Multiple Qp Resonant Detector

19
Resonant detector for multiple-qp Hall spectroscopy Alessandro Braggio CNR-SPIN, Genoa M. Sassetti Genoa M.Carrega Pisa-Genoa D.Ferraro Marseille New. J. Phys. 16 043018 (2014) https://sites.google.com/site/alessandrobraggio/ N. Magnoli Genoa

description

Seminar done at "Dirac materials and superconductivity workshop" Stockholm

Transcript of Multiple Qp Resonant Detector

Page 1: Multiple Qp Resonant Detector

Resonant detector for multiple-qp Hall spectroscopy

Alessandro Braggio CNR-SPIN, Genoa

M. Sassetti Genoa

M.Carrega Pisa-Genoa

D.Ferraro Marseille

New. J. Phys. 16 043018 (2014)

https://sites.google.com/site/alessandrobraggio/

N. Magnoli Genoa

Page 2: Multiple Qp Resonant Detector

• Topological protected edge states

• Fractional statistics & charges Laughlin PRL’83

• Chiral edge states with gapless modes Wen PRB90,Halperin PRB 82, Buttiker PRB 88, Beenakker PRL 90

• Laughlin sequence

• Jain sequence Jain, PRL’89Jain, PRL’89 !

FQHE: edge states & qps

�xy

= ⌫e2

h�xx

= 0⌫ =

1

2np+ 1= 1,

1

3,1

5, ...

⌫ =p

2np+ 1=

2

5,2

3, ...

Jain PRL’89, Wen & Zee PRB’92, Kane & Fisher PRB’95 Kane & Fisher PRB’95

Hierarchical models

Page 3: Multiple Qp Resonant Detector

Edge states & Multiple-qp • Chiral Luttinger liquids

!

• Multiple-qps excitations

• Filling factor

• Fractional charges

• Fractional statistics

• Monodromy: qp aquires phase in a loop around

L =1

4⇡(K

ij

@x

�i

@t

�j

+ Vij

@x

�i

@x

�j

+ 2✏µ⌫tj

�j

A⌫

)

l(x) / e

lT ·K·�

⌫ = tT ·K�1 · t

ql =1

2⇡lT ·K�1 · t = me⇤

✓l = 2⇡ lT ·K�1 · l

qp

2-qps

3-qps

2⇡e� e�

Wen & Zee PRB 92, J. Fröhlich et al JSTAT 97

Wen, Kane & Fisher ,….

Page 4: Multiple Qp Resonant Detector

Multiple qp excitations• Hierarchical theories

!

!

!

!

• Fractional statistics

�(m)(x)

m = 1 m > 1

Single-qp m-agglomerate

e⇤ =1

2np+ 1me⇤

Laughlin PRL 83, Arovas, Schrieffer & Wilczek PRL 84

(m)(x) (m)(y) = (m)(y) (m)(x)e�i✓msgn(x�y)

G(m)(⌧) = h (m)(⌧) (m)†(0)i

G(m)(⌧) / |⌧ |��m

Abelian + =

�m Scaling dimension

Page 5: Multiple Qp Resonant Detector

QPC:Current & Noise• Weak backscattering current

!

• Power-law signatures in the scaling dimension

I = ⌫e2

hV � IB IB ⌧ I

• Current noise signatures: charge measurement

S(! = 0) =

Z +1

�1h{�IB(t), �IB(0)}+i �IB = IB � hIBi

m-qps

G(m)B / T 2�m�2 I(m)

B / V 2�m�1

�m

S(m)= I(m)

B coth

✓me⇤V

2kBT

S(m) ⇡ me⇤I(m)B

S(m) ⇡ 2kBTGBkBT� me

⇤ V

kBT ⌧ me ⇤V

Page 6: Multiple Qp Resonant Detector

Multiple-qp evidences• Fractional charges: single-qps evidences

Theory:Kane & Fisher PRL 94, Fendley, Ludwig & Saleur PRL 95 Exp:De-Picciotto… Nature 97,Saminadayar.… PRL’97,Reznikov… Nature’99

!!

• Multiple-qp. evidences

Robert B. Laughlin, Horst L. Störmer and Daniel C. Tsui "for their discovery of a new form of quantum fluid with fractionally charged excitations"

Bunc

hing

Bunc

hing

Single qp

Single qp

eeff/e

T (mK)

M. Heiblum (2/5,3/7,2/3,5/2,..),Willet(5/2),Yacoby (2/3),…

Chung…PRL03, Bid PRL03,Dolev….

⌫ = 5/2

Page 7: Multiple Qp Resonant Detector

• Single-qp and multiple-qp crossover

!

!

!

!

!

