Multi-variable Calculus and Optimization · 2019. 1. 3. · Multi-variable Calculus and...

26
Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus Reading 1 Chapter 7.4-7.6, 8 and 11 (section 6 has lots of economic examples) of CW 2 Chapters 14, 15 and 16 of PR Plan 1 Partial differentiation and the Jacobian matrix 2 The Hessian matrix and concavity and convexity of a function 3 Optimization (profit maximization) 4 Implicit functions (indifference curves and comparative statics) Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 2 / 51

Transcript of Multi-variable Calculus and Optimization · 2019. 1. 3. · Multi-variable Calculus and...

  • Mul

    ti-v

    aria

    ble

    Cal

    culu

    san

    dO

    ptim

    izat

    ion

    Dudle

    yCook

    e

    Trinity

    Colleg

    eD

    ublin

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    1/

    51

    EC20

    40Top

    ic3

    -M

    ulti-v

    aria

    ble

    Cal

    culu

    s

    Rea

    din

    g

    1Chap

    ter

    7.4-

    7.6,

    8an

    d11

    (sec

    tion

    6has

    lots

    ofec

    onom

    icex

    ample

    s)of

    CW

    2Chap

    ters

    14,15

    and

    16of

    PR

    Pla

    n

    1Par

    tial

    diff

    eren

    tiat

    ion

    and

    the

    Jaco

    bia

    nm

    atrix

    2T

    he

    Hes

    sian

    mat

    rix

    and

    conca

    vity

    and

    conve

    xity

    ofa

    funct

    ion

    3O

    ptim

    izat

    ion

    (pro

    fit

    max

    imiz

    atio

    n)

    4Im

    plic

    itfu

    nct

    ions

    (indiff

    eren

    cecu

    rves

    and

    com

    par

    ativ

    est

    atic

    s)

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    2/

    51

  • Mul

    ti-v

    aria

    ble

    Cal

    culu

    s

    Funct

    ions

    wher

    eth

    ein

    put

    consist

    sof

    man

    yva

    riab

    les

    are

    com

    mon

    inec

    onom

    ics.

    For

    exam

    ple

    ,a

    consu

    mer

    ’sutilit

    yis

    afu

    nct

    ion

    ofal

    lth

    ego

    ods

    she

    consu

    mes

    .So

    ifth

    ere

    are

    ngo

    ods,

    then

    her

    wel

    l-bei

    ng

    orutilit

    yis

    afu

    nct

    ion

    ofth

    equan

    tities

    (c1,.

    ..,c

    n)

    she

    consu

    mes

    ofth

    en

    goods.

    We

    repr

    esen

    tth

    isby

    writing

    U=

    u(c

    1,.

    ..,c

    n)

    Anot

    her

    exam

    ple

    isw

    hen

    afirm

    ’spr

    oduct

    ion

    isa

    funct

    ion

    ofth

    equan

    tities

    ofal

    lth

    ein

    puts

    ituse

    s.So,

    if(x

    1,.

    ..,x

    n)

    are

    the

    quan

    tities

    ofth

    ein

    puts

    use

    dby

    the

    firm

    and

    yis

    the

    leve

    lof

    outp

    ut

    produce

    d,th

    enwe

    hav

    ey

    =f(x

    1,.

    ..,x

    n).

    We

    wan

    tto

    exte

    nd

    the

    calc

    ulu

    sto

    ols

    studie

    dea

    rlie

    rto

    such

    funct

    ions.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    3/

    51

    Par

    tial

    Der

    ivat

    ives

    Con

    sider

    afu

    nct

    ion

    y=

    f(x

    1,.

    ..,x

    n).

    The

    par

    tial

    der

    ivat

    ive

    off

    with

    resp

    ectto

    x iis

    the

    der

    ivat

    ive

    off

    with

    resp

    ect

    tox i

    trea

    ting

    allot

    her

    variab

    les

    asco

    nst

    ants

    and

    isden

    oted

    ,

    ∂f ∂xi

    orf x

    i

    Con

    sider

    the

    follo

    win

    gfu

    nct

    ion:

    y=

    f(u

    ,v)

    =(u

    +4)(

    6u+

    v).

    We

    can

    apply

    the

    usu

    alru

    les

    ofdiff

    eren

    tiat

    ion,now

    with

    two

    pos

    sibili

    ties

    :

    ∂f ∂u=

    1(6

    u+

    v)+

    6(u

    +4)

    =12

    u+

    v+

    24

    ∂f ∂v=

    0(6

    u+

    v)+

    1(u

    +4)

    =u

    +4

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    4/

    51

  • Par

    tial

    Der

    ivat

    ives

    -Eco

    nom

    icExa

    mpl

    es

    Aga

    in,su

    ppos

    ey

    =f(x

    1,.

    ..,x

    n).

    Ass

    um

    en

    =2

    and

    x 1=

    Kan

    dx 2

    =L;th

    atis,y

    =f(K

    ,L).

    Then

    assu

    me

    the

    follo

    win

    gfu

    nct

    ional

    form

    :f(K

    ,L)

    =K

    0.2

    5L

    0.7

    5;

    i.e.

    ,a

    Cob

    b-D

    ougl

    aspr

    oduct

    ion

    funct

    ion.

    The

    par

    tial

    der

    ivat

    ives

    are

    give

    nby

    ,

    ∂f ∂K=

    0.25

    K−0

    .75L

    0.7

    5,

    ∂f ∂L=

    0.75

    K0.2

    5L−0

    .25

    Alter

    nat

    ivel

    y;su

    ppos

    eutilit

    yis

    U=

    cα ac

    1−α

    b,w

    her

    ea

    =ap

    ple

    s,b

    =ban

    anas

    .W

    efind:

    ∂U ∂ca

    ( c b c a) 1−

    α

    ,∂U ∂c

    b=

    (1−

    α)( c

    a c b

    ) αSo,

    for

    agi

    ven

    labor

    input,

    mor

    eca

    pital

    raises

    outp

    ut.

    For

    give

    nco

    nsu

    mption

    ofap

    ple

    s,co

    nsu

    min

    gm

    ore

    ban

    anas

    mak

    esyo

    uhap

    pie

    r.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    5/

    51

    Inte

    rpre

    tation

    ofPar

    tial

    Der

    ivat

    ives

    Mat

    hem

    atic

    ally,th

    epar

    tial

    der

    ivat

    ive

    off

    with

    resp

    ect

    tox i

    tells

    us

    the

    rate

    ofch

    ange

    when

    only

    the

    variab

    lex i

    isal

    lowed

    toch

    ange

    .

    Eco

    nom

    ical

    ly,th

    epar

    tial

    der

    ivat

    ives

    give

    us

    use

    fulin

    form

    atio

    n.

    Inge

    ner

    alte

    rms:

    1W

    ith

    apr

    oduct

    ion

    funct

    ion,th

    epar

    tial

    der

    ivat

    ive

    with

    resp

    ect

    toth

    ein

    put,

    x i,te

    llsus

    the

    mar

    ginal

    product

    ivity

    ofth

    atfa

    ctor

    ,or

    the

    rate

    atw

    hic

    had

    ditio

    nal

    outp

    ut

    can

    be

    produce

    dby

    incr

    easing

    x i,hol

    din

    got

    her

    fact

    ors

    const

    ant.

    2W

    ith

    autilit

    yfu

    nct

    ion,th

    epar

    tial

    der

    ivat

    ive

    with

    resp

    ect

    togo

    od

    c ite

    llsus

    the

    rate

    atw

    hic

    hth

    eco

    nsu

    mer

    ’swel

    lbei

    ng

    incr

    ease

    sw

    hen

    she

    consu

    mes

    additio

    nal

    amou

    nts

    ofc i

    hol

    din

    gco

    nst

    ant

    her

    consu

    mption

    ofot

    her

    goods.

    I.e.

    ,th

    em

    argi

    nal

    utilit

    yof

    that

    good.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    6/

    51

  • Der

    ivat

    ive

    ofa

    Lin

    ear

    Fun

    ctio

    n

    As

    with

    funct

    ions

    ofon

    eva

    riab

    le,to

    gain

    som

    ein

    tuitio

    n,we

    star

    tw

    ith

    funct

    ions

    that

    are

    linea

    r.

