MULTIFACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN …

8
MULTI FACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN CHINA'S BOREAL FORESTS* Wan Zhengkul (Meteorological Office of Daxlnganllng Mountains Region 0 f He I Ion gj Iang Pro v Inc e ,J I age daq I, Chi n a, 166000) LI Huang (Na t Ion aiM e te 0 r 0 log I cal Bur e au. Bel j Ing, Chi na 1 0008 1) Wang Melj In Sun Xlmln Cao Xlaobo Shu Llfu (Meteorological Office of Daxlnganllng Mountains Region of Hellongj lang Province, Jlagedaql, China. 166000) Xueylng DI (Northeast Forestry University , Harbin , China . 1600.0) ABSTRACT Hundreds of field experiment fires . large sample compared analysis between historical fire statistics and meteorological factors provide the data base for the system . By Introducing the Fuzzy sets concept. and the study of the meteorological factor affected fire occurrence and development. characteristic values and rltlcal values designed to set up mathematical recognition models for forest fire danger rat- Ing . After several yearl practice and amending , the has realized Information collecting. computation and prediction automatically , and has been used In Helloongjlang province . and Is being adapted to other provinces In China. KEYWORDS: FOREST FIRE DANGER, RECOGNITION MODELS . PREPICTION METHODS 1. BASI C I DEALS There are many factors affect the occurrence of forest fi res . However, the meteorological factors and weather condition are th e most Important one8 especially In affecting the dally fire da nger and seasonal fire danger. Therefore . study of the ca use and effect relations between meteorological factors and f [re o cc ur ren ce Is the critical step In setting up the fire danger Index system and forest fire prediction system. Fig. 1 I how the 60 f Ie 1d ex per 1me n t al f ir es. It ref 1ects that there Is a correlated fuzzy relation between fuel bed moisture content and Ignition probability. In Fig. 1, If the shadows of Is set R. Ignition probability -set Is U, fuel bed moisture con t en t set Is X. then. set R I•• In fact, a mapping of set X to set U. Here : U = F (X) (1) Is actuarlally a mathematical model of t he affecting factor set X The following people have contributed to the Llu Ha Lt ang Wei Llj Ie Llu FutBlig Wei sh t xlen, kunsheng Wang Ilonghong, Gao Xing long - 83- Wang MI ngr u, Llu Copyright © International Association for Fire Safety Science

Transcript of MULTIFACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN …

Page 1: MULTIFACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN …

MULTI FACTORS INTEGRATED FOREST FIRE DAN~ER RATING SYSTEM INCHINA'S BOREAL FORESTS*

Wan Zhengkul(Meteorological Office of Daxlnganllng MountainsRegion 0 f He I Ion g j I a n g Pro v Inc e,J I age d a q I, Chi n a, 1 6 6 0 0 0 )LI Huang(Na t Ion aiMe te 0 r 0 log I cal Bur e au. Bel j I n g, Chi n a 1 0008 1 )

Wang Melj In Sun Xlmln Cao Xlaobo Shu Llfu(Meteorological Office of Daxlnganllng MountainsRegion of Hellongj lang Province, Jlagedaql, China. 166000)Xueylng DI(Northeast Forestry University , Harbin , China. 1600.0)

ABSTRACT

Hundreds of field experiment fires . large sample compared analysisbetween historical fire statistics and meteorological factors providethe data base for the system. By Introducing the Fuzzy sets concept.and the study of the meteorological factor affected fire occurrenceand development. characteristic values and rltlcal values ~re designedto set up mathematical recognition models for forest fire danger rat­Ing. After s e v e r a l yearl practice and amending , the sys ~em has realizedInformation collecting. computation and prediction automatically , andhas been used In Helloongjlang province . and Is being adapted toother provinces In China.

KEYWORDS: FOREST FIRE DANGER, RECOGNITION MODELS . PREPICTION METHODS

1. BASI C I DEALS

There are many factors affect the occurrence of forest f i res . However,the meteorological factors and weather condition are th e mostImportant one8 especially In affecting the dally f i r e da nger andseasonal fire danger. Therefore . study of the ca use a n d effectrelations between meteorological factors and f [re o cc u r ren c e I s thecritical step In setting up the fire danger Index system and forestfire prediction system.

