Multilevel preconditioning...

44
FMB - NLA Multilevel preconditioning methods . – p.1/24

Transcript of Multilevel preconditioning...

Page 1: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA

Multilevel preconditioning methods

. – p.1/24

Page 2: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

MG_Tutorial-1

Multigrid (MG) and Local Refinement forElliptic Partial Differential Equations

Klaus Stüben

FhG-SCAISchloss Birlinghoven53754 St. Augustin, Germanye-mail: [email protected]

Multigrid Tutorial

MG_Tutorial-2

Overview

• Why multigrid?

• Basic multigrid principles

• Full multigrid (FMG)

• Nonlinear multigrid (FAS)

• Eigenproblems

• Local Refinements

Page 3: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

MG_Tutorial-55

Historical Papers

• Discovery of multigrid (theoretical)– Fedorenko, R.P.: The speed of convergence of an iterative method,

USSR Comput. Math. and Math. Phys. 4,3 (1964).

– Bakhvalov, N.S.: On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comput. Math. and Math. Phys. 6,5 (1966).

• Beginning of multigrid– Brandt, A.: Multi-level adaptive technique (MLAT) for fast numerical

solution to boundary value problems, Lecture Notes in Physics 18, Springer 1973.

– Brandt, A.: Multi-level adaptive solutions to boundary value problems, Math. Comp. 31 (1977).

• Re-discovery of multigrid– Hackbusch, W.: On the multigrid method applied to difference equations,

Computing 20 (1978).

MG_Tutorial-56

Text Books

• Classical– Stüben, K.; Trottenberg, U.: Multigrid methods: Fundamental algorithms, model problem

analysis and applications, Lecture Notes in Mathematics 960, Springer (1982).

– Brandt, A.: Multigrid techniques: 1984 Guide with applications to fluid dynamics, GMD-Studie No. 85 (1984).

• Theory– Hackbusch, W.: Multigrid methods and applications, Springer Series in Comp. Math. 4,

Springer (1985).

– McCormick, S. (ed.).: Multigrid methods, Frontiers in Applied Mathematics, Vol. 5, SIAM, Philadelphia (1987).

• Tutorial-level– Briggs, W.: A multigrid tutorial, SIAM, Philadelphia (1987). New edition: 2001.

• Engineers– Wesseling, P.: An introduction to multigrid methods, Pure and Applied Mathematics Series,

John Wiley and Sons (1992).

• Engineers and Practitioners– Trottenberg, U.; Oosterlee, C.W.; Schüller, A.: Multigrid, Academic Press, 2001 (with

appendices by Brandt, A., Oswald, P. and Stüben, K.)

Page 4: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

AMultigrid Tutorial

ByWilliam L. Briggs

Presented byVan Emden Henson

Center for Applied Scientific ComputingLawrence Livermore National Laboratory

This work was performed, in part, under the auspices of the United States Department of Energy by Universityof California Lawrence Livermore National Laboratory under contract number W-7405-Eng-48.

Page 5: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

38 of 119

• Many relaxation schemes have the smoothingproperty, where oscillatory modes of the errorare eliminated effectively, but smooth modesare damped very slowly.

• This might seem like a limitation, but by usingcoarse grids we can use the smoothing property togood advantage.

• Why use coarse grids??

First observation towardmultigrid

x0 xN

x0 xN2

Ωh

Ω2h

Page 6: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

39 of 119

Reason #1 for using coarsegrids: Nested Iteration

• Coarse grids can be used to compute an improvedinitial guess for the fine-grid relaxation. This isadvantageous because:

– Relaxation on the coarse-grid is much cheaper (1/2 asmany points in 1D, 1/4 in 2D, 1/8 in 3D)

– Relaxation on the coarse grid has a marginally betterconvergence rate, for example

instead of 1 )(− hO 241 )(− hO 2

Page 7: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

40 of 119

Idea! Nested Iteration

• …• Relax on Au=f on to obtain initial guess• Relax on Au=f on to obtain initial guess• Relax on Au=f on to obtain … final solution???

• But, what is Au=f on , , … ?

• What if the error still has smooth componentswhen we get to the fine grid ?