    We

    mot

    ivat

    edth

    enot

    ion

    ofa

    der

    ivat

    ive

    bysa

    ying

    that

    itwas

    the

    slop

    eof

    the

    line

    whic

    h“l

    ook

    edlik

    eth

    efu

    nct

    ion

    arou

    nd

    the

    poi

    nt

    x 0.”

    When

    we

    hav

    en

    variab

    les,

    the

    nat

    ura

    lnot

    ion

    ofa

    “lin

    e”is

    give

    nby

    y=

    a 0+

    a 1x 1

    +..

    .+a n

    x n

    When

    ther

    ear

    etw

    ova

    riab

    les,

    x 1an

    dx 2

    ,th

    efu

    nct

    ion

    y=

    a 0+

    a 1x 1

    +a 2

    x 2is

    the

    equat

    ion

    ofa

    pla

    ne.

    Inge

    ner

    al,th

    efu

    nct

    ion

    y=

    a 0+

    a 1x 1

    +..

    .+a n

    x nis

    refe

    rred

    tosim

    ply

    asth

    eeq

    uat

    ion

    ofa

    pla

    ne.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    7/

    51

    Two

    Var

    iabl

    eLin

    ear

    Fun

    ctio

    n

    Con

    sider

    the

    pla

    ne

    y=

    a 0+

    a 1x 1

    +a 2

    x 2.

    How

    does

    the

    funct

    ion

    beh

    ave

    when

    we

    chan

    gex 1

    and

    x 2?

    Cle

    arly,if

    dx 1

    and

    dx 2

    are

    the

    amou

    nts

    byw

    hic

    hwe

    chan

    gex 1

    and

    x 2,we

    hav

    e,

    dy

    =a 1

    dx 1

    +a 2

    dx 2

    Not

    efu

    rther

    mor

    eth

    atth

    epar

    tial

    sar

    e,

    ∂y ∂x1

    =a 1

    and

    ∂y ∂x2

    =a 2

    We

    can

    then

    write

    ,

    dy

    =∂y ∂x

    1dx 1

    +∂y ∂x

    2dx 2

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    8/

    51

  • Jaco

    bian

    Mat

    rix

    We

    can

    take

    this

    resu

    lt(i.e

    .,th

    atdy

    =∂y ∂x

    1dx 1

    +∂y ∂x

    2dx 2

    )an

    dre

    cast

    itin

    mat

    rix

    (her

    e,ve

    ctor

    )fo

    rm.

    dy

    =[ ∂y ∂x

    1

    ∂y ∂x2

    ]︸

    ︷︷︸

    ≡J

    [ dx1

    dx 2

    ]

    We

    call

    Jth

    eJa

    cobia

    n.

    Tak

    eou

    rpr

    evio

    us

    exam

    ple

    .T

    he

    vect

    or[ ∂y ∂x

    1

    ∂y ∂x2

    ] =[ a 1

    a 2] is

    what

    we

    can

    thin

    kof

    asth

    eder

    ivat

    ive

    ofth

    epla

    ne.

    This

    vect

    orte

    llsus

    the

    rate

    sof

    chan

    gein

    the

    direc

    tion

    sx 1

    and

    x 2.

    The

    tota

    lch

    ange

    isth

    eref

    ore

    com

    pute

    das

    a 1dx 1

    +a 2

    dx 2

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    9/

    51

    Gen

    eral

    Fun

    ctio

    ns

    Now

    consider

    am

    ore

    gener

    altw

    ova

    riab

    lefu

    nct

    ion,y

    =f(x

    1,x

    2).

    With

    age

    ner

    alfu

    nct

    ion

    y=

    f(x

    1,x

    2),

    the

    idea

    isto

    find

    apla

    ne

    whic

    hlo

    oks

    loca

    llylik

    eth

    efu

    nct

    ion

    arou

    nd

    the

    poi

    nt

    (x1,x

    2).

    Sin

    ceth

    epar

    tial

    der

    ivat

    ives

    give

    the

    rate

    sof

    chan

    gein

    x 1an

    dx 2

    ,it

    mak

    esse

    nse

    topic

    kth

    eap

    prop

    riat

    epla

    ne

    whic

    hpas

    ses

    thro

    ugh

    the

    poi

    nt

    (x1,x

    2)

    and

    has

    slop

    es∂f

    /∂x

    1an

    d∂f

    /∂x

    2in

    the

    two

    direc

    tion

    s.

    The

    der

    ivat

    ive

    (or

    the

    tota

    lder

    ivat

    ive)

    ofth

    efu

    nct

    ion

    f(x

    1,x

    2)

    at

    (x1,x

    2)

    issim

    ply

    the

    vect

    or[ ∂y ∂x

    1

    ∂y ∂x2

    ] wher

    eth

    epar

    tial

    der

    ivat

    ives

    are

    eval

    uat

    edat

    the

    poi

    nt

    (x1,x

    2).

    We

    can

    inte

    rpre

    tth

    eder

    ivat

    ive

    asth

    eslop

    esin

    the

    two

    direc

    tion

    sof

    the

    pla

    ne

    whic

    hlo

    oks

    “lik

    eth

    efu

    nct

    ion”

    arou

    nd

    the

    poi

    nt

    (x1,x

    2).

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    10

    /51

  • An

    Exa

    mpl

    e

    When

    we

    hav

    ea

    funct

    ion

    y=

    f(x

    1,.

    ..,x

    n),

    the

    der

    ivat

    ive

    at

    (x1,.

    ..,x

    n)

    issim

    ply

    the

    vect

    or[ ∂y ∂x

    1..

    .∂y ∂x

    n

    ] .Tak

    ea

    mor

    eco

    ncr

    ete

    exam

    ple

    .Suppos

    e,

    y=

    8+

    4x2 1+

    6x2x 3

    +x 3

    The

    Jaco

    bia

    nm

    ust

    be,

    [ 8x1

    6x3

    1] =

    [ ∂y ∂x1

    ∂y ∂x2

    ∂y ∂x2

    ]So

    we

    can

    write

    ,

    dy

    =[ 8x

    16

    1]⎡ ⎣

    dx 1

    dx 2

    dx 3

    ⎤ ⎦

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    11

    /51

    An

    Eco

    nom

    icExa

    mpl

    e

    Con

    sider

    the

    utilit

    yfu

    nct

    ion

    from

    bef

    ore;

    U=

    cα ac

    1−α

    b,w

    her

    ea

    =ap

    ple

    s,b

    =ban

    anas

    .T

    he

    Jaco

    bia

    nis

    ave

    ctor

    ofth

    epar

    tial

    s(w

    hic

    hwe

    alre

    ady

    com

    pute

    d).

    The

    chan

    gein

    utilit

    yis

    ther

    efor

    egi

    ven

    byth

    efo

    llow

    ing.

    dU

    =[ ∂U ∂c

    a

    ∂U ∂cb

    ][dc a

    dc b

    ]

    =[ α

    ( c b c a)1−α

    (1−

    α)( c

    a c b

    ) α][ dc

    a

    dc b

    ]

    The

    sam

    eis

    true

    for

    the

    Cob

    b-D

    ougl

    aspr

    oduct

    ion

    funct

    ion,

    f(K

    ,L)

    =K

    0.2

    5L

    0.7

    5.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    12

    /51

  • Sec

    ond-

    Ord

    erPar

    tial

    Der

    ivat

    ives

    We

    now

    mov

    eon

    tose

    cond-o

    rder

    par

    tial

    der

    ivat

    ives

    .O

    ur

    mot

    ivat

    ion

    will

    be

    econ

    omic

    prob

    lem

    s/in

    terp

    reta

    tion

    .

    Giv

    ena

    funct

    ion

    f(x

    1,.

    ..,x

    n),

    the

    seco

    nd-o

    rder

    der

    ivat

    ive

    ∂2f

    ∂xix

    jis

    the

    par

    tial

    der

    ivat

    ive

    of∂f ∂x

    iw

    ith

    resp

    ect

    tox j

    .

    The

    abov

    em

    aysu

    gges

    tth

    atth

    eor

    der

    inw

    hic

    hth

    eder

    ivat

    ives

    are

    take

    nm

    atte

    rs:

    inot

    her

    wor

    ds,

    the

    par

    tial

    der

    ivat

    ive

    of∂f ∂x

    iw

    ith

    resp

    ect

    tox j

    isdiff

    eren

    tfrom

    the

    par

    tial

    der

    ivat

    ive

    of∂f ∂x

    jw

    ith

    resp

    ect

    tox i

    .

