRIX

1,.2

,.1:

1

1

(CONTD……)

Page 29: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 29

Multiple Quantum Wells – Boundary Conditions (I-II interface) (E>V0)

−=

−−

−=

+

+

2

22

1

1

2

22

1

1

1

001

221

221

1

001

1

1

21

CC

mk

ikm

ikm

R

CC

mk

mikmik

ikm

R

[ ] )12.(1

2

2 EqCC

YR III

=

+

(CONTD.)

where, YI-II is the transfer matrix for the region I-II interface

[a] [b]x

Page 30: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 30

Multiple Quantum Wells – Boundary Conditions (II-III interface) (E>V0)

We can follow the same procedure we did for the regions I-II interface for obtaining the transfer matrix for the region II-III. Again, we start by using the boundary conditions @ x = b for regions II and III:

( )

( )

bkCmkbkC

mkbkC

mkbkC

mk

xkCmk

xkCmk

mij

xkCmkxkC

mk

mij

jjBC

bkCbkCbkCbkC

bxbxBC

x

x

bxxbxx

131

131

222

222

131

131*

333*33

222

222*

222*22

32

13132222

32

cossincossin,

cossin2

cossin2

:2

sincossincos,

)()(:1

−+−+

−+

−+

==

−+−+

+−=+−∴

+−=Ψ∇Ψ−Ψ∇Ψ=

+−=Ψ∇Ψ−Ψ∇Ψ=

=

+=+∴

=Ψ==Ψ

vvh

vvh

0 b a+b a+2b 2(a+b) 2a+3b

−=

− −

+

+

3

3

11

11

11

2

2

22

22

22

cossin

sincos

cossin

sincos

CC

bkmk

bkmk

bkbk

CC

bkmk

bkmk

bkbk

Again, we can represent these two equations in in the matrix form:

(CONTD……)

Page 31: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 31

Multiple Quantum Wells – Boundary Conditions (II-III interface) (E>V0)

[ ]

[ ] [ ][ ] )13.(1

,12.

cossin

sincos

cossin

sincos

3

3

2

2

3

3

2

2

3

3

11

11

11

222

222

22

2

EqCC

YYCC

YR

haveweEqinabovethengSubstitutiCC

YCC

CC

bkmk

bkmk

bkbk

bkbkmk

bkbkmk

km

CC

IIIIIIIIIII

IIIII

=

=

=

−=

+

−−−

+

+

−−

+

+

+

,

cossin

sincos

cossin

sincos

2

2

3

3

11

11

11

2

2

22

22

22

−=

+

+

+

CC

forSolving

CC

bkmk

bkmk

bkbk

CC

bkmk

bkmk

bkbk

(CONTD.)

x

Note: Now, it should be obvious to see why we use the Y#1-#2 notation - we avoid rewriting the rather nasty matrix multiplication with this notation.

Page 32: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 32

Multiple Quantum Wells – Boundary Conditions (III-IV interface) (E>V0)

We continue finding the transfer matrices. Using the boundary conditions @ x = a + b for regions III and IV:

( )

( )

)(cos)(sin)(cos)(sin,

cossin2

cossin2

:2

)(sin)(cos)(sin)(cos,

)()(:1

242

242

131

131

242

242*

444*44

131

131*

333*33

43

24241313

43

bakCmk

bakCmk

bakCmk

bakCmk

xkCmk

xkCmk

mij

xkCmk

xkCmk

mij

jjBC

bakCbakCbakCbakC

baxbaxBC

x

x

baxxbaxx

+++−=+++−∴

+−=Ψ∇Ψ−Ψ∇Ψ=

+−=Ψ∇Ψ−Ψ∇Ψ=

=

+++=+++∴

+=Ψ=+=Ψ

−+−+

−+

−+

+=+=

−+−+

vvh

vvh

++−

++=

++−

++

+

+

4

4

22

22

22

3

3

11

11

11

)(cos)(sin

)(sin)(cos

)(cos)(sin

)(sin)(cos

CC

bakmkbak

mk

bakbak

CC

bakmkbak

mk

bakbak

Again, these equations can be represented in matrix form,

0 b a+b a+2b 2(a+b) 2a+3b

V0

(CONTD………)

Page 33: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 33

Multiple Quantum Wells – Boundary Conditions (III-IV interface) (E>V0)

(CONTD.)