• Renormalization of scaling exponent

Theoretical explanations 1

⌫ =2

5

2e⇤ e⇤

• Charge and neutral modes

gi(⌧) =1

1 + !i|⌧ |G(m)(⌧) ⇡ gc(⌧)

�cmgn(⌧)

�nm

!n ⌧ !c

�m =gc�cm + gn�

nm

• Mode velocity vn ⌧ vc

D. Ferraro, A. B, M. Merlo, N. Magnoli, M. Sassetti PRL 08

Coupling other degrees: Rosenow & Halperin PRL 02, Papa & MacDonald PRL 05 1/f noise + dissipation: A. B., D. Ferraro, M. Carrega, N. Magnoli, M. Sassetti NJP12

Fermi

Page 8: Multiple Qp Resonant Detector

Theoretical explanations 2

Qe↵

e

⌫ =2

5

M. Heiblum data from Chung et al PRL 03

D. Ferraro, A. B., N. Magnoli, M. Sassetti, PRB10 D. Ferraro, A. B., N. Magnoli, M. Sassetti, NJP10

We turn now to shot noise measurements. At zeromagnetic field and at high integer filling factors the noisewas found to be Poissionian with charge e. However, thelow temperature quantum shot noise of partitionedquasiparticles in the CLL regime was predicted [6,7]and later found [8,9] to be highly nonclassical (non-Poissonian). This is expected since backscattering ofquasiparticles is correlated and energy dependent. Onthe other hand, when backscattering events are very rareand the temperature is finite, it is expected that scatteringevents are stochastic with a resultant classical-like shotnoise [10]. Indeed, the measured spectral density of theshot noise, S, shown in the inset of Fig. 1(d), is classical-like. The solid line is the expected shot noise due to

stochastic scattering of independent particles at T !9 mK and charge q ! e=3 [11]. It depends on V, q, t,and T via S ! 4kBTg" 2qIBt!#T; V$, with !#T; V$ !coth%qV=#2kBT$& ' 2kBT=#qV$, IB ! VgQ#1' t$, andgQ ! !e2=h. Here, for qV ( kBT, !#T; V$ ) 1 and thedependence of S on IB is linear, and for qV * kBT theJohnson-Nyquist thermal noise dominates. Note that atT ) 0 and t ! 1, as in our case, S ’ 2qIB. The excellentagreement between experiment and prediction proves thatscattering events of e=3 quasiparticles are independent

a b

100.01

0.1

1

0 20 40 60

0

1

2

3

4

0 40 800.0

0.5

1.0

ν =2/5

Bac

k S

catte

red

Cur

rent

, IB (p

A)

Electron Temperature, T (mK)

ν =2/5

82mKq=e/5

9mKq=2e/5

Sho

t Noi

se, S

(10-3

0 A2 /H

z)

Back Scattered Current, IB (pA)

t eff

Voltage (µV)

0 20 40 60 800.0

0.5

1.0

1.5

2.0

2.5

3.0

Qua

sipa

rticl

e C

harg

e (1

/5e)

Electron Temperature (mK)

c

FIG. 2. (a) Backscattered current as a function of the electrontemperature at a filling factor ! ! 2=5. Two distinct slopes areobserved with a transition temperature of about 45 mK. Inset:The effective transmission as a function of bias voltage show-ing enhancement rather than suppression of conductance atzero bias. (b) Shot noise at two different temperatures. Thebackscattered quasiparticle charge is 2e=5 at 9 mK and e=5 at82 mK. The QPC was set to reflect some 2% of the impingingcurrent at the two temperatures. (c) The temperature depen-dence of the scattered charge when QPC was set to reflect some2% of the impinging current. The measurements are done ontwo samples and the data points are presented as squaresand hollow triangles for each sample. The lowest electrontemperature was hovering around 8–13 mK depending oncooldown.

FIG. 1. (a) Quantum Hall conductance as a function of mag-netic field. Filling factors were established by the pointed outmagnetic fields. Similar results were obtained at differentmagnetic fields around the middle of the conductance plateau.(b) The measurement setup of shot noise and differentialconductance. The noise generated by the QPC passed througha resonant circuit tuned to 1.4 HMz and amplified by acryogenic amplifier. This small capacitance at A allowed onlythe high frequency component through. The multiple-terminalgeometry kept the conductance seen from S and A constant.(c) Typical dependence of the transmission coefficient on biasvoltage for different QPC gate voltage, at ! ! 1=3. When theQPC is very weakly pinched off (Vg ! '0:03 V), the trans-mission has a very weak negative dependence on the appliedbias, opposite of a CLL. (d) The backscattered current as afunction of electron temperature with ac 10 "V rms is applied.The curve can be fitted with a single slope. Inset: The shotnoise generated by a very weakly pinched off QPC (t) 0:97) ata filling factor ! ! 1=3 and electron temperature of 9 mK.Noise is classical and quasiparticle charge is e=3.