    While

    this

    can

    hap

    pen

    ,it

    turn

    sou

    tth

    atif

    the

    funct

    ion

    f(x

    1,.

    ..,x

    n)

    iswel

    l-beh

    aved

    then

    the

    order

    ofdiff

    eren

    tiat

    ion

    does

    not

    mat

    ter.

    This

    resu

    ltis

    calle

    dYou

    ng’

    sT

    heo

    rem

    .

    We

    shal

    lon

    lybe

    dea

    ling

    with

    wel

    l-beh

    aved

    funct

    ions

    (i.e

    .,You

    ng’

    sT

    heo

    rem

    will

    alway

    shol

    d).

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    13

    /51

    Eco

    nom

    icExa

    mpl

    e

    For

    the

    product

    ion

    funct

    ion

    y=

    K0.2

    5L

    0.7

    5,we

    can

    eval

    uat

    eth

    e

    seco

    nd-o

    rder

    par

    tial

    der

    ivat

    ive,

    ∂2y

    ∂K∂L

    ,in

    two

    diff

    eren

    tway

    s.

    First

    ,since

    ∂y ∂K=

    0.25

    K−0

    .75L

    0.7

    5,ta

    king

    the

    par

    tial

    der

    ivat

    ive

    ofth

    isw

    ith

    resp

    ect

    toL,we

    get,

    ∂ ∂L

    ∂y ∂K=

    3 16K

    −0.7

    5L−0

    .25

    And

    since

    ∂f ∂L=

    0.75

    K0.2

    5L−0

    .25,we

    hav

    e,

    ∂ ∂K

    ∂y ∂L

    =3 16

    K−0

    .75L−0

    .25

    This

    illust

    rate

    sYou

    ng’

    sT

    heo

    rem

    :no

    mat

    ter

    inw

    hic

    hor

    der

    we

    diff

    eren

    tiat

    e,we

    get

    the

    sam

    ean

    swer

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    14

    /51

  • Eco

    nom

    icIn

    terp

    reta

    tion

    The

    seco

    nd-o

    rder

    par

    tial

    der

    ivat

    ives

    can

    be

    inte

    rpre

    ted

    econ

    omic

    ally.

    Our

    exam

    ple

    product

    ion

    funct

    ion

    isy

    =K

    0.2

    5L

    0.7

    5.

    Ther

    efor

    e,∂2

    y

    ∂K2

    =−

    3 16K

    −1.7

    5L

    0.7

    5

    This

    isneg

    ativ

    e,so

    long

    asK

    >0

    and

    L>

    0.

    This

    tells

    us

    that

    the

    mar

    ginal

    product

    ivity

    ofca

    pital

    dec

    reas

    esas

    we

    add

    mor

    eca

    pital

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    15

    /51

    Eco

    nom

    icIn

    terp

    reta

    tion

    As

    anot

    her

    exam

    ple

    ,co

    nsider

    ,

    ∂2y

    ∂K∂L

    =3 16

    K−0

    .75L−0

    .25

    This

    ispos

    itiv

    e,so

    longa

    sK

    >0,

    L>

    0.

    This

    says

    that

    the

    mar

    ginal

    product

    ivity

    ofla

    bou

    rin

    crea

    ses

    asyo

    uad

    dm

    ore

    capital

    .

    Ital

    sosu

    gges

    tsa

    sym

    met

    ry.

    The

    abov

    eca

    nbe

    inte

    rpre

    ted

    assa

    ying

    that

    the

    mar

    ginal

    product

    ivity

    ofca

    pital

    incr

    ease

    sw

    hen

    you

    add

    mor

    ela

    bor

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    16

    /51

  • Con

    cave

    and

    Con

    vex

    Fun

    ctio

    ns

    Our

    inte

    rest

    inth

    ese

    SO

    Cs

    ism

    otiv

    ated

    byth

    elo

    calve

    rsus

    glob

    alm

    ax/m

    inof

    funct

    ions.

    Pre

    viou

    sly,

    we

    rela

    ted

    this

    toco

    nca

    vity

    and

    conve

    xity

    .

    Inth

    eca

    seof

    one

    variab

    le,we

    defi

    ned

    afu

    nct

    ion

    f(x

    )as

    conca

    veif

    f′′ (

    x)≤

    0an

    dco

    nve

    xif

    f′′ (

    x)≥

    0.

    Not

    ice

    that

    inth

    esingl

    e-va

    riab

    leca

    se,th

    ese

    cond-o

    rder

    tota

    lis,

    d2y

    =f′′ (

    x)(

    dx)2

    Hen

    ce,we

    can

    (equiv

    alen

    tly)

    defi

    ne

    afu

    nct

    ion

    ofon

    eva

    riab

    leto

    be

    conca

    veif

    d2y≤

    0an

    dco

    nve

    xif

    d2y≥

    0.T

    he

    adva

    nta

    geof

    writing

    itin

    this

    way

    isth

    atwe

    can

    exte

    nd

    this

    defi

    nitio

    nto

    funct

    ions

    ofm

    any

    variab

    les.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    17

    /51

    Sec

    ond-

    Ord

    erTot

    alD

    iffer

    ential

    Suppos

    ey

    =f(x

    1,x

    2).

    The

    firs

    tor

    der

    diff

    eren

    tial

    isdy

    =f x

    1dx 1

    +f x

    2dx 2

    .

    Thin

    kof

    dy

    asa

    funct

    ion.

    It’s

    diff

    eren

    tial

    is,

    d(d

    y)

    =[f x

    1x 1

    dx 1

    +f x

    1x 2

    dx 2

    ]dx 1

    +[f x

    1x 2

    dx 1

    +f x

    2x 2

    dx 2

    ]dx 2

    Col

    lect

    ing

    term

    s,

    d2y

    =f x

    1x 1

    (dx 1

    )2+

    2fx 1

    x 2dx 1

    dx 2

    +f x

    2x 2

    (dx 2

    )2

    The

    seco

    nd-o

    rder

    tota

    ldiff

    eren

    tial

    dep

    ends

    onth

    ese

    cond-o

    rder

    par

    tial

    der

    ivat

    ives

    off(x

    1,x

    2).

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    18

    /51

  • Sec

    ond-

    Ord

    erTot

    alD

    iffer

    ential

    Coro

    llary

    :If

    we

    hav

    ea

    gener

    alfu

    nct

    ion

    y=

    f(x

    1,.

    ..,x

    n),

    one

    can

    use

    asim

    ilar

    proce

    dure

    toge

    tth

    efo

    rmula

    for

    the

    seco

    nd-o

    rder

    tota

    ldiff

    eren

    tial

    .

    This

    isa

    little

    mor

    eco

    mplic

    ated

    but

    itca

    nbe

    writt

    enco

    mpac

    tly

    as,

    d2y

    =n ∑ i=1

    n ∑ j=1

    f xix

    jdx i

    dx j

    E.g

    .,y

    =f(x

    1,x

    2,x

    3)

    the

    expr

    ession

    bec

    omes

    ,

    d2y

    =f x

    1x 1

    (dx 1

    )2+

    f x2x 2

    (dx 2

    )2+

    f x3x 3

    (dx 3

    )2

    +2f

    x 1x 2

    dx 1

    dx 2

    +f x

    1x 3

    dx 1

    dx 3

    +f x

    2x 3

    dx 2

    dx 3

    Aga

    in,we

    care

    abou

    tth

    isbec

    ause

    afu

    nct

    ion

    y=

    f(x

    1,.

    ..,x

    n)

    will

    be

    conca

    veif

    d2y≤

    0an

    dco

    nve

    xif

    d2y≥

    0.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    19

    /51

    Max

    ima/

    Min

    ima/

    Sad

    dle

    Poi

    nts

    As

    inth

    esingl

    eva

    riab

    leca

    se,we

    are

    real

    lyaf

    ter

    max

    ima

    and

    min

    ima.

    The

    firs

    tor

    der

    conditio

    ns

    alon

    eca

    nnot

    distingu

    ish

    bet

    wee

    nlo

    cal

    max

    ima

    and

    loca

    lm

    inim

    a.