Fig. 1 I how • the • 60 f Ie 1d e xper 1me n t al f ir e s . I t ref 1e c t s that thereIs a correlated fuzzy relation between fuel bed moisture content andIgnition probability. In Fig. 1, If the shadows of I s set R.Ignition probability -set Is U, fuel bed moisture c on t en t set I s X. then.set R I • • In fact, a mapping of set X to set U. Here :

U = F (X) (1)

Is actuarlally a mathematical model of t he affecting factor set X

• The following people have contributed to theLlu Ha Lt a n g Wei Llj Ie Llu FutBlig Wei s h t x l e n,kunsheng Wang Ilon g h on g, Gao Xing long

- 83-

system : '~

Wang MI ngr u, Llu

Copyright © International Association for Fire Safety Science

Page 2: MULTIFACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN …

i gn lL e d e u r v e a

. une aei ly i gnl to d curve

\/\, / .................................

-84-

100

9U

80

70

60

60

40

30

~o

1~ =-.......~_ _:::--:-::----.:~::=;~;;,;,;;,;;~;;;;;;;~o

lUU A,. D, C , 1\ 1./~ 90 \ .:.. ~'\

~ 80 i ,,:: dol I..70 \ :.:¥,

\ ,.... 60 ' ... I '\

• 0\ .' . .\ 1/11.... 600 \ ,', ,.. 40'" , 'XN.. 30 \ '.. ",0 . I.. 20 '. ",' ,'I-,.. 10 ..,\.l ',' , ..blI ' "~" ,

,~ N ';1j <; D0 ~- ,) '''':'11\'1 " "0 10 ~O 30 40 60 60 70

Ignition probability vs fuel molBture content

Fine fuel mo l s t u r e content ($)Weather cond l'tlon mo s t favorite the fire occurenceAverage weather conditionWeather condition not luitable for fire occurrence

, meanB the test Ignition p~obabillty in 1984 spr ingCorrelation curve between ignit ion probabilityand fine fuel molBture content

Fig. 2

InillNFig, 1

o fire danger contrib utio n .Again in Fig. L if we equally divide the fue l moisture content(O­

00$) into several IntervalB, then account the number M ofe p r a s e n t La g ignition probabil'lty<; 6$ and the number of N of','e p r e s e n t Ln g ignition ' probability >60$ fall Into each interval,u p p e s e the total . ' . ' n umb er In each Interval l a W, therefore, theelatlve frequency Um=M/W:><IOO$ reflects the e f f e e t s of fuel bed'so i s t u r e which will led to the' uneasy ignited s Lt u a t Lo n ; Un=

twx 100$ reflectB ' t h e ' d e g r e e of e a s y ignited fuel bed c a u s e d by It Ir y n e a s . Let' a have a look of Fig. 2 ; the dot line e u r v e s r e p r e s e n the two U' a value wh ich are got from the field fire experimentlonducted in the Iprlng of 1984; the aolid IlneB are the expectedaluel of the two U. Th~ ~xperlmentl and BtatlBtlcB haa shown thathe contribut ion curve in Fig. 2, reflecting the generalelationahip between the factor Bet cauBlng a fire and the fire dangeret. Thla relationBhlp c~n be better delcribed by the fuzzy let theory .

Page 3: MULTIFACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN …

2. THE INTEGRATED RECONGN I TON MODE LSWe h a v e a n a 1y zed m0 ret han 3, 000 fir e' 5 Btat i Btic Band 1 20 ', 000

weather recording data, and 12 weather factorB were Belected for firedanger rating. According to the general relationBhip showed in figure2, we firBt Bet up the A recognition model which is decided by thesingle - we a t h e r factors , in this case, if the fire danger l n d e xIncrease with the increment of a factor value, we adopt the e~uation:

U , - {

1 +[A.(C .-X.)]D . when X.<C.

when X.>C.

