Multimodal Brain Imaging

42
Multimodal Brain Imaging Will D. Penny FIL, London Guillaume Flandin, CEA, Paris Nelson Trujillo-Barreto, CNC, Havana

description

Multimodal Brain Imaging. Will D. Penny FIL, London. Guillaume Flandin, CEA, Paris Nelson Trujillo-Barreto, CNC, Havana. Neuronal Activity. Experimental Manipulation. Optical Imaging. MEG,EEG. PET. fMRI. FORWARD MODELS. Single/multi-unit recordings. Spatial convolution - PowerPoint PPT Presentation

Transcript of Multimodal Brain Imaging

Page 1: Multimodal Brain Imaging

Multimodal Brain Imaging

Will D. Penny FIL, London

Guillaume Flandin, CEA, ParisNelson Trujillo-Barreto, CNC, Havana

Page 2: Multimodal Brain Imaging

ExperimentalManipulation

Neuronal Activity

MEG,EEG OpticalImaging

PETfMRI

Single/multi-unitrecordings

Spatialconvolution via Maxwell’sequations

Temporal convolutionvia Hemodynamic/Balloon models

FORWARD MODELS

Sensorimotor MemoryLanguageEmotionSocial cognition

Page 3: Multimodal Brain Imaging

ExperimentalManipulation

Neuronal Activity

MEG,EEG

fMRI

Spatialdeconvolution via beamformers

Temporal deconvolutionvia model fitting/inversion

INVERSION

1. Spatio-temporal deconvolution

2. Probabilistic treatment

Page 4: Multimodal Brain Imaging

OverviewOverview

Spatio-temporal deconvolution for M/EEG

Spatio-temporal deconvolution for fMRI

Towards models for multimodal imaging

Page 5: Multimodal Brain Imaging

Spatio-temporal deconvolution for M/EEG

Add temporal constraints in the form of a General Linear Model to describe the temporal evolution of the signal.

Puts M/EEG analysis into same framework as PET/fMRIanalysis.

Work with Nelson. Described in chapter of new SPMbook.

Page 6: Multimodal Brain Imaging
Page 7: Multimodal Brain Imaging

1

1

1

:, ,

:, ,

1,: ,

tM T M G G T M T

TtG T K T G K G T

TT TkK G K G

k

t N

t N

k N

Y K J E e E 0 Ω

J X W Z z Z 0 Λ

W β β Β 0 D D

, 1, ,

, 1, ,

m

g

diag m M

diag g G

Ω

Λ

,g gg Ga b c ,m Ga b c ,k Ga b c

Generative Model:

Hyperpriors:

Page 8: Multimodal Brain Imaging

Variational Bayes: Mean-Field Variational Bayes: Mean-Field ApproximationApproximation

Repeat

• Update source estimates, q(j)• Update regression coefficients, q(w)• Update spatial precisions, q()• Update temporal precisions, q()• Update sensor precisions, q()

Until change in F is small

L

F

KL

1 2

, 0

Pp q q q

L M F KL q p KL

θ v v v v

v θ v θ v

Page 9: Multimodal Brain Imaging

1 11

, , , ,G

T g Kg

q q q q q q

θ j j w Ω Λ

11

, ,T

T tt

q q

j j j ˆ ˆ,tt tq N jj j Σ

ˆˆ ,gg gq N ww w Σ 1

1

, ,G

G gg

q q

w w w

1

G

gg

q q

Λ

1

M

mm

q q

Ω ˆ ˆ,m post postq Ga b c

ˆ ˆ,g post postq Ga b c

11

, ,K

K kk

q q

ˆ ˆ,kq Ga b c

Mean-Field Approximation:

Approximated posteriors:

Page 10: Multimodal Brain Imaging

1ˆ ˆ ˆ ˆ ˆ ˆT T T Tt t t

j K ΩK Λ K Ωy ΛW x

ˆTtyK Ω

ˆˆ T TtxW Λ

Page 11: Multimodal Brain Imaging

Corr(R3,R4)=0.47

1.00 0.16 0.09 0.110.16 1.00 0.290.09 0.86 1.000.11 0.29 0.47 1.