    Lik

    ewise,

    the

    firs

    tor

    der

    conditio

    ns

    cannot

    iden

    tify

    whet

    her

    aca

    ndid

    ate

    solu

    tion

    isa

    loca

    lor

    glob

    alm

    axim

    a.W

    eth

    us

    nee

    dse

    cond

    order

    conditio

    ns

    tohel

    pus.

    For

    apoi

    nt

    tobe

    alo

    calm

    axim

    a,we

    must

    hav

    ed

    2y

    <0

    for

    any

    vect

    orof

    smal

    lch

    ange

    s(d

    x 1,.

    ..,d

    x n);

    that

    is,y

    nee

    ds

    tobe

    ast

    rict

    lyco

    nca

    vefu

    nct

    ion.

    Sim

    ilarly,

    for

    apoi

    nt

    tobe

    alo

    calm

    inim

    a,we

    must

    hav

    ed

    2y

    >0

    for

    any

    vect

    orof

    smal

    lch

    ange

    s(d

    x 1,.

    ..,d

    x n);

    that

    is,y

    nee

    ds

    tobe

    ast

    rict

    lyco

    nve

    xfu

    nct

    ion.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    20

    /51

  • Hes

    sian

    Mat

    rix

    -T

    wo

    Var

    iabl

    eCas

    e

    As

    thin

    gsst

    and,non

    eof

    this

    isnot

    par

    ticu

    larly

    use

    fulsince

    itis

    not

    clea

    rhow

    togo

    abou

    tve

    rify

    ing

    that

    the

    seco

    nd-o

    rder

    tota

    ldiff

    eren

    tial

    ofa

    funct

    ion

    ofn

    variab

    les

    isnev

    erpos

    itiv

    eor

    nev

    erneg

    ativ

    e.

    How

    ever

    ,not

    ice

    that

    we

    can

    write

    the

    seco

    nd

    order

    diff

    eren

    tial

    ofa

    funct

    ion

    oftw

    ova

    riab

    les

    (that

    is,

    d2y

    =f 1

    1(d

    x 1)2

    +2f

    12dx 1

    dx 2

    +f 2

    2(d

    x 2)2

    )in

    mat

    rix

    form

    inth

    efo

    llow

    ing

    way

    . d2y

    =[ dx

    1dx 2

    ][ f11

    f 12

    f 12

    f 22

    ][dx 1

    dx 2

    ]

    The

    mat

    rix

    [ f 11

    f 12

    f 12

    f 22

    ] isca

    lled

    the

    Hes

    sian

    mat

    rix,

    H.

    Itis

    sim

    ply

    the

    mat

    rix

    ofse

    cond-o

    rder

    par

    tial

    der

    ivat

    ives

    .

    Whet

    her

    d2y

    >0

    ord

    2y

    <0

    lead

    sto

    spec

    ific

    rest

    rict

    ions

    onth

    eH

    essian

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    21

    /51

    Hes

    sian

    Mat

    rix

    -G

    ener

    alCas

    e

    Inth

    ege

    ner

    alca

    se,th

    ese

    cond

    order

    diff

    eren

    tial

    can

    be

    writt

    enas

    ,

    d2y

    =[ dx

    1dx 2

    ...

    dx n

    ]⎡ ⎢ ⎢ ⎣f 1

    1f 1

    2..

    .f 1

    n

    f 12

    f 22

    ...

    f 2n

    ...

    ...

    ...

    ...

    f 1n

    f 2n

    ...

    f nn

    ⎤ ⎥ ⎥ ⎦⎡ ⎢ ⎢ ⎢ ⎣dx 1

    dx 2 . . .

    dx n

    ⎤ ⎥ ⎥ ⎥ ⎦If

    we

    wan

    tto

    know

    som

    ethin

    gab

    out

    d2y

    allwe

    nee

    dto

    do

    isev

    aluat

    eth

    eH

    essian

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    22

    /51

  • Hes

    sian

    Mat

    rix

    -Eco

    nom

    icExa

    mpl

    e

    Ret

    urn

    ing

    toth

    eCob

    b-D

    ougl

    asutilit

    yca

    se;U

    =c

    α ac

    β b,w

    her

    ea

    =ap

    ple

    s,b

    =ban

    anas

    .T

    he

    firs

    t-or

    der

    diff

    eren

    tial

    was

    ,

    dU

    =[ αc

    α−1

    ac

    β bβc

    α ac

    β−1

    b

    ][dc a

    dc b

    ]

    The

    seco

    nd-o

    rder

    diff

    eren

    tial

    is,

    d2U

    =[ dc

    adc b

    ][∂2

    U∂c

    a∂c

    a

    ∂2U

    ∂ca∂c

    b∂2

    U∂c

    b∂c

    a

    ∂2U

    ∂cb

    ∂cb

    ] [dc a

    dc b

    ]

    wher

    e, [ ∂2U

    ∂ca∂c

    a

    ∂2U

    ∂ca∂c

    b∂2

    U∂c

    b∂c

    a

    ∂2U

    ∂cb

    ∂cb

    ] =[ α

    (α−

    1)c

    α−2

    ac

    β bα

    βc

    α−1

    ac

    β−1

    b

    αβc

    α−1

    ac

    β−1

    (β−

    1)c

    α ac

    β−2

    b

    ]

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    23

    /51

    Pos

    itiv

    eD

    efini

    tean

    dN

    egat

    ive

    Defi

    nite

    Mat

    rice

    s

    The

    Hes

    sian

    mat

    rix

    issq

    uar

    e.W

    eca

    nsa

    yso

    met

    hin

    gab

    out

    squar

    em

    atrice

    s:

    Asy

    mm

    etric,

    squar

    em

    atrix,

    An,is

    said

    tobe

    pos

    itiv

    edefi

    nite

    iffo

    rev

    ery

    colu

    mn

    vect

    orx�=

    0(d

    imen

    sion

    n)

    we

    hav

    ex

    TA

    x>

    0.

    Asy

    mm

    etric,

    squar

    em

    atrix

    An

    isneg

    ativ

    edefi

    nite

    iffo

    rev

    ery

    colu

    mn

    vect

    orx�=

    0(d

    imen

    sion

    n),

    we

    hav

    ex

    TA

    x<

    0.

    To

    chec

    kfo

    rco

    nca

    vity

    /con

    vexi

    tywe

    eval

    uat

    eth

    eH

    essian

    .B

    ut

    the

    Hes

    sian

    (for

    our

    purp

    oses

    )ca

    nbe

    PD

    orN

    D.

    Ifth

    eH

    essian

    isN

    Dth

    efu

    nct

    ion

    isco

    nca

    ve.

    Ifth

    eH

    essian

    isPD

    the

    funct

    ion

    isco

    nve

    x.A

    llwe

    nee

    dto

    be

    able

    todo

    then

    isdet

    emin

    ew

    het

    her

    agi

    ven

    mat

    rix

    isN

    Dor

    PD

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    24

    /51

  • Che

    ckin

    gfo

    rPD

    -nes

    san

    dN

    D-n

    ess

    Let

    A=

    ⎡ ⎢ ⎢ ⎣a 11

    a 12

    ...

    a 1n

    a 12

    a 22

    ...

    a 2n

    ...

    ...

    ...

    ...

    a 1n

    a 2n

    ...

    a nn

    ⎤ ⎥ ⎥ ⎦bea

    nsy

    mm

    etric

    squar

    em

    atrix.

    The

    prin

    cipal

    min

    ors

    ofA

    are

    the

    ndet

    erm

    inan

    ts,

    a 11,∣ ∣ ∣ ∣a

    11

    a 12

    a 12

    a 22

    ∣ ∣ ∣ ∣,∣ ∣ ∣ ∣ ∣ ∣a 1

    1a 1

    2a 1

    3

    a 12

    a 22

    a 23

    a 13

    a 23

    a 33

    ∣ ∣ ∣ ∣ ∣ ∣,...,|A|

    The

    mat

    rix

    Ais

    pos

    itiv

    e-defi

    nite

    ifan

    don

    lyif

    allth

    epr

    inci

    pal

    min

    ors

    are

    pos

    itiv

    e.