Ω4h

Ω2h

Ωh

v2h

vh

Ω2h Ω4h

Ωh

Page 8: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

46 of 119

1D Interpolation (Prolongation)

• Mapping from the coarse grid to the fine grid:

• Let , be defined on , . Then

where

vh v2h Ωh Ω2h

vv 22

hi

hi =

vvv 21

212

hi

hi

hi ++ )+(=

21

for 12

0 −≤≤N

i

I 22

hhhh Ω→Ω:

vvI 22

hhhh =

Page 9: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

47 of 119

1D Interpolation (Prolongation)

Ωh

Ω2h

• Values at points on the coarse grid map unchangedto the fine grid

• Values at fine-grid points NOT on the coarse gridare the averages of their coarse-grid neighbors

Page 10: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

48 of 119

The prolongation operator (1D)

• We may regard as a linear operator fromℜ N/2-1 ℜ N-1

• e.g., for N=8,

• has full rank, and thus null space

=

/

//

//

/ 21

12121

12121

121

177

6

5

4

3

2

1

1323

22

21

37

xh

h

h

h

h

h

h

xh

h

h

x v

v

v

v

v

v

v

v

v

v

φ

I2hh

I2hh

Page 11: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

52 of 119

1D Restriction by injection• Mapping from the fine grid to the coarse grid:

• Let , be defined on , . Then

where .

vh v2h Ωh Ω2h

vv hi

hi 22 =

I hhhh

22 Ω→Ω:

vvI hhhh

22 =

Page 12: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

53 of 119

1D Restriction by full-weighting

• Let , be defined on , . Then

where

vh v2h Ωh Ω2h

vvvv hi

hi

hi

hi 122122 )++(= 2

41

+−

vvI hhhh

22 =

Page 13: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

55 of 119

Prolongation and restriction areoften nicely related

• For the 1D examples, linear interpolation and full-weighting are related by:

• A commonly used, and highly useful, requirement isthat

for c in ℜIcI 22

Thh

hh )(=

I2hh

=

1211

211

21

21 I h

h2

=121

121121

41

Page 14: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

58 of 119

Now, let’s put all these ideastogether

• Nested Iteration (effective on smooth errormodes)

• Relaxation (effective on oscillatory error modes)

• Residual equation (i.e., residual correction)

• Prolongation and Restriction

Page 15: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

59 of 119

Coarse Grid Correction Scheme

• 1) Relax times on on with

arbitrary initial guess .

• 2) Compute .

• 3) Compute .

• 4) Solve on .

• 5) Correct fine-grid solution .

• 6) Relax times on on with initial

guess .

fuA hhh = Ωh

vh

fuA hhh = Ωh

vh

fvGCv hhh )α,α,,(← 21

α1

α2

vAfr hhhh −=

reA 222 hhh = Ω2h

rIr 22 hhh

h =

eIvv hhh

hh +← 22

Page 16: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

60 of 119

Coarse-grid Correction

Relax on fuA hhh =uAfr hhhh −=Compute

rIr 22 hhh

h =Restrict

Solve reA 222 hhh =rAe 2122 hhh )(= −

Correct

eIe hhh

h ≈ 22

Interpolate

euu hhh +←

Page 17: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

61 of 119

What is ?

• For this scheme to work, we must have , acoarse-grid operator. For the moment, we willsimply assume that is “the coarse-gridversion” of the fine-grid operator .

• We will return to the question of constructinglater.

A 2h

A 2h

A 2h

A 2h

A h

Page 18: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

62 of 119

How do we “solve” the coarse-grid residual equation? Recursion!

uIe hhh

h← 22

uIe 424

2 hhh

h←

uIe 848

4 hhh

h←

fAGu hhh ),(← ν

fAGu 222 hhh ),(← ν

fAGu 444 hhh ),(← ν

fAGu 888 hhh ),(← ν

uAfIf 22 hhhhh

h )−(←

uAfIf 22242

4 hhhhh

h )−(←

uAfIf 44484

8 hhhhh

h )−(←

euu 888 hhh +←

euu 444 hhh +←

euu 222 hhh +←

euu hhh +←

fAe HHH )(= −1

Page 19: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

63 of 119

V-cycle (recursive form)

1) Relax times on , initial arbitrary

2) If is the coarsest grid, go to 4) Else:

3) Correct

4) Relax times on , initial guess

fvVMv hhhh ),(←

α1 fuA hhh = vh

Ωh

vAfIf 22 hhhh

hh )−(←

v2h ← 0

fvVMv 2222 hhhh ),(←

vIvv hhh

hh +← 22

α2 fuA hhh = vh

Page 20: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

64 of 119

Storage Costs: and mustbe stored on each level

In 1-d, each coarse grid has about half the number of points as the finer grid.