1f t h evalue ,

fire danger indell decrease with thewe adopt the equation:

IncreaBement of f.actor

1+ [A. (X. - C 1) J U •when X.>C.

when X.<;C.(3)

Here :U.---Single f a ct o r s contribution to fire danger (0,1> or (0 ,100'1»X.---Weather factor ' recordings or predicted valuesA.. B., C .---ReferenceBi ---12 weather factorB

In reviewing the hiBtorical fire and meteorological BtatiBticB. wefound that every Belected factor has 3 basic critical valuea: nofire occurrence value R . o; value R. o... is when the ignitionprobability o b v Lo u a l y l n e r e a a l n g ; value R .. is when there iB largenumber of fire occurred. The key for setting up the aingle factorrecognition model is to determine the three critical valuea for eachfactor, then to fit the A. , B. and C • . Here :

C . = R," (4)

A.= IJ (6)R. 1-R. o .•

B. =Lg19 or

Lg A. (C. - R • 0)

B. =Lg99 or

Lg A. (C.-R. o)

B. =Lg199 (6)

Lg A. (C. -R. o)

The purpOBe we Belect three equations to calculate B. is to make H.better reflect the effectB of each factor to fire danger.

Table 1 l ists the 12 factorB selected and the A., B • • and C.accordingly. Thus, from Table 1 and equation (2) a n d (3), we can

get the single factor' B contribution Ui to fire danger r e s p e e t Lv e Ly.As we know that a foreBt fire is the reBultant cauBed by many factorB .

single factor's contribution can only reflect one point of totalfire danger . For thiB r e a s o n , we divide the weather f a c t e r a Into twogroupB to calculate their fire danger contribution by group . Firat.put the weather factor collected before 08 clock of the predictionday in Bet XQ={X",X .. . X.,X ... X10 ,X111Xll.l which r e p r e ee n t s their firedanger cont ribution Bnd to calculate integrated recognition Bet UQ •

Secondly, put the weather factorB collected f rom the prediction dayin Bet XJ = {X1,X,. . Xa • X.. , X"l, and to calculate the Integratedrecognition Bet UJ.ThuB .B recognition model e omp o a e d of two equatlona:

- 85-

Page 4: MULTIFACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN …

(9)

(3)

(3)

(3)

(3)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(3)

Equat Ion

(7)

(8)

o

8

o

O .

C I

20

30

30

26

16

17

20

60

B.

between factors andwe developed the C

A.

1-6-12

X.

X. pro cI pit a t Ion (mm) 2 38 a . m-14 p. m

x, temperature rCI 1/6 414 p. m

X. day temperature 1/10 6difference rC)

X. air humidity 1/10 3('1» 14 p , m

X.. 10-12M wind .peed 1/12 14(m/aec .) 14 p.m

X. pre e I pit a t Ion (mm) 1 .- 324 hr • . before 8 a . m

X 7 pre e i pit a t Ion (mm) 1/2 372 hr. before 8 a .m

X.. p r e v i c u e 3 day'. mean 1/10 3air hum I d i t y ('1» 14 p , m

X.. p r e v l o u a 3 day'. temp . 1/20 7a c e umu l a t ion re) 14 p. m

X,o day. accounted for 1/20 17precip itation <:6mm

X" day. accounted for 1/22 17pre e i pit at ion <: 3mm .

X,a daY4 accounted for 1/2 3precipitation <:0.6mm

(U. +U7 '+U. +UA +U, n +U, , +U, D) / 7

(U,+2U a+U.+U.+U ..) /6

U.

U.. - FlU I)

ru, +UQ tu, +0.3) J /2 when U j or UQ <;; 0.6, or bothU j and UQ<;; 0.6

tu, +UQ) /2 when u.. UQ > 0 . 6 and u, <UQ

X, docldod high fir.danger contr ibutionXa decided high firedanger contributionX. decided high f iredanger contributionX. decided high firedanger contributionX.. decided high firedanger contributionX. decided high firedanger contributionX7 decided high firedanger contributionX. dec ided high firedanger contributionX. decided high firedanger contributionX,u decided high firedanger contributionX" decided high firedanger contributionX,a decided high firedanger contribution

G=

Thinking about the complicated relation shipsheir multiple effecta to fire occurrence,ntegrated recognition model as the following:

u"

U.

U..

Ua

U,

u.