    The

    mat

    rix

    Ais

    neg

    ativ

    e-defi

    nite

    ifan

    don

    lyif

    its

    prin

    cipal

    min

    ors

    alte

    rnat

    ein

    sign

    ,st

    arting

    with

    aneg

    ativ

    e.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    25

    /51

    Exa

    mpl

    esof

    PD

    and

    ND

    Mat

    rice

    s

    One

    can

    see

    how

    this

    wor

    ksif

    we

    look

    atth

    em

    atrice

    sI n

    and−I

    n.

    The

    prin

    cipal

    min

    ors

    ofI

    are

    unifor

    mly

    1;on

    the

    other

    han

    dth

    epr

    inci

    pal

    min

    ors

    of−I

    star

    tw

    ith−1

    and

    then

    alte

    rnat

    ein

    sign

    .T

    hus,

    the

    mat

    rice

    sI n

    and−I

    nar

    etr

    ivia

    llypos

    itiv

    e-defi

    nite

    and

    neg

    ativ

    e-defi

    nite.

    Con

    sider

    ,

    [ 11

    14

    ] .One

    can

    easily

    show

    that

    the

    mat

    rix

    is

    pos

    itiv

    e-defi

    nite.

    How

    ?W

    ell,

    the

    prin

    ciple

    min

    ors

    are

    1an

    d3.

    The

    mat

    rix

    [ −1

    11

    −4] is

    neg

    ativ

    e-defi

    nite

    asth

    epr

    inci

    ple

    min

    ors

    are−1

    and

    3.

    Am

    atrix

    may

    be

    nei

    ther

    pos

    itiv

    e-defi

    nite

    nor

    neg

    ativ

    e-defi

    nite.

    For

    inst

    ance

    ,co

    nsider

    the

    mat

    rix

    [ −1

    11

    4

    ] .D

    udle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    26

    /51

  • ND

    and

    PD

    Rel

    atio

    nto

    Con

    cavi

    tyan

    dCon

    vexi

    ty

    We

    defi

    ned

    afu

    nct

    ion

    tobe

    conca

    veif

    d2y≤

    0fo

    ral

    lx

    and

    tobe

    conve

    xif

    d2y≥

    0fo

    ral

    lx.

    Ifth

    efu

    nct

    ion

    satisfi

    esa

    stro

    nge

    rco

    nditio

    n–

    d2y

    <0

    for

    allx

    –th

    enit

    will

    be

    said

    tobe

    strict

    lyco

    nca

    ve.

    Anal

    ogou

    sly,

    ifd

    2y

    >0

    for

    allx,th

    enit

    will

    be

    said

    tobe

    strict

    lyco

    nve

    x.

    We

    can

    also

    rela

    teth

    enot

    ions

    ofpos

    itiv

    e-defi

    niten

    ess

    and

    neg

    ativ

    e-defi

    niten

    ess

    tost

    rict

    conca

    vity

    and

    strict

    conve

    xity

    .

    1A

    funct

    ion

    fis

    strict

    lyco

    nca

    veif

    the

    Hes

    sian

    mat

    rix

    isal

    way

    sneg

    ativ

    edefi

    nite.

    2A

    funct

    ion

    fis

    strict

    lyco

    nve

    xif

    the

    Hes

    sian

    mat

    rix

    isal

    way

    spos

    itiv

    edefi

    nite.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    27

    /51

    Exa

    mpl

    e

    Con

    sider

    the

    follo

    win

    g.Is

    f(x

    ,y)

    =x

    1/4y

    1/2

    conca

    veor

    conve

    xov

    erth

    edom

    ain

    (x,y

    )≥

    0?

    Com

    pute

    the

    seco

    nd

    order

    par

    tial

    s.E.g

    .,f x

    y(x

    ,y)

    =f y

    x(x

    ,y)

    =(1

    /8)x

    −3/4y−1

    /2

    and

    f xx(x

    ,y)

    =−

    (3/4)(

    1/4)x

    −7/4y

    1/2.

    So,

    H=

    [ −(3

    /4)(

    1/4)x

    −7/4y

    1/2

    (1/8)x

    −3/4y−1

    /2

    (1/8)x

    −3/4y−1

    /2

    −(1

    /4)x

    1/4y−3

    /2

    ]T

    he

    prin

    ciple

    min

    ors

    are,

    −(3

    /4)(

    1/4)x

    −7/4y

    1/2

    <0

    and,

    ∣ ∣ ∣ ∣−(3

    /4)(

    1/4)x

    −7/4y

    1/2

    (1/8)x

    −3/4y−1

    /2

    (1/8)x

    −3/4y−1

    /2

    −(1

    /4)x

    1/4y−3

    /2

    ∣ ∣ ∣ ∣=

    (3/64

    )x−7

    /4y

    1/2x

    1/4y−3

    /2−

    (1/64

    )x−3

    /4y−1

    /2x−3

    /4y−1

    /2

    =(1

    /64

    )[ 2x−6

    /4] /y

    >0

    We

    concl

    ude

    x1

    /4y

    1/2

    isco

    nve

    xov

    erth

    edom

    ain

    (x,y

    )≥

    0.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    28

    /51

  • Unc

    onst

    rain

    edO

    ptim

    izat

    ion

    with

    Mul

    tipl

    eVar

    iabl

    es

    We

    now

    link

    conca

    vity

    and

    conve

    xity

    toop

    tim

    izat

    ion

    prob

    lem

    sin

    econ

    omic

    s.

    Con

    sider

    the

    gener

    alm

    axim

    izat

    ion

    prob

    lem

    ,

    max

    f(x

    1,.

    ..,x

    n)

    The

    firs

    tor

    der

    conditio

    ns

    for

    max

    imiz

    atio

    nca

    nbe

    iden

    tified

    from

    the

    conditio

    nth

    atth

    efirs

    tor

    der

    diff

    eren

    tial

    shou

    ldbe

    zero

    atth

    eop

    tim

    alpoi

    nt.

    That

    is,a

    vect

    orof

    smal

    lch

    ange

    s(d

    x 1,.

    ..,d

    x n)

    shou

    ldnot

    chan

    geth

    eva

    lue

    ofth

    efu

    nct

    ion.

    We

    thus

    hav

    e

    dy

    =f x

    1dx 1

    +f x

    2dx 2

    +..

    .+f x

    ndx n

    =0

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    29

    /51

    First

    Ord

    erCon

    dition

    s

    Suppos

    eth

    atwe

    hav

    ea

    funct

    ion

    of2

    variab

    les

    y=

    f(x

    1,x

    2).

    Then

    ,th

    efirs

    tor

    der

    conditio

    ndy

    =0

    implie

    sth

    atf x

    1dx 1

    +f x

    2dx 2

    =0.

    Ther

    efor

    e,th

    eon

    lyway

    we

    can

    hav

    ef x

    1dx 1

    +f x

    2dx 2

    =0

    isw

    hen

    f x1=

    0an

    df x

    2=

    0.

    By

    the

    sam

    elo

    gic,

    for

    age

    ner

    alfu

    nct

    ion

    y=

    f(x

    1,.

    ..,x

    n),

    the

    firs

    tor

    der

    conditio

    ns

    are

    f x1=

    0,f x

    2=

    0,..

    .,f x

    n=

    0

    Not

    eth

    atth

    ese

    conditio

    ns

    are

    nec

    essa

    ryco

    nditio

    ns

    inth

    atth

    eyhol

    dfo

    rm

    inim

    izat

    ion

    prob

    lem

    sal

    so.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    30

    /51

  • Rel

    atio

    nto

    SO

    Cs

    for

    Opt

    imiz

    atio

    n

    We

    can

    now

    sum

    mar

    ize

    the

    firs

    tan

    dse

    cond

    order

    conditio

    ns

    for

    anop

    tim

    izat

    ion

    prob

    lem

    inth

    efo

    llow

    ing

    way

    :

    If(x

    ∗ 1,..

    .,x∗ n)

    isa

    loca

    lm

    axim

    um

    ,th

    enth

    efirs

    tor

    der

    conditio

    ns

    imply

    that

    f i(x

    ∗ 1,..

    .,x∗ n)

    =0

    for

    i=

    1,..

    .,n.

    The

    seco

    nd

    order

    conditio

    nim

    plie

    sth

    atth

    eH

    essian

    mat

    rix

    eval

    uat

    edat

    (x∗ 1,

    ...,

    x∗ n)

    must

    be

    neg

    ativ

    edefi

    nite.