P H Y S I C A L R E V I E W L E T T E R S week ending21 NOVEMBER 2003VOLUME 91, NUMBER 21

216804-2 216804-2

Qe↵

(T ) =

"3T

G(tot)

B

✓d2S

exc

dV 2

� 2

3Td3I

B

dV 3

◆# 12

V!0

⇡hI

B

i3

(e2IB

)

� 12

V!0

Chung et al PRL 03

Sexc

= Qe↵

(T ) coth

Q

e↵

(T )V

2T

�IB

(V, T )� 2TGB

(T )

Page 9: Multiple Qp Resonant Detector

Theoretical explanations 3

���

���

���

���

���

���

��

��

��

��� �� � �� ���

GB (10−6S)

Sexc (10−30A2/Hz)

V (µV)

eeff/e

T (mK)

⌫ = 5/2

M. Carrega, D. Ferraro, A. B., N. Magnoli, M. Sassetti, PRL 107, 146404 (2011)

Non-Abelian theory+ 6=

Data from M. Dolev and M.Heiblum

Valid also for

Abelian

Non-Abelian

(2)I (1)

� (1)�

Page 10: Multiple Qp Resonant Detector

Why not at finite frequency ?• Josephson resonances

Blanter&Buettiker Phys.Rep.00, Rogovin&Scalapino Ann. Phys 74

• Rich theoretical tools & interesting non-equilibrium phys. Chamon..PRB95; Chamon..PRB96; Dolcini..PRB05; Bena..PRB06; Bena..PRB07; Sukhorukov..PRB01;

Sukhorukov..EPL10; Schoelkopf…03; Deblock…Science ’03; Engel…’04;Hekking….06;…… !

• Interesting questions: how to measure it? Lesovik..JETP97;Gavish U..PRB00;Gavish U.. arXiv:0211646; Bednorz.. PRL13; Aguado..PRL00;

!!

• Symmetrized noise (Landau docet)

!

• Non-symmetrized (Emission/absorption from QPC) Aguado PRL00

!m = me⇤V/~

[I(t), I(t0)] 6= 0

Symmetrized or non-symmetrized ?

S(m)+/�(!) =

Z +1

�1e±i!th�I(m)

B (t)�I(m)B (0)i

S(m)(!) =

Z +1

�1ei!th{�IB(t), �IB(0)}+i =

X

i=±S(m)i (!)

Page 11: Multiple Qp Resonant Detector

��

��

Finite frequency detection

!

• Impedance matched resonant detection scheme Altimiras…1404.1792

• Output power proportional to variation of LC energy

!

! =p1/LCT

TcCold detector

Hot detector

Resonant

Tc ⌧ T

Tc � T

S(m)meas(!) = K

n

S(m)+ (!) + nB(!)

h

S(m)+ (!)� S(m)

� (!)io

�hx2i

K =⇣ ↵

2L

⌘2 1

2⌘⌧ 1

S(m)� (!)

S(m)+ (!)Emission

Absorption

Lesovik G B and Loosen R JETP 65 295 (1997); Gavish U,….arXiv:0211646 !

nB(!) =1

e!/TC � 1 �! <ehG(m)

ac (!)i

25k⌦

50⌦

! ⇡ 5GHz T ⇡ 15mK

Page 12: Multiple Qp Resonant Detector

Noise properties in QPC-LC • Detector quantum limit (Cold detector)

!

• Absorbitive QPC limit (Hot detector)

!

• Is it measurable?

• Lowest order in the tunnelling (purely additive)

!

• Keldysh formalism blow up in Fermi’s rule: rate

kBTc ⌧ !

S(m)meas(!) ⇡ KS(m)

+ (!) +O(e�~!/kBTc)

S(m)meas(!) ⇡ K

n

S(m)+ (!)� kBTc<e

h

G(m)ac (!)

io

kBTc � !

!0 = e⇤V/~

|tm|2

Ssym(!) =X

m

S(m)sym(!) Smeas(!) =

X

m

S(m)meas(!)

�(m)(E)

Smeas

⌘ Sex

T = Tc

��

��

Page 13: Multiple Qp Resonant Detector

Non-interacting resultSsym(ω,ω0)

a) b)

c) d)

Smeas(ω,ω0)/K

Ssym(ω,ω0)

Smeas(ω,ω0)/K

Ssym(ω,ω0)

a) b)

c) d)

Smeas(ω,ω0)/K

Ssym(ω,ω0)

Smeas(ω,ω0)/K

Electron

Smeas(!,!0) ⇡ KS+(!,!0) =K

2

✓Ssym(!,!0)� 2S̃0

!

!c

◆kBTc ⌧ !

