Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

31
Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation Mohammad Jaber Borran Rice University April 21, 2000

description

Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation. Mohammad Jaber Borran Rice University April 21, 2000. q 1 K 1. N x 1. M -way Partitioning of data. E 1 (rate R 1 ). Mapping (to 2 M -point constellation). data bits from the - PowerPoint PPT Presentation

Transcript of Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Page 1: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Multilevel Coding and Iterative Multistage Decoding

ELEC 599 Project Presentation

Mohammad Jaber Borran

Rice UniversityApril 21, 2000

Page 2: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Multilevel Coding

A number of parallel encoders

The outputs at each instant select one symbol

lbits/symbo 1

11

M

ii

M

ii K

NRR

M-wayPartitioning

of data

data bitsfrom theinformationsource

E1 (rate R1)

EM (rate RM)

E2 (rate R2)

q1 K1 N x1

Mapping(to 2M-point

constellation)

Signal Point

q2 K2

qM KM

N x2

N xM

Page 3: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

• Minimum Hamming distance for encoder i: dHi ,

Minimum Hamming distance for symbol sequences

)(min

,,1Hi

MiH dd

• For TCM (because of the parallel transitions)

dH = 1

• MLC is a better candidate for coded modulation on fast fading channels

Distance Properties

Page 4: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Probability of error for Fading Channels

• Rayleigh fading with independent fading coefficients

Chernoff bound

L

dk

jikL

s

jie

k

dNEP

01

20

2

4)(

11)(

c,cc,c

L’: effective length of the error event (Hamming distance)

dk(ci,cj): distance between the kth symbols of the two sequences

Page 5: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

• For a fast fading channel, or a slowly fading channel with interleaving/deinterleaving

Design criterion (Divsalar)

Design Criterion for Fading Channels

),(minmax,},,,{ 2

jiPji

dn

ccccc1

L

dk

jikjiP

k

dd

01

2

2

)()( c,cc,c

),(minmax,},,,{ 2

jiHji

dn

ccccc1

• For a slowly fading channel without interleaving/deinterleaving

Design criterion ),(minmax,},,,{ 2

jiEji

dn

ccccc1

Page 6: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

• For a fast fading channel, or a slowly fading channel with interleaving/deinterleaving

Decoding Criterion

kkk

L

kikk

iyyd

~ where)~(||min1

22 c,y

k is the fading coefficient for kth symbol)

– Maximizes the likelihood function

Page 7: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

• Optimum decoder: Maximum-Likelihood decoder

• If the encoder memories are 1, 2, …,M,

the total number of states is 2,

where = 1 + 2 + … + M.

• Complexity Need to look for suboptimum decoders

Decoding

Page 8: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

• If A and Y denote the transmitted and received symbol sequences respectively, using the chain rule for mutual information:

),,,|;(

)|;();(

),,,X;();(

121

121

21

MM

M

XXXXYI

XXYIXYI

XXYIAYI

• Suggests a rule for a low-complexity staged decoding procedure

Page 9: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Multistage Decoding

• At stage i, decoder Di processes not only the sequence of received signal points, but also decisions of decoders Dj, for j = 1, 2, …, i-1.

Decoder D1

Decoder D2

Decoder DM

Y

1X

2X

MX

a

Page 10: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

• The decoding (in stage i) is usually

done in two steps– Point in subset decoding

– Subset decoding

• This method is not optimal in maximum likelihood sense, but it is asymptotically optimal for high SNR.

Decoder DiY

1X 2X

...1

ˆiX

iX

Page 11: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Optimal Decoding

),ˆ,,ˆ(

|

)ˆ,,ˆ(

11

11

111

)|(}Pr{

}Pr{),ˆ,,ˆ(

iii

ii

xxxaAY

xxb

iii ayfb

axxxM

A

A

– Ai(x1,…, xi) is the subset determined by x1,…, xi

– fY|A(y|a) is the transition probability (determined by the channel)

ix

Page 12: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Rate Design Criterion

),,,|;(

)|;(

);(

121

122

11

MMM XXXXYIC

XXYIC

XYIC

then the rate of the code at level i, Ri, should satisfy

ii CR

Decoder D1

Decoder D2

Decoder DM

Y

1X

2X

MX

a

Page 13: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

-5 0 5 10 15 200

0.5

1

1.5

2

2.5

3

SNR (dB)

Cap

acity

(bi

ts/s

ymbo

l)

C C1C2

Two-level, 8-ASK, AWGN channel

Page 14: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Rate Design Criterion

Using the multiaccess channel analogy, if optimal decoding is used,

);(),,;(

)}{|,;(

)}{|;(

1

,

AYIXXYIR

XXXYIRR

XXYIR

Mi

i

jikkjiji

ikkii

R1

R2

I(Y;X1)

I(Y;X2)

I(Y;X2|X1)

I(Y;X1|X2)

Page 15: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

-5 0 5 10 15 200

0.5

1

1.5

2

2.5

3

SNR (dB)

Cap

acity

(bi

ts/s

ymbo

l)

C C1 C2 I(Y;X1|X2)

Two-level, 8-ASK, AWGN channel

Page 16: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Iterative Multistage Decoding

Assuming

)(

11

11

111

1

11

}Pr{

}Pr{}ˆ|Pr{

)}(|Pr{}ˆ|)(Pr{}ˆ|Pr{

xb

b

axx

xaxxxa

A

AA

This expression, then, can be used as a priori probability of point a for the second decoder.