    If(x

    ∗ 1,..

    .,x∗ n)

    isa

    loca

    lm

    inim

    um

    ,th

    enth

    efirs

    tor

    der

    conditio

    ns

    imply

    that

    f i(x

    ∗ 1,..

    .,x∗ n)

    =0

    for

    i=

    1,..

    .,n.

    The

    seco

    nd

    order

    conditio

    nim

    plie

    sth

    atth

    eH

    essian

    mat

    rix

    eval

    uat

    edat

    (x∗ 1,

    ...,

    x∗ n)

    must

    be

    pos

    itiv

    edefi

    nite.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    31

    /51

    Eco

    nom

    icExa

    mpl

    e:Pro

    fit

    Max

    imiz

    atio

    n

    To

    bet

    ter

    under

    stan

    dal

    lof

    this,we

    can

    look

    ata

    firm

    ’sop

    tim

    izat

    ion

    prob

    lem

    .

    Suppos

    ea

    firm

    can

    sell

    it’s

    outp

    ut

    at$1

    0per

    unit

    and

    that

    it’s

    product

    ion

    funct

    ion

    isgi

    ven

    byy

    =K

    1/4L

    1/2.

    What

    com

    bin

    atio

    nof

    capital

    and

    labou

    rsh

    ould

    the

    firm

    use

    soas

    tom

    axim

    ize

    profi

    tsas

    sum

    ing

    that

    capital

    cost

    s$2

    per

    unit

    and

    labou

    r$1

    per

    unit?

    The

    firm

    ’spr

    ofits

    are

    give

    nby

    Π(K

    ,L)

    =10

    y−

    2K−

    L︸

    ︷︷︸

    reve

    nue

    min

    us

    cost

    s

    =10

    K1

    /4L

    1/2−

    2K−

    L

    This

    isa

    prob

    lem

    ofunco

    nst

    rain

    edop

    tim

    izat

    ion

    with

    multip

    leva

    riab

    les.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    32

    /51

  • Eco

    nom

    icExa

    mpl

    eCon

    tinu

    ed

    We

    can

    use

    the

    firs

    tor

    der

    conditio

    ns

    toob

    tain

    pote

    ntialca

    ndid

    ate

    sfo

    rop

    tim

    izat

    ion,as

    with

    one

    variab

    le.

    For

    the

    firm

    we

    hav

    eth

    efo

    llow

    ing

    profi

    tm

    axim

    izat

    ion

    prob

    lem

    :

    Π(K

    ,L)

    =10

    K1

    /4L

    1/2−

    2K−

    L

    The

    firs

    tor

    der

    conditio

    ns

    are

    ∂Π ∂K

    =(5

    /2)K

    −3/4L

    1/2−

    2=

    0

    ∂Π ∂L

    =5K

    1/4L−1

    /2−

    1=

    0

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    33

    /51

    Eco

    nom

    icExa

    mpl

    eCon

    tinu

    ed

    Div

    idin

    gth

    efirs

    tfirs

    t-or

    der

    conditio

    nby

    the

    seco

    nd

    firs

    t-or

    der

    conditio

    ngi

    ves

    us

    (1/2)L

    /K

    =2,

    or,

    L=

    4K

    Subst

    ituting

    this

    into

    the

    seco

    nd

    firs

    t-or

    der

    conditio

    n,we

    get

    5K1

    /4(4

    K)−

    1/2

    =1,

    orK

    −1/4

    =2

    /5,

    or,

    K=

    (5/2)4

    =62

    5/16

    Fin

    ally,we

    hav

    e,L

    =62

    5/4

    This

    isou

    rca

    ndid

    ate

    solu

    tion

    for

    am

    axim

    um

    .B

    ut

    tove

    rify

    that

    itre

    ally

    isth

    em

    axim

    um

    we

    nee

    dto

    chec

    kth

    ese

    cond-o

    rder

    conditio

    ns.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    34

    /51

  • Eco

    nom

    icExa

    mpl

    eCon

    tinu

    ed

    The

    candid

    ate

    solu

    tion

    sar

    e,K

    ∗=

    625

    /16

    and

    L∗

    =62

    5/4.

    The

    Hes

    sian

    mat

    rix

    atan

    y(K

    ,L)

    isgi

    ven

    by

    H=

    [ −15 8K

    −7/4L

    1/2

    5 4K

    −3/4L−1

    /2

    5 4K

    −3/4L−1

    /2

    −5 2K

    1/4L−3

    /2

    ]N

    ote

    that

    since

    K>

    0,L

    >0.

    f 11

    =−

    15 8K

    −7/4L

    1/2

    <0

    |H|=

    −( −

    5 2

    ) 15 8K

    −7/4+

    1/4L−3

    /2+

    1/2−

    ( 5 4)2

    K−3

    /4−3

    /4L−1

    /2−1

    /2

    =(7

    5/16

    )K−3

    /2L−1

    −(2

    5/16

    )K−3

    /2L−1

    =(5

    0/16

    )K−3

    /2L−1

    >0

    This

    show

    sth

    atth

    ese

    cond

    order

    conditio

    ns

    are

    satisfi

    edat

    (K∗ ,

    L∗ )

    ,w

    hic

    hsh

    ows

    itis

    alo

    calm

    axim

    um

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    35

    /51

    Impl

    icit

    Fun

    ctio

    nsan

    dCom

    para

    tive

    Sta

    tics

    So

    far,

    we

    hav

    eco

    nsider

    the

    inte

    rpre

    tation

    offu

    nct

    ions

    with

    mor

    eth

    anon

    eva

    riab

    leth

    rough

    the

    Jaco

    bia

    nan

    dth

    eH

    essian

    .

    We

    hav

    eal

    sore

    late

    dth

    eH

    essian

    toth

    enot

    ions

    ofco

    nca

    vity

    and

    conve

    xity

    and

    max

    ima

    and

    min

    ima,

    via

    anop

    tim

    izat

    ion

    prob

    lem

    .

    How

    ever

    ,w

    hen

    we

    dea

    lw

    ith

    funct

    ions

    ofm

    ore

    than

    one

    variab

    le,we

    also

    run

    into

    other

    com

    plic

    atio

    ns.

    Bas

    ical

    ly,we

    tend

    toth

    ink

    ofth

    eLH

    Sva

    riab

    leof

    afu

    nct

    ion

    asen

    dog

    enou

    san

    dth

    eRH

    Sva

    riab

    le(s

    )as

    exog

    enou

    s.B

    ut

    som

    etim

    esex

    ogen

    ous

    variab

    les

    and

    endog

    enou

    sva

    riab

    les

    cannot

    be

    separ

    ated

    and

    we

    nee

    dto

    diff

    eren

    tiat

    eim

    plic

    itly.

    Implic

    itdiff

    eren

    tiat

    ion

    isal

    souse

    fulw

    hen

    thin

    king

    abou

    tutilit

    yfu

    nct

    ions

    (indiff

    eren

    cecu

    rves

    )an

    dpr

    oduct

    ion

    funct

    ions

    (iso

    quan

    tcu

    rves

    ).

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    36

    /51

  • Impl

    icit

    Fun

    ctio

    nT

    heor

    em

    An

    exam

    ple

    ofan

    implic

    itfu

    nct

    ion,i.e.

    ,on

    ew

    her

    eth

    eex

    ogen

    ous

    and

    endog

    enou

    sva

    riab

    les

    cannot

    be

    separ

    ated

    ,is,

    F(x

    ,y)

    =x

    2+

    xyey+

    y2x−

    10=

    0

    Itis

    not

    clea

    rhow

    tose

    par

    ate

    out

    yfrom

    xor

    even

    whet

    her

    itca

    nbe

    don

    e.H

    owev

    er,we

    may

    still

    wan

    tto

    find

    out

    how

    the

    endog

    enou

    sva

    riab

    lech

    ange

    sw

    hen

    the

    exog

    enou

    sva

    riab

    lech

    ange

    s.

    Under

    cert

    ain

    circ

    um

    stan

    ces,

    ittu

    rns

    out

    that

    even

    when

    we

    cannot

    separ

    ate

    out

    the

    variab

    les,

    we

    can

    non

    ethel

    ess

    find

    the

    der

    ivat

    ive

    dy

    /dx

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    37

    /51

    Impl

    icit

    Fun

    ctio

    nT

    heor

    em

    The

    follo

    win

    gre

    sult

    enab

    les

    us

    tofind

    the

    der

    ivat

    ives

    for

    implic

    itfu

    nct

    ions.