Ssym(!,!0) = 2S̃0

!c[✓(!0 � !)!0 + ✓(! � !0)!] S̃0 =

e2

2

|t1|2

2⇡↵2

1

!c

Tc = 15mK! = 7.9GHz(60mK)!c = 660GHz(5K)

T = 0.1, 5, 15, 30[mK]

�(1)(E) / ✓(E)E

Lesovik G B and Loosen R JETP 65 295 (1997)

⌫ = 1

/ V / V

Page 14: Multiple Qp Resonant Detector

Interacting case: LaughlinSsym(ω,ω0)

a) b)

c) d)

Smeas(ω,ω0)/K

Ssym(ω,ω0)

Smeas(ω,ω0)/K

Ssym(ω,ω0)

a) b)

c) d)

Smeas(ω,ω0)/K

Ssym(ω,ω0)

Smeas(ω,ω0)/K

Single-qpTc = 15mK

! = 7.9GHz(60mK)!c = 660GHz(5K)

T = 0.1, 5, 15, 30[mK]

Ssym(!,!0) ⇡ |! � !0|4�(1)1/3

�1 Chamon, Freed & Wen PRB95,PRB96

• Detector quatum limit • QPC Shot noise

kBTc ⌧ !

kBT ⌧ !0

⌫ = 1/3

e⇤ =e

3

S(m)meas(!,!0) ⇡ S(m)

+ (!) ⇡ K(me⇤)2

2�(m) (�! +m!0) ! ⇠ !0

returns directly the rates…….S(m)meas(!,!0)

��

m = 1

Page 15: Multiple Qp Resonant Detector

Rate detection

a) b)

Smeas(ω,ω0)/K Sex(ω,ω0)/K

a) b)

Smeas(ω,ω0)/K Sex(ω,ω0)/K

⌫ = 1/3, 1/5, 1/7

Tc = T

T = 10mK

Tc = 10, 30, 60, 90 mK

Dashed lines theoretical

rates

It is possible to extract the scaling dimensions without requiring an extended window in frequency and bias simplifying the experimental requirements

��

��

�(1)⌫ =

2

Note that Smeas

⌘ Sex

T = Tc

Page 16: Multiple Qp Resonant Detector

Hotter is better?

a) b)

d)c)

Smeas(ω,ω0)/K Smeas(ω,ω0)/K

∂Smeas(ω,ω0)

K∂ω0

∂Smeas(ω,ω0)

K∂ω0

a) b)

d)c)

Smeas(ω,ω0)/K Smeas(ω,ω0)/K

∂Smeas(ω,ω0)

K∂ω0

∂Smeas(ω,ω0)

K∂ω0⌫ = 1/3

Tc = 5, 15, 30, 60 mK

The QPC cannot excite detector modes only absorptive

The QPC excites detectorThe combined effect is an enhancement of jump/peak

Tc = 15mK! = 7.9GHz(60mK)!c = 660GHz(5K)

��

Page 17: Multiple Qp Resonant Detector

Resolving m-qp scalings?

Ssym(ω,ω0) Ssym(ω,ω0)

a) b)

c) d)

Smeas(ω,ω0)/K Smeas(ω,ω0)/K

⌫ =2

5⌫ =

2

3

Ssym

S(m)sym(!,!0) ⇡ |! � !0|4�

(m)⌫ �1 Chamon, Freed & Wen PRB95,PRB96

• Josephson resonances • Peaks ( ) or dips ( ) • Thermal effect spoil the signatures

! ⇡ m!0

�(m)⌫ > 1/4�(m)

⌫ < 1/4

T = 0.1, 5, 15, 30[mK]

e⇤ =e

5e⇤ =

e

3

Page 18: Multiple Qp Resonant Detector

Multiple-qp spectroscopy:Smeas

Ssym(ω,ω0) Ssym(ω,ω0)

a) b)

c) d)

Smeas(ω,ω0)/K Smeas(ω,ω0)/K

⌫ =2

5⌫ =

2

3T = 0.1, 5, 15, 30[mK]

Note that Smeas

⌘ Sex

T = Tc

Smeas(!,!0) ⇡ ↵1�(1)(!0 � !) + ↵2�

(2)(2!0 � !)

• Rates are directly fitted: scaling dimensions at finite T • Multiple-qps are observed in different window

e⇤ =e

5 e⇤ =e

3

Page 19: Multiple Qp Resonant Detector

Conclusion• QPC+LC resonator is a powerful tool

• f.f. noise resolve the presence of multiple qps

• Multiple-qp spectroscopy can be done at realistic T

• Information on qps by analysing bias behaviour

• Changing detector temperature increases the sensibility

• Validate composite edge model theories

• This techniques can be used in other systemsNew. J. Phys. 16 043018 (2014)