This calculation continues iteratively until the carrier crosses through all the interfaces.

[ ]

[ ][ ] [ ][ ][ ] )14.(1

,13.

)(cos)(sin

)(sin)(cos

)(cos)(sin

)(sin)(cos

,

4

4

3

3

4

4

3

3

4

4

22

22

22

111

111

13

3

4

4

EqCC

YYYCC

YYR

EqinabovethengSubstitutiCC

YCC

CC

bakmk

bakmk

bakbak

bakbakmk

bakbakmk

km

CC

CC

forSolving

IVIIIIIIIIIIIIIIIIIII

IVIII

=

=

=

++−

++

++

+−+=

+

−−−−

+

−−

+

−−

+

+

+

+

++−

++=

++−

++

+

+

4

4

22

22

22

3

3

11

11

11

)(cos)(sin

)(sin)(cos

)(cos)(sin

)(sin)(cos

CC

bakmk

bakmk

bakbak

CC

bakmk

bakmk

bakbak

x

Page 34: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 34

Multiple Quantum Wells – Boundary Conditions (IV-V interface) (E>V0)

( )

( )

)2(cos)2(sin)2(cos)2(sin,

cossin2

cossin2

:2

)2(sin)2(cos)2(sin)2(cos,

)2()2(:1

151

551

242

242

151

551*

555*55

242

242*

444*44

2524

15152424

34

bakCmk

bakCmk

bakCmk

bakCmk

xkCmk

xkCmk

mij

xkCmk

xkCmk

mij

jjBC

bakCbakCbakCbakC

baxbaxBC

x

x

baxxbaxx

+++−=+++−∴

+−=Ψ∇Ψ−Ψ∇Ψ=

+−=Ψ∇Ψ−Ψ∇Ψ=

=

+++=+++∴

+=Ψ=+=Ψ

−+−+

−+

−+

+=+=

−+−+

vvh

vvh

Using the boundary conditions @ x = a + 2b for regions IV and V we have:

0 b a+b a+2b 2(a+b) 2a+3b

V0

(CONTD……..)

++−

++=

++−

++

+

+

5

5

11

11

11

4

4

22

22

22

)2(cos)2(sin

)2(sin)2(cos

)2(cos)2(sinh

)2(sin)2(cos

CC

bakmk

bakmk

bakbak

CC

bakmk

bakmk

bakbak

Again, these equations can be represented in matrix form,

Page 35: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 35

Multiple Quantum Wells – Boundary Conditions (IV-V interface) (E>V0)

[ ]

[ ][ ][ ] [ ][ ][ ][ ] )15.(1

,14.

)2(cos)2(sin

)2(sin)2(cos

)2(cos)2(sinh

)2(sin)2(cos

,

5

5

4

4

5

5

4

4

5

5

11

11

11

222

222

24

4

4

4

EqCC

YYYYCC

YYYR

EqinabovethengSubstitutiCC

YCC

CC

bakmkbak

mk

bakbak

bakbakmk

bakbakmk

km

CC

CC

forSolving

VIVIVIIIIIIIIIIIIVIIIIIIIIIII

VIV

=

=

=

++−

++

++

+−+=

+

−−−−−

+

−−−

+

−−

+

+

+

+

(CONTD.)

++−

++=

++−

++

+

+

5

5

11

11

11

4

4

22

22

22

)2(cos)2(sin

)2(sin)2(cos

)2(cos)2(sinh

)2(sin)2(cos

CC

bakmkbak

mk

bakbak

CC

bakmkbak

mk

bakbak

x

Page 36: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 36

Multiple Quantum Wells – Boundary Conditions (V-VI interface) (E>V0)

( )

( )

)22(cos)22(sin)22(cos)22(sin,

coshsin2

cossin2

:2

)22(sin)22(cos)22(sin)22(cos,

))(2())(2(:1

262

262

151

151

262

262*

666*66

151

151*

555*55

)(26)(25

26261515

65

bakCmkbakC

mkbakC

mkbakC

mk

xkCmk

xkCmk

mij

xkCmkxkC

mk

mij

jjBC

bakCbakCbakCbakC

baxbaxBC

x

x

baxxbaxx

+++−=+++−∴

+−=Ψ∇Ψ−Ψ∇Ψ=

+−=Ψ∇Ψ−Ψ∇Ψ=

=

+++=+++∴

+=Ψ=+=Ψ

−+−+

−+

−+

+=+=

−+−+

vvh

vvh

Again, these equations can be expressed in matrix form,

Using the boundary conditions @ x = 2(a + b) for regions V and VI:

++−

++=

++−

++

+

+

6

6

22

22

22

5

5

11

11

11

)22(cos)22(sin

)22(sin)22(cos

)22(cos)22(sin

)22(sin)22(cos

CC

bakmk

bakmk

bakbak

CC

bakmk

bakmk

bakbak

0 b a+b a+2b 2(a+b) 2a+3b

V0

(CONTD……..)