    Theo

    rem

    :Let

    f(x

    ,y)

    =0

    be

    anim

    plic

    itfu

    nct

    ion

    whic

    his

    continuou

    sly

    diff

    eren

    tiab

    lean

    d(x

    0,y

    0)

    be

    such

    that

    f(x

    0,y

    0)

    =0.

    Suppos

    eth

    at∂f ∂y

    (x0,y

    0)�=

    0.T

    hen

    ,

    dy

    dx

    ∣ ∣ ∣ (x 0,y0)

    =−

    ∂f ∂x(x

    0,y

    0)

    ∂f ∂y(x

    0,y

    0)

    So,

    withou

    tsp

    ecifyi

    ng

    xan

    dy

    we

    can

    find

    dy

    dx

    ata

    give

    npoi

    nt,

    her

    e(x

    0,y

    0).

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    38

    /51

  • Abs

    trac

    tExa

    mpl

    eof

    Impl

    icit

    Fun

    ctio

    nT

    heor

    em

    Con

    sider

    f(x

    ,y)

    =x

    2+

    xyey+

    y2x−

    10=

    0.Suppos

    ewe

    wan

    tto

    eval

    uat

    eth

    eder

    ivat

    ive

    atso

    me

    poi

    nt

    (x0,y

    0)

    such

    that

    f(x

    0,y

    0)

    =0.

    Using

    the

    rule

    sof

    diff

    eren

    tiat

    ion,

    ∂f ∂y=

    xey+

    xyey+

    2xy

    This

    can

    be

    zero

    for

    som

    ex

    and

    ybut

    assu

    me

    that

    the

    poi

    nt

    (x0,y

    0)

    isnot

    one

    ofth

    em.

    Now

    diff

    eren

    tiat

    ew

    ith

    resp

    ect

    tox,

    ∂f ∂x=

    2x+

    yey+

    y2

    The

    implic

    itfu

    nct

    ion

    theo

    rem

    allo

    ws

    us

    tow

    rite

    the

    follo

    win

    g.

    dy

    dx

    ∣ ∣ ∣ (x 0,y0)

    =−

    2x0+

    y 0ey 0

    +y

    2 0

    x 0ey 0

    +x 0

    y 0ey 0

    +2x

    0y 0

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    39

    /51

    Eco

    nom

    icExa

    mpl

    eof

    Impl

    icit

    Fun

    ctio

    nT

    heor

    em

    One

    use

    ofth

    eim

    plic

    itfu

    nct

    ion

    theo

    rem

    inEco

    nom

    ics

    isto

    find

    the

    slop

    esof

    indiff

    eren

    cecu

    rves

    and

    isoquan

    ts.

    Con

    sider

    the

    product

    ion

    funct

    ion

    use

    dea

    rlie

    r.

    y=

    K0.2

    5L

    0.7

    5

    Ifwe

    fix

    y=

    y 0,th

    enth

    eco

    mbin

    atio

    nof

    all(K

    ,L)

    whic

    hgi

    ves

    y 0units

    ofou

    tput

    isca

    lled

    anisoquan

    t.

    Suppos

    e(K

    0,L

    0)

    ison

    esu

    chco

    mbin

    atio

    n.

    We

    wan

    tto

    find

    the

    slop

    eof

    the

    isoquan

    t,th

    atis

    dK dL

    ∣ ∣ ∣ (K 0,L

    0).

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    40

    /51

  • Eco

    nom

    icExa

    mpl

    eCon

    tinu

    ed

    Set

    ting

    y=

    y 0,we

    can

    write

    the

    product

    ion

    funct

    ion

    inim

    plic

    itfu

    nct

    ion

    form

    as,

    F(K

    ,L)

    =K

    0.2

    5L

    0.7

    5−

    y 0=

    0

    Using

    the

    valu

    esfo

    rth

    epar

    tial

    der

    ivat

    ives

    found

    earlie

    r,we

    hav

    e,

    dK dL

    ∣ ∣ ∣ (K 0,L

    0)

    =−

    0.75

    K0.2

    50

    L−0

    .25

    0

    0.25

    K−0

    .75

    0L

    0.7

    50

    =−3

    K0

    L0

    Not

    eth

    atK

    0�=

    0,L

    0�=

    0.

    This

    equat

    ion

    tells

    us

    the

    slop

    eof

    the

    isoquan

    tat

    (K0,L

    0).

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    41

    /51

    Indi

    ffer

    ence

    Cur

    ves

    As

    afinal

    exam

    ple

    ,co

    nsider

    the

    follo

    win

    gutilit

    yfu

    nct

    ion:

    U=

    [ αcη a+

    βc

    η b

    ] 1/η,w

    her

    ea

    =ap

    ple

    s,b

    =ban

    anas

    .T

    his

    isca

    lled

    aco

    nst

    ant

    elas

    tici

    tyof

    subst

    itution

    utilit

    yfu

    nct

    ion.

    When

    η=

    0we

    get

    bac

    kto

    the

    Cob

    b-D

    ougl

    asutilit

    yfu

    nct

    ion.

    Hol

    din

    gutilit

    yfixe

    d,we

    hav

    eth

    efo

    llow

    ing:

    [ αcη a+

    βc

    η b

    ] 1/η−

    U0

    =0.

    Now

    use

    the

    implic

    itfu

    nct

    ion

    theo

    rem

    .

    dc a

    dc b

    ∣ ∣ ∣ (c a,0,c

    b,0

    )=

    −∂U ∂c

    a(c

    a,0,c

    b,0)

    ∂U ∂cb(c

    a,0,c

    b,0)

    =−

    α β

    ( c a c b) η−

    1

    Suppos

    ewe

    look

    atth

    eM

    RS

    atth

    epoi

    nt(t

    c a,t

    c b).

    The

    indiff

    eren

    cecu

    rves

    hav

    eth

    esa

    me

    slop

    eat

    (ca,c

    b)

    and

    at(t

    c a,t

    c b)

    for

    any

    t>

    0.T

    he

    CES

    utilit

    yfu

    nct

    ion

    isan

    exam

    ple

    ofpr

    efer

    ence

    sth

    atar

    ehom

    othet

    ic.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    42

    /51

  • Com

    para

    tive

    Sta

    tics

    and

    Impl

    icit

    Rel

    atio

    ns:

    Sup

    ply

    and

    Dem

    and

    One

    ques

    tion

    we

    also

    ofte

    nnee

    dto

    answ

    eris

    how

    under

    lyin

    gpar

    amet

    ers

    affec

    tth

    eeq

    uili

    briu

    mof

    asu

    pply

    and

    dem

    and

    syst

    em.

    Suppos

    eth

    atwe

    hav

    ea

    mar

    ket

    wher

    eth

    edem

    and

    and

    supply

    funct

    ions

    are

    give

    nby

    the

    follo

    win

    g.

    D=

    a−

    bp

    +cy

    ,S

    +βp

    The

    par

    amet

    ers

    a,b,c

    ,α,β

    are

    allpos

    itiv

    eco

    nst

    ants

    .

    The

    equili

    briu

    mpr

    ice

    is,

    p∗

    =a−

    α+

    cy

    b+

    β

    We

    can

    now

    chec

    khow

    the

    under

    lyin

    gpar

    amet

    ers

    (a,b

    ,c,y

    ,α,β

    )aff

    ect

    the

    equili

    briu

    mpr

    ice.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    43

    /51

    Com

    para

    tive

    Sta

    tics

    :Sup

    ply

    and

    Dem

    and

    Inou

    rsim

    ple

    exam

    ple

    ,we

    can

    get

    the

    par

    tial

    der

    ivat

    ive,

    ∂p∗ /

    ∂a=

    1/(b

    +β)

    All

    other

    thin

    gsre

    mai

    nin

    gco

    nst

    ant,

    anin

    crea

    sein

    a,in

    crea

    ses

    the

    equili

    briu

    mpr

    ice.

    We

    can

    sim

    ilarly

    find

    the

    impac

    tof

    chan

    ges

    inot

    her

    par

    amet

    ers

    onth

    eeq

    uili

    briu

    mpr

    ice.