"':86-

Table 1 Factor. r~ference. In the A recognition model

lere : G---High fire danger Index determined by whole weather factors,the simple Integrated index

10 f a r by the previous dlscusslon,we can get the primary fire danger' a t l n g s y a t e m In description aet S= {OJ 1, 2, 3. 4, 6, 6} which contain 7' I r e danger rating classes. It can be easily converted Into 6 c La a s e ai o r ma l Ly u s e d , aee Table 2.

The system ia further reviaed by three climate phenomena: anow cover,Ih e n o l o g l c a l auaaon, and the apeclal meteorological fac ~~rs .

The a now c 0 v e r set B = {l, O. 6, O} rep rea e n tat h r e e con d I t ion s : when B=I,i Ll the prediction · lI. r e ll. covered by snow, when B=0.6, only northerni s p e c t of alopea covered by snow, no snow In the aouthern slop, when B=0, Both the northern· and aouthern aspecta no anow covering.

le r e : UQ---preYlous high fire danger IndexUj--The da)" s high fire danger Index

Page 5: MULTIFACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN …

Table 2 Initial fire danger rating recognition claaaification

No.

123

6

Factor nt Vi';' (O.D,R)

0<0 . 06R-R'D-l '

O. 26>0> O. 06

O. 60>0> O. 26.: -+.

S. Clunl (7)

(0) lafe

- - (1) relative lafe

(2) difficult to ignite

1 (can'tbe igni tel

2 (di t t icutto i In I tel

The phenological aeaaon revlalng reference aet

87

8

9

10

O. 70>0> O. 600>0.70 but D-0.6

O. 90>0> O. 70

1. 00>0> 0.90

0> 0 .90. R-R..

. \

(3) could be ignite

(4) ealY I g n i t e

(6) danger e Ja ..

(8) alarming

I a :

3 (could beIgn I tel

4 (e a I yI gn I tel

6 (verye a I y I gn it e)

Z = {Z.P.' Z.... }. andZ.P.= 1-0. 02tZ.... =I- (~ - .../20xn-n/2·OO)

(IO)(11 )

Here: Z.p.-----aprlng phenological revlalng referenceZ....-----fall phenological revlalng reference

t -----accumulating daya In the aprlngalnce the end day ofthe min. temperature -c 0 "C

m -----accumulating daya In the fall alnce the flrat froatoccurred

n -----accamulatlng daya In the fall alnce the end day of theaverage temperature>16"C

The apeclal weather factor critical aet l s R={R lI R.. }, Here: R. lathe con d I t Ion 0 f pre c I pit a t Ion bet weon 8 a . m. t 0 I. p. m. X. > 3mm; R..meana the I. p .m temperature X.. >26 'C and the wind velocity X .. >10m/aec . .

The D recognition aet V= {G. B, R, Z} l a the final prediction model forthe ayatem. In practice. It can be fulfilled In two atepa.

Firat. the Initial recognition by factor aet V. = {G, B. R} . The generalde a c rip t Ion I a I I ate din Tab l e 2. From t h I a ate p we can get the I nit I a Ifire danger S,. Secondly, revlae the SI through the phenological Set Z.

S=S,XZ

Thua. we get the final fire danger ratlnga of S.

3. THE PREDICTION CHART

(I2)

140

The ayatem haa realized the receive of weather readlnga,code recognition, analyala of weather factora and the firerat In g c a I cui a tin g itu t om a tic a I 1 y and dig I tally . Who lew 0 r k a

-87-

telexdanger

can be

Page 6: MULTIFACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN …

.1

.-

critical .al •• of.pocl.1 motloro­lorlee. r.ctor.correctloal

. Ino.l., pkuolol' daDI.r daDI.rcorree- corrle- el ••• I. cl ••• I.&10" B t loal Z 0 ....a 6-6 ....a x.

X.;:a.• >26,1.>10

-

-

-' .

calc.l.t. tke preylo•• hl.h firedaDI.r ••• therlad•• U..

Fig,3 Baalc atructure diagram of the system

calcal.te th.pr •• eDt highdaD,.r w.ath.rlados U..

B-1 a261 I- 'I~~Dtrol mod.l. II ..1" . .

