Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon...

22
Multi-scale modeling of carbon capture systems f David C. Miller, a, * Joel D. Kress, e David S. Mebane, g Xin Sun, f Curtis B. Storlie, e Sankaran Sundaresan, h Debangsu Bhattacharyya, g Nikolaos V. Sahinidis, b John C. Eslick, b Charles H. Tong, d Deb A. Agarwal c a National Energy Technology Laboratory, Pittsburgh, PA USA, b Carnegie Mellon University, Pittsburgh, PA USA, c Lawrence Berkeley National Laboratory, Berkeley, CA USA, d Lawrence Livermore National Laboratory, Livermore, CA USA, e Los Alamos National Laboratory, Los Alamos, NM USA, f Pacific Northwest National Laboratory, Richland, WA USA, g West Virginia University, Morgantown, WV USA, h Princeton University, Princeton, NJ USA 8-9 September 2015

Transcript of Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon...

Page 1: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Multi-scale modeling of carbon capture systemsfDavid C. Miller,a,* Joel D. Kress,e David S. Mebane,g Xin Sun,f Curtis B.

Storlie,e Sankaran Sundaresan,h Debangsu Bhattacharyya,g Nikolaos V. Sahinidis,b John C. Eslick,b Charles H. Tong,d Deb A. AgarwalcaNational Energy Technology Laboratory, Pittsburgh, PA USA, bCarnegie Mellon University, Pittsburgh, PA USA, cLawrence Berkeley National Laboratory, Berkeley, CA USA, dLawrence Livermore National Laboratory, Livermore, CA USA, eLos Alamos National Laboratory, Los Alamos, NM USA, fPacificNorthwest National Laboratory, Richland, WA USA, gWest Virginia University, Morgantown, WV