    Impor

    tantly,

    we

    can

    also

    ,in

    man

    yca

    ses,

    conduct

    the

    com

    par

    ativ

    est

    atic

    sw

    ithou

    tso

    lvin

    gfo

    rth

    eeq

    uili

    briu

    mva

    lues

    ofth

    een

    dog

    enou

    sva

    riab

    les.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    44

    /51

  • Gen

    eral

    Fun

    ctio

    nExa

    mpl

    eof

    Sup

    ply

    and

    Dem

    and

    Con

    sider

    the

    follo

    win

    gsy

    stem

    mor

    ege

    ner

    aldem

    and

    and

    supply

    syst

    em.

    qd

    =D

    (p,T

    ),q

    s=

    S(p

    ,T)

    Her

    e,T

    isth

    ete

    mper

    ature

    ona

    give

    nday

    .W

    eas

    sum

    eth

    atD

    p<

    0,D

    T>

    0,S

    p>

    0,S

    T<

    0.

    Equili

    briu

    mre

    quires

    that

    D(p

    ,T)

    =S(p

    ,T)

    but

    we

    cannot

    com

    pute

    the

    equili

    briu

    mpr

    ice

    explic

    itly.

    Den

    ote

    the

    equili

    briu

    mpr

    ice

    p∗ (

    T):

    obse

    rve

    that

    itis

    afu

    nct

    ion

    ofth

    epar

    amet

    erT

    .

    Inse

    rtin

    gp∗ (

    T)

    into

    the

    equili

    briu

    mco

    nditio

    n,we

    hav

    e,

    D(p

    ∗ (T

    ),T

    )=

    S(p

    ∗ (T

    ),T

    )

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    45

    /51

    Gen

    eral

    Fun

    ctio

    nExa

    mpl

    eof

    Sup

    ply

    and

    Dem

    and

    We

    diff

    eren

    tiat

    ebot

    hsides

    with

    resp

    ect

    toT

    whic

    hgi

    ves,

    Dpdp∗

    dT

    +D

    T=

    Spdp∗

    dT

    +S

    T

    Rea

    rran

    ging,

    we

    get

    dp∗

    dT

    =S

    T−

    DT

    Dp−

    Sp

    Not

    eth

    atsince

    ST

    <0,

    DT

    >0,

    Dp

    <0,

    Sp

    >0

    itfo

    llow

    sth

    atdp∗ /

    dT

    >0.

    Hen

    ce,ev

    enw

    ithou

    tbei

    ng

    able

    toco

    mpute

    p∗ (

    T)

    explic

    itly,we

    can

    still

    say

    that

    the

    equili

    briu

    mpr

    ice

    incr

    ease

    sfo

    llow

    ing

    anin

    crea

    sein

    the

    tem

    per

    ature

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    46

    /51

  • Exa

    mpl

    eCon

    tinu

    ed

    Can

    we

    say

    anyt

    hin

    gab

    out

    the

    equili

    briu

    mquan

    tity

    ?

    Not

    eth

    atth

    eeq

    uili

    briu

    mquan

    tity

    must

    satisf

    y,

    q∗ (

    T)

    =D

    (p∗ (

    T),

    T)

    Diff

    eren

    tiat

    ing

    with

    resp

    ect

    toT

    we

    get

    dq∗

    dT

    =D

    pdp∗

    dT

    +D

    T=

    DpS

    T−

    SpD

    T

    Dp−

    Sp

    Inth

    isca

    se,th

    eden

    omin

    ator

    ispos

    itiv

    ebut

    we

    cannot

    say

    anyt

    hin

    gab

    out

    the

    num

    erat

    orunle

    sswe

    hav

    em

    ore

    spec

    ific

    info

    rmat

    ion

    abou

    tth

    em

    agnitudes

    ofD

    p,S

    p,D

    Tan

    dS

    T.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    47

    /51

    Gen

    eral

    For

    mul

    atio

    n

    Suppos

    ewe

    hav

    ea

    gener

    alse

    tof

    equili

    briu

    mco

    nditio

    ns

    give

    nby

    f1(x

    1,.

    ..,x

    n;α

    1,.

    ..,α

    m)

    =0

    f2(x

    1,.

    ..,x

    n;α

    1,.

    ..,α

    m)

    =0

    ...=

    ...

    fn(x

    1,.

    ..,x

    n;α

    1,.

    ..,α

    m)

    =0

    Let

    us

    suppos

    eth

    atwe

    can

    solv

    eth

    isse

    tof

    equat

    ions

    toge

    t(x

    ∗ 1,..

    .,x∗ n)

    .N

    ote

    that

    each

    x∗ i

    will

    be

    afu

    nct

    ion

    ofal

    lth

    eunder

    lyin

    gpar

    amet

    ers

    (α1,.

    ..,α

    n).

    Inco

    mpar

    ativ

    est

    atic

    s,we

    typic

    ally

    are

    inte

    rest

    edin

    know

    ing

    how

    (x∗ 1,

    ...,

    x∗ n)

    chan

    gew

    hen

    ther

    eis

    asm

    allch

    ange

    inon

    eof

    the

    par

    amet

    ers,

    say

    αi.

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    48

    /51

  • Gen

    eral

    For

    mul

    atio

    n

    We

    proce

    edby

    diff

    eren

    tiat

    ing

    each

    ofth

    eeq

    uili

    briu

    mco

    nditio

    ns

    with

    resp

    ect

    toα

    i.T

    his

    give

    s

    f1 1

    dx∗ 1

    i+

    f1 2

    dx∗ 2

    i+

    ...+

    f1 n

    dx∗ n

    i=

    −f1 αi

    f2 1

    dx∗ 1

    i+

    f2 2

    dx∗ 2

    i+

    ...+

    f2 n

    dx∗ n

    i=

    −f2 αi

    . . .=

    . . .

    fn 1

    dx∗ 1

    i+

    fn 2

    dx∗ 2

    i+

    ...+

    fn n

    dx∗ n

    i=

    −fn αi

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    49

    /51

    Gen

    eral

    For

    mul

    atio

    n

    Inm

    atrix

    not

    atio

    nth

    isca

    nbe

    writt

    enas

    ⎡ ⎢ ⎢ ⎢ ⎣f1 1

    f1 2

    ...

    f1 n

    f2 1

    f2 2

    ...

    f2 n

    . . .. . .

    . . .. . .

    fn 1

    fn 2

    ...

    fn n

    ⎤ ⎥ ⎥ ⎥ ⎦⎡ ⎢ ⎢ ⎣dx∗ 1

    idx∗ 2

    i. . .d

    x∗ n

    i

    ⎤ ⎥ ⎥ ⎦=⎡ ⎢ ⎢ ⎢ ⎣−

    f1 αi

    −f2 αi

    . . . −fn αi

    ⎤ ⎥ ⎥ ⎥ ⎦H

    owdo

    we

    solv

    efo

    rdx∗ j/

    i?U

    sing

    the

    usu

    alm

    ethods

    (lik

    eCra

    mer

    ’sru

    le).

    All

    ofth

    isgi

    ves

    us

    ave

    rypow

    erfu

    lto

    olm

    ore

    anal

    yzin

    gre

    lative

    lyco

    mplic

    ated

    econ

    omic

    sm

    odel

    sin

    asim

    ple

    way

    .

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    50

    /51

  • Rou

    ndup

    You

    shou

    ldnow

    be

    able

    todo/

    under

    stan

    dth

    efo

    llow

    ing:

    1Par

    tial

    diff

    eren

    tiat

    ion

    and

    the

    Jaco

    bia

    nm

    atrix

    2T

    he

    Hes

    sian

    mat

    rix

    and

    conca

    vity

    and

    conve

    xity

    ofa

    funct

    ion

    3O

    ptim

    izat

    ion

    (pro

    fit

    max

    imiz

    atio

    n)

    4Im

    plic

    itfu

    nct

    ions

    (indiff

    eren

    cecu

    rves

    and

    com

    par

    ativ

    est

    atic

    s)

    Dudle

    yCooke

    (Trinity

    Colleg

    eD

    ublin)

    Multi-va

    riable

    Calc

    ulu

    sand

    Optim

    ization

    51

    /51