In 2-d, each coarse grid has about one- fourth the number of points as the finer grid.

In d-dimensions, each coarse grid has about the number of points as the finer grid.

2− d

21

2222212

NN

d

ddMdddd

−<)+…++++(

−−−−− 32

Total storage cost: less than 2, 4/3, 8/7 the cost of storage on the fine grid for 1, 2, and 3-d problems, respectively.

vh f h

Page 21: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

65 of 119

Computation Costs• Let 1 Work Unit (WU) be the cost of one

relaxation sweep on the fine-grid.• Ignore the cost of restriction and interpolation

(typically about 20% of the total cost).• Consider a V-cycle with 1 pre-Coarse-Grid

correction relaxation sweep and 1 post-Coarse-Grid correction relaxation sweep.

• Cost of V-cycle (in WU):

• Cost is about 4, 8/3, 16/7 WU per V-cycle in 1, 2,and 3 dimensions.

21

2222212

−<)+…++++(

−−−−−

ddMddd 32

Page 22: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

70 of 119

Work needed to converge to thelevel of truncation

• Since θ V-cycles at convergence rate γ arerequired, we see that

implying that .

• Since one V-cycle costs O(1) WU and one WU isO(Nd), we see that the cost of converging to thelevel of truncation using the MV method is

• which is comparable to fast direct methods (FFTbased).

)(∼γ−θ NO p

)(∼θ NO gol

NNO )( d gol

Page 23: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA Multilevel preconditioning methods: MG

Procedure MG: u(k) ←MG“u(k), f (k), k, ν

(k)j

kj=1

”;

if k = 0, then solve A(0)u(0) = f (0) exactly or by smoothing,else

u(k) ←s1S

(k)1

`u(k), f (k)

´, perform s1 pre-smoothing steps,

Correct the residual:r(k) = A(k)u(k) − f (k); form the current residual,

r(k−1) ←R`r(k)

´, restrict the residual on the next coarser grid,

e(k−1) ←MG“0, r(k−1), k − 1, ν

(k−1)j k−1

j=1

”;

e(k) ← P`e(k−1)

´; prolong the error from the next coarser to the

current grid,u(k) = u(k) − e(k); update the solution,

u(k) ←s2S

(k)2

`u(k), f (k)

´, perform s2 post-smoothing steps.

endif

end Procedure MG

. – p.3/24

Page 24: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

post-smoothing steps

pre-smoothing steps

exact solving

restriction prolongation

One MG step (V -cycle)

. – p.4/24

Page 25: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

The MG W -cycle

. – p.5/24

Page 26: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA Nested iterations

Procedure NI : u(ℓ) ← NI“u(0),

˘f (k)

¯(ℓ)

k=1, ℓ, ν(k)ℓ

k=1

”;

u(0) = A(0)−1f (0),

for k= 1 to ℓ do

u(k) = P`u(k−1)

´;

u(k) ←MG“u(k), f (k), k, ν

(k)j

kj=1

”;

endfor

end Procedure NI

. – p.6/24

Page 27: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA Full MG (V-cycle)

The so-called full MG corresponds to Procedure NI(·, ·, ℓ, 1, 1, · · · , 1)

The full MG (V -cycle)

. – p.7/24

Page 28: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

A compact formula presenting the MG procedure in terms of a recursively definediteration matrix:( i) Let M (0) = 0,(ii) For k = 1 to ℓ, define

M (k) = S(k)s2“A(k)−1

− P kk−1

“I −M (k−1)ν

”A(k−1)−1

Rk−1k

”A(k)S(k)s1

,

where S(k) is a smoothing iteration matrix (assuming S1 and S2 are the same), Rk−1k

and P kk−1 are matrices which transfer data between two consecutive grids and

correspond to the restriction and prolongation operatorsR and P, respectively, andν = 1 and ν = 2 correspond to the V - and W -cycles.It turns out that in many cases the spectral radius of M (ℓ), ρ

`M (ℓ)

´, is independent of ℓ,

thus the rate of convergence of the NI method is optimal. Also, a mechanism to makethe spectral radius of M (ℓ) smaller is to choose s1 and s2 larger. The price for the latteris, clearly, a higher computational cost.