0.860.4

007

Corr

Page 12: Multimodal Brain Imaging
Page 13: Multimodal Brain Imaging
Page 14: Multimodal Brain Imaging

o

+

500ms

LowSymmetry

LowAsymmetry

HighSymmetry

HighAsymmetry

Phase 1

Time

600ms

+ 700ms

+

o

2456ms

+

Fa

+

Sb

Ub

+

Sa

Henson R. et al., Cerebral Cortex, 2005

Page 15: Multimodal Brain Imaging

B8

A1 Faces minus Scrambled Faces

170ms post-stimulus

Page 16: Multimodal Brain Imaging

B8 A1

Faces

Scrambled Faces

Page 17: Multimodal Brain Imaging

Daubechies Cubic Splines

Wavelets

Page 18: Multimodal Brain Imaging

28 Basis Functions 30 Basis Functions

Daubechies-4

Page 19: Multimodal Brain Imaging

ERP Faces

ERPScrambled

Page 20: Multimodal Brain Imaging

t = 170 ms

Page 21: Multimodal Brain Imaging

t = 170 ms

Faces – Scrambled faces: Difference of absolute values

Page 22: Multimodal Brain Imaging

Spatio-temporal deconvolution for fMRI

Temporal evolution is described by GLM in the usual way.

Add spatial constraints on regression coefficients in the form of a spatial basis set eg. spatial wavelets.

Automatically select the appropriate basis subset using a mixture prior which switches off irrelevant bases.

Embed this in a probabilistic model.

Work with Guillaume. To appear in Neuroimage very soon.

Page 23: Multimodal Brain Imaging

Spatial Model eg. Wavelets

Page 24: Multimodal Brain Imaging

Mixture prior on wavelet coefficients

(1) Wavelet switches: d=1 if coefficient is ON. Occurs with probability (2) If switch is on, draw z from the fat Gaussian.

Page 25: Multimodal Brain Imaging

Probabilistic Generative Model

fMRI data

General LinearModel

Waveletcoefficients

TemporalModel

Spatial Model

Waveletswitches

Switchpriors

Page 26: Multimodal Brain Imaging
Page 27: Multimodal Brain Imaging

Compare to (i) GMRF prior used in M/EEG and (ii) no prior

Page 28: Multimodal Brain Imaging

Inversion using wavelet priors is faster than using standard EEG priors

Page 29: Multimodal Brain Imaging

Results on face fMRI data

Page 30: Multimodal Brain Imaging

Towards multimodal imaging

Use simultaneous EEG- fMRI to identify relationship Between EEG and BOLD (MMN and Flicker paradigms)

EEG is compromised -> artifact removal

Testing the `heuristic’

Start work on specifying generative models

Ongoing work with Felix Blankenburg and James Kilner

Page 31: Multimodal Brain Imaging

fMRI results

Page 32: Multimodal Brain Imaging

fMRI results

Page 33: Multimodal Brain Imaging

We have “synchronized sEEG-fMRI” – MR clock triggers both fMRI and EEG acquisition; after each trigger we get 1 slice of fMRI and 65ms worth of EEG. Synchronisation makes removal of GA artefact easier

MRI Gradient artefact removal from EEG

Page 34: Multimodal Brain Imaging

Ballistocardiogram removal

Could identify QRS complex from ECG to set up a ‘BCG window’ for subsequent processing

Page 35: Multimodal Brain Imaging

Ballistocardiogram removal

Page 36: Multimodal Brain Imaging

Ballistocardiogram removal

Page 37: Multimodal Brain Imaging

The EEG-BOLD heuristic (Kilner, Mattout, Henson & Friston) contends that increases in average EEG frequency predict BOLD activation.

g(w) = spectral density

Testing the heuristic

Page 38: Multimodal Brain Imaging

RMSF for Marta’s data at Cz

Page 39: Multimodal Brain Imaging

Log of Bayes factor for Heuristic versus Null

Page 40: Multimodal Brain Imaging

Log of Bayes factor for Heuristic versus Alpha

Page 41: Multimodal Brain Imaging

Tentative probabilistic generative model

Page 42: Multimodal Brain Imaging

THANK-YOU FOR

YOUR ATTENTION !