Page 37: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 37

Multiple Quantum Wells – Boundary Conditions (V-VI interface) (E>V0)

[ ]

[ ][ ][ ][ ] [ ][ ][ ][ ][ ] )16.(1

,15.

)22(cos)22(sin

)22(sin)22(cos

)22(cos)22(sin

)22(sin)22(cos

,

6

6

5

5

6

6

5

5

6

6

22

22

22

111

111

15

5

5

5

EqCC

YYYYYCC

YYYYR

EqinabovethengSubstitutiCC

YCC

CC

bakmk

bakmk

bakbak

bakbakmk

bakbakmk

km

CC

CC

forSolving

VIVVIVIVIIIIIIIIIIIVIVIVIIIIIIIIIII

VIV

=

=

=

++−

++

++

+−+=

+

−−−−−−

+

−−−−

+

−−

+

+

+

+

(CONTD.)

++−

++=

++−

++

+

+

6

6

22

22

22

5

5

11

11

11

)22(cos)22(sin

)22(sin)22(cos

)22(cos)22(sin

)22(sin)22(cos

CC

bakmk

bakmk

bakbak

CC

bakmk

bakmk

bakbak

x

Page 38: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 38

Multiple Quantum Wells – Boundary Conditions (VI-VII interface) (E>V0)

( )

( )bik

xikx

x

baxxbaxx

bik

TeikbakCmkbakC

mk

Teikmi

j

xkCmk

xkCmk

mij

jjBC

TebakCbakC

baxbaxBC

1

1

1

1262

262

1*777

*77

262

262*

666*66

)32(7)32(6

2626

76

)32(cos)32(sin,

2

cossin2

:2

)32(sin)32(cos,

)32()32(:1

=+++∴

=Ψ∇Ψ−Ψ∇Ψ=

+−=Ψ∇Ψ−Ψ∇Ψ=

=

=+++∴

+=Ψ=+=Ψ

−+

−+

+=+=

−+

vvh

vvh

Lastly, using the boundary conditions @ x = 2a + 3b for regions VI and VII:

=

++−

++

+

000

)32(cosh)32(sinh

)32(sinh)32(cosh

1

1

16

6

22

22

22 TTeik

TeCC

bakmkbak

mk

bakbakbik

bik

0 b a+b a+2b 2(a+b) 2a+3b

V0

Again, these equations can be represented in matrix form,

(CONTD……)

Page 39: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 39

Multiple Quantum Wells – Boundary Conditions (VI-VII interface) (E>V0)

[ ]

[ ][ ][ ][ ][ ] [ ][ ][ ][ ][ ][ ] )17.(0

1

,16.

0

000

)32(cos)32(sin

)32(sin)32(cos

,

000

)32(cos)32(sin

)32(sin)32(cosh

6

6

6

6

122

2

222

26

6

6

6

16

6

22

22

22

1

1

1

1

EqT

YYYYYYCC

YYYYYR

EqinabovethegSubsitutin

TY

CC

Teik

e

bakbakmk

bakbakmk

km

CC

CC

forSolving

TTeik

TeCC

bakmkbak

mk

bakbak

VIIVIVIVVIVIVIIIIIIIIIIIVIVVIVIVIIIIIIIIIII

VIIVI

bik

bik

bik

bik

=

=

=

++

+−+=

=

++−

++

−−−−−−−

+

−−−−−

−−

+

+

+

+

(CONTD.)

(CONTD…….)

x

Multiplying the transfer matrices is again very complex as will be seen from the next slide.