}ˆ|Pr{ 11 xx

– Two level Code

– R1 I(Y;X1|X2)

– Decoder D1:

then the a posteriori probabilities are

Page 17: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Probability Mass Functions

Error free decoding Non-zero symbol error probability

Page 18: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

-5 0 5 10 15 200

0.5

1

1.5

2

2.5

3

SNR (dB)

Cap

acity

(bi

ts/s

ymbo

l)

C C1 C2 I(Y;X1|X2) I(Y;X2|partial X1)

Two-level, 8-ASK, AWGN channel

Page 19: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

-5 0 5 10 15 20 25 30 350

0.5

1

1.5

2

2.5

3

SNR (dB)

Cap

acity

(bi

ts/s

ymbo

l)

C C1 C2 I(Y;X1|X2) I(Y;X2|partial X1)

Two-level, 8-ASK, Fast Rayleigh fading channel

Page 20: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

8-PSK, 2-level, 4-state, uncoded, AWGN channel

0 1 2 3 4 5 6 710

-5

10-4

10-3

10-2

10-1

100

SNR per Bit

Err

or P

roba

bilit

y

OverallEncodedUncoded

Page 21: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

8-PSK, 2-level, 4-state, uncoded , fast Rayleigh fading channel

6 8 10 12 14 16 18 2010

-5

10-4

10-3

10-2

10-1

SNR per Bit

Err

or P

roba

bilit

y

OverallEncodedUncoded

Page 22: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

6 8 10 12 14 16 18 2010

-5

10-4

10-3

10-2

10-1

100

SNR per Bit

Err

or P

roba

bilit

y

Overall First Level Second Level

8-PSK, 2-level, 4-state, zero-sum, fast Rayleigh fading channel

Page 23: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

6 8 10 12 14 16 1810

-5

10-4

10-3

10-2

10-1

100

SNR per Bit

Err

or P

roba

bilit

y

Overall First Level Second Level

8-PSK, 2-level, 4-state, 2-state , fast Rayleigh fading channel

Page 24: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

6 8 10 12 14 16 18 2010

-4

10-3

10-2

10-1

100

SNR per Bit

Err

or P

roba

bilit

y

4-state, zero-sum 4-state, 2-state, 1-iteration4-state, 2-state, 2-iteration

8-PSK, 2-level, fast Rayleigh fading

Page 25: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Higher Constellation Expansion Ratios

• For AWGN, CER is usually 2– Further expanding Smaller MSED

Reduced coding gain

• For fading channels, – Further expanding Smaller product distance

Reduced coding gain

– Further expanding Larger Hamming distance

Increased diversity gain

Page 26: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

0 2 4 6 8 10 12 1410

-5

10-4

10-3

10-2

10-1

100

SNR per Bit

Err

or P

roba

bilit

y

TCM, 8-PSK 2-level, 1-iteration, 16-PSK

Page 27: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

14 15 16 17 18 19 2010

-5

10-4

10-3

10-2

SNR per Bit

Err

or P

roba

bilit

y

TCM, 8-PSK 2-level, 1-iteration, 16-PSK2-level, 2-iteration, 16-PSK

Page 28: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Conclusion

• Using iterative MSD with updated a priori probabilities in the first iteration, a broader subregion of the capacity region of MLC scheme can be achieved.

• Lower complexity multilevel codes can be

designed to achieve the same performance.

• Coded modulation schemes with constellation expansion ratio greater than two can achieve better performance for fading channels.

Page 29: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Coding Across Time

• If channels are encoded separately, assuming– A slowly fading channel in each frequency bin, and

– Independent fades for different channels (interleaving/deinterleaving across frequency bins is used)

nnn

sh

nnn

s

ccN

EhccE

ccN

hEhcc

2

0

2

0

2

ˆ4

1

1|ˆPr

ˆ4

exp|ˆPr

Page 30: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

Coding Across Frequency Bins

• If coding is performed across frequency bins, assuming independent fades for different channels (interleaving/deinterleaving across frequency bins is used)

nnn

s

nnnn

s

ccN

EccE

cchN

Ecc

2

0

22

0

ˆ4

1

1|ˆPr

ˆ4

exp|ˆPr

h

h

h

Page 31: Multilevel Coding and Iterative Multistage Decoding ELEC 599 Project Presentation

6 8 10 12 14 16 18 2010

-4

10-3

10-2

10-1

100

SNR per Bit

Err

or P

roba

bilit

yAccross time, 1-iteration Accross time, 2-iteration Accross frequency, 1-iterationAccross frequency, 2-iteration

8-PSK, 2-level, 4-state, 2-state