I - -- -, " -

l l l I l \ ' ' 1 . 'I- -

• ,.tem pr.Tlo•• t, reeel.e ractor • a1 .. 1. prodl.t . IBrutma-fUllc- i-- lafof.a· i-- 11.. f- nal,- f- fir. r-- fir. ~ t 100&100 t 10" hi•• ... daa•• r daD•• f ••• rcb

I"d•• l.d••

I l ! 1 1 -1..l~I " c,

I udI

~. o •

8

•• I •• I.ll". lke d.,'. fir. d.",er r.tl.,. for e•• h meleorolo.l.al .tallo",."d predl.l tke da,'. fire da",er Ille .Ile dlalram.ldl.lrlb.llo" dlalram ofG a"d S for dall, larlallo,,~

I•••• til. rlr. d••,.r

predict 1.2.3 d8". rlr. dla•• r. aadproyAd. til. rot.c •• tlo, dl.,ram

__________________-Jl . '. e.perln}I.1 fire d.",er

L- ,- J:=:=;l Y .uthr for .... t

~ I~ .lr •• I.llo" .Il•• tlo"

L-----------i .0d.1 fir. d••,.r

Fig, • Flow chart for fire danger calculation

-88-

Page 7: MULTIFACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN …

finished by IBM and APPLE -II microcomputers . BASIC is the c omputerlanguage used, Chinese DOS is the basic supporting system and themain menu cont rolled operation makes the works more convenience. Flg.3Illustrated the basic structure of the system. Fig. 4 is ' the firedanger pred iction processing chart . Flg.6 shows the result of man-assistant computer prediction chart for future 1 t03 day's firedanger rat i n g s .

. ~; ~ ~ , . ;:. II

. . . . . ". ~ ;:;".'. .~ .' '. . ' ! .

L-----r-----J ~ - 0 I.- I d.

110. _O.tID.... ~ Ill .. 10.111

1.. H Il~ I L-- ---r- - - - -',••• HI~

ItI • • 1 p..dl_tln

Fig. 6 Fire danger prediction flow chart

4. THE ACCURACY OF TilE FIRE DANGER PREDICTION

,I

Since the application of the system started in the spring of 1984,the system has worked very well. The prediction accuracy for shortterm fire danger Is over 76%. The prediction accuracy for continueshigh fire danger period and the continued low fire danger periodreaches about 90% . The forest fire weather index system can betterdivided the weather condition Into high fire danger and low fire dange~

We have tested the system by using the 1966 to 1983 fire sea.on. ' data,92% of fire occurred during this period are matched to the 4th and 6th class of this system, and almost all large fires occurred in thepredicted 4th and 6th fire danger classed. The special example wa.that the 1987' s 'Ma) 6' fire, we , had predicted the very high firedanger weather 3 days before May 6th.

From several years professional practice , we have reason to bel ievethat the system has the advantage to be large scale applied inmeteorological s e r v Lc e for fire danger ratings. So fa'r, despite theapplication In Daxlnganllng regl~n, the system has be extended InHellongj lang province , ' and will be adopted to many provinces andregions In China .

-89-

Page 8: MULTIFACTORS INTEGRATED FOREST FIRE RATING SYSTEM IN …

REFERENCES

1. Wlln" Zhen"fel , T. Y. zs«. J . W. Zhu, Q.W . Cui, Forest MtlttlfolollY.Ob a r p t e r 9. Chinese Forest ry Publication PreBs, Beijing. 1986( InChlneBe) .

2. .Wang Zhengfel, X.X. Wang . Meterology and Forestry Fire. SoilResearch Institute, Academlna Slnlca of China. Vol. 1, 1968. SciencePublication PreSB. Belj Ing . (In Chinese),

3. Aoyang Mlan, Z. Z. Peng, B. X. LI , Introduction to Fuzzy Mathematics.Wuhan University Preis . 1988(1n Chinese).

I. Wang Pelzhuang. Fuzzy and its Application. Shanghai Science andTechnology Press, 1983 <in Cb Ln e s e )

5. Wang Zhengfel. Forest Fire Danger Predicction and the Ctimet«Condition . Bull. of Foreltry. 1968 No .1 , Science Presl , Beljlng( InOh l n e s e )

...

- 90-