Page 40: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 40

Multiple Quantum Wells –Final Matrix (E>V0)

[ ][ ][ ][ ][ ][ ] )17.(0

1Eq

TYYYYYY

R VIIVIVIVVIVIVIIIIIIIIIII

=

−−−−−−

The complexity in multiplying these transfer matrices can be seen from the final matrix below:

++

+−+×

++−

++

++

+−+×

++−

++

++

+−+×

++−

++

++

+−+×

−×

−=

000

)32(cos)32(sin

)32(sin)32(cos

)22(cos)22(sin

)22(sin)22(cos

)22(cos)22(sin

)22(sin)22(cos

)2(cos)2(sin

)2(sin)2(cos

)2(cos)2(sinh

)2(sin)2(cos

)(cos)(sin

)(sin)(cos

)(cos)(sinh

)(sin)(cos

cossin

sincos

cossin

sincos

001

221

221

1

1

1

122

2

222

2

22

22

22

111

111

1

11

11

11

222

222

2

22

22

22

111

111

1

11

11

11

222

222

2

2

1

1

Teik

e

bakbakmk

bakbakmk

km

bakmk

bakmk

bakbak

bakbakmk

bakbakmk

km

bakmkbak

mk

bakbak

bakbakmk

bakbakmk

km

bakmkbak

mk

bakbak

bakbakmk

bakbakmk

km

bkmkbk

mk

bkbk

bkbkmk

bkbkmk

km

mk

ikm

ikm

R

bik

bik

YI-II

YII-III

YIII-IV

YIV-V

YV-VI

YVI-VII

Page 41: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 41

Multiple Quantum Wells – Reflection and Transmission Probabilities (E>V0)

[ ][ ][ ][ ][ ][ ] )17.(0

1EqYYYYYY

R VIIVIVIVVIVIVIIIIIIIIIII

=

−−−−−−

τ

ATAT 11 =⇒=

ACCTR ==

** 11

=

AATT

The Transmission Co-efficient, “T”, can then be found by using:

Therefore, the Transmission Probability and Reflection Probability is given by:*

**

** 1111

=

−=−=

AC

ACRROR

AATTRR

The Reflection Co-efficient, “R”, would then be given by:

(CONTD.)

)18.(0

1Eq

DCBA

R

=

τ

Equation 17 can now be used to calculate the transmission and reflection coefficients. Again, we would need a powerful math tool in order to multiply the complicated transfer matrices. After the transfer matrices are multiplied, we would obtain a 2x2 matrix as shown below:

Page 42: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 42

Multiple Quantum Wells –Example 1

Consider a GaAs/AlGaAs multiple quantum well structure with a = 50 Ao and b= 50 Ao:

I II III IV V VI VII

0 50 100 150 200 250

V=0.347eV

V=0

(Ao)

Page 43: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 43

Multiple Quantum Wells –Example 1

Brennan Fig. 2.5.2

Important Observations from the Transmissivityplot:

• There are three peak values:The peak value of 0.08 eV is the lowest

value for which an electron can transmit through the entire structure. The other peak (transmission) values are all above the potential (0.347eV)

• Transmission is strongly dependent on incident energy – higher the incident energy, higher the chances of transmission.

• The peak values also corresponds to the eigenvalues of the quantum well. Therefore, its possible to obtain eigenvalues from a transmissivity plot.

Page 44: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 44

Multiple Quantum Wells –Example 2

I II III IV V VI VII

0 25 75 100 150 175

V=0.347eV

V=0

(Ao)

Now, consider a GaAs/AlGaAs multiple quantum well structure with a smaller barrier width of 25 A

o:

Page 45: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 45

Multiple Quantum Wells –Example 1 versus Example 2

Brennan Fig. 2.5.7Brennan Fig. 2.5.2

For example 1, For example 2,

For the transmissivity plot of example 2, there are two peaks at low energy whencompared to one peak for the previous example. This is due to the factthat a smaller barrier width was used. Therefore, transmissivity increases withsmaller barrier widths.

Page 46: Multiple Quantum Wells - Georgia Institute of …alan.ece.gatech.edu/.../Ummer_2p5_MultipleQuantumWells.pdf1/3/2006 ECE-6451 1 Multiple Quantum Wells Reading: Brennan - 2.5. Lecture

1/3/2006 ECE-6451 46

Multiple Quantum Wells –Additional Comments

• Coupled Quantum Well (Super Lattices)– Multiple quantum wells with a non-zero transmission co-efficient

throughout the structure– More to be discussed in ECE-6453