. – p.8/24

Page 29: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

Rate of convergence

ρ(Mℓ) ≤ 1− Cℓ−2

ρ(Mℓ) ≤ 1−O(ℓ−1−α

α )

ρ(Mℓ) ≤ 1−O(ℓ−(1−α)2

α )

u ∈ H1+α(Ω), 0 ≤ α < 1.

The larger α, the better the convergence, but the stronger the requirements with respect

of the regularity of the solution.

. – p.9/24

Page 30: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

. – p.10/24

Page 31: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA Multilevel preconditioning methods: AMLI

The Algebraic Multilevel Iteration (AMLI) methods are the first regularity-free multilevelmethods.Derived in a series of papers by Owe Axelsson and anayot Vassilevski in 1989-1991.

Sequence of matrices˘A(k)

¯ℓ

k=k0

Nk0⊂ Nk0+1 ⊂ . . . ⊂ Nℓ

A(k) =

264

A(k)11 A

(k)12

A(k)21 A

(k)22

375 N

k\Nk−1

Nk−1

. (1)

. – p.11/24

Page 32: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

A(k) = A(k+1)22 −A

(k+1)21 B

(k+1)11 A

(k+1)12 . (2)

where B(k+1)11 is some sparse, positive definite, nonnegative and symmetric

approximation of A(k+1)−1

11 .

How to split Nk+1 into two parts: the order nk of the matrices A(k) should decreasegeometrically:

nk+1

nk

= ρk ≥ ρ > 1.

. – p.12/24

Page 33: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

M (k0) = A(k0),

for k = k0, k0 + 1, . . . ℓ− 1

M (k+1) =

2664

A(k+1)11 0

A(k+1)21

eS(k)

3775

2664

I(k+1)1 A

(k+1)−1

11 A(k+1)12

0 I(k+1)2

3775 ,

endfor

(3)

where eS(k) can be, for instance, of the folowing form

eS(k) = A(k)hI − Pν(M (k)−1

A(k))i−1

, (4)

. – p.13/24

Page 34: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

In eS(k) = A(k)hI − Pν(M (k)−1

A(k))i−1

Pν(t) denotes a polynomial of degree ν which satisfies the conditions

0 ≤ Pν(t) < 1, 0 < t ≤ 1 and Pν(0) = 1. (5)

The fact that Pν(0) is normalized at the origin is important because then the expression

for eS(k) does not require actions of A(k)−1.

. – p.14/24

Page 35: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

Forward sweep:

Solve

2664

A(k+1)11 0

A(k+1)21

eS(k)

3775

2664

w1

w2

3775 =

2664

y1

y2

3775 , i.e.

(F1) w1 = A(k+1)−1

11 y1,

(F2) w2 = eS(k)−1“y2 − A

(k+1)21 w1

”.

Backward sweep:

Solve

2664

I(k+1)1 A

(k+1)−1

11 A(k+1)12

0 I(k+1)2

3775

2664

x1

x2

3775 =

2664

w1

w2

3775 , i.e.

(B1) x2 = w2,

(B2) x1 = w1 −A(k+1)−1

11 A(k+1)12 x2.

. – p.15/24

Page 36: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

Since Pν(t) is of the form Pν(t) = 1− a1t− . . .− aνtν , we observe that

v = eS(k)−1z =

hI − Pν(M (k)−1

A(k))i

A(k)−1z

=ha1I + a2M (k)−1

A(k) + · · ·+ aν(M (k)−1A(k))ν−1

iM (k)−1

z.

. – p.16/24

Page 37: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

M (k+1) =

264

B(k+1)11 0

eA(k+1)21

eS(k)

375

264

I(k+1)1 B

(k+1)−1

11eA(k+1)12

0 I(k+1)2

375 (6)

with eS(k) defined as eS(k) = A(k)hI − Pν(M (k)−1

A(k))i−1

.

. – p.17/24

Page 38: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

M (k+1) =

264

B(k+1)−1

11 0

A(k+1)21 I

(k+1)2

375

264

I(k+1)1 B

(k+1)11 A

(k+1)12

0 eS(k)

375 , (7)

where eS(k) = A(k)hI − Pν(M (k)−1

A(k))i−1

. This time it is not A(k+1)11 but its inverse

which is approximated by some other matrix B(k+1)11 . Thus, instead of solving systems

with A(k+1)11 or with some approximation of it, we need only to do matrix multiplications

with B(k+1)11 . The matrix B

(k+1)11 is constructed so that it meets certain requirements - it

has a prescribed sparsity pattern, is nonnegative when A(k+1)11 is monotone, and is a

sufficiently good approximation of A(k+1)−1

11 . In the case of discontinuous coefficients, it

suffices with a simple diagonal approximation of A(k+1)−1

11 .

. – p.18/24

Page 39: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA The AMLI algorithm

Procedure AMLI : u(k) ← AMLI“f (k), k, νk, a

(k)j

νkj=0

”;

[f(k)1 , f

(k)2 ]← f (k),

w(k)1 = B

(k)11 f

(k)1 ,

w(k)2 = f

(k)2 −A

(k)21 w

(k)1 ,

k = k − 1,

if k = 0 then u(0)2 = A(0) w

(1)2 , solve on the coarsest level exactly;

else

u(k)2 ← AMLI

“a(k)νk

w(k)2 , k, νk, a

(k)j

νkj=0

”;

for j = 1 to νk − 1:

u(k)2 ← AMLI

“A(k) u

(k)2 + a

(k)νk−jw

(k)2 , k, νk, a

(k)j

νkj=0

”;

endfor

endif

k = k + 1,

u(k)1 = w

(k)1 −B

(k)11 A

(k)12 u

(k)2 ,

u(k) ← [u(k)1 ,u

(k)2 ]

end Procedure AMLI

. – p.19/24

Page 40: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

solution onthe coarsest level

multiplicationwith A(k)

12 ,B(k)11

multiplicationwith A(k)

21 ,B(k)11

multiplication with

A(k)

One AMLI step (V -cycle)

. – p.20/24

Page 41: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA ...

level 0

level 1,

level 2,

level 3,

level 4,

level 5

ν=1

ν=3

ν=1

ν=1

ν-fold W -cycle, [1, 1, 3, 1]

. – p.21/24

Page 42: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA Computational complexity

Recall:nk+1

nk≥ ρ > 1

Wℓ = C(nℓ + nℓ−1 + · · ·nℓ−µ)+

Cν(nℓ−µ−1 + nℓ−µ−2 + · · ·nℓ−2µ − 1)+

Cν2(· · · )

...≤ C nℓ(1 + 1

ρ+ · · ·+ 1

ρ

µ) 11−νρ−(µ+1

If we impose the condition

ν < ρµ+1

then the work per iteration is bounded independently of ℓ.

. – p.22/24

Page 43: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA Rate of convergence

We want:

κℓ = κ(M (ℓ)−1A(ℓ)) = O(1) ℓ→∞

It involves κk = κ(M (k)−1A(k)), and, in turn, the need to estimate the extreme

eigenvalues of intermediate eigenvalues.It turms out that the condition for optimal κℓ can be formulated as

f(λ(M (k)−1A(k))) ≤ ν

which gives a lower bound for the degrees of the polynomials to be used. Thus, weobtain

Optimal comput. complexity ≤ ν ≤ Optimal conv. rate

. – p.23/24

Page 44: Multilevel preconditioning methodsuser.it.uu.se/~maya/Courses/NLA/Lecture_Notes/Module3/NLA_Multi… · solution to boundary value problems, Lecture Notes in Physics 18, Springer

FMB - NLA How does actually the whole thing work?

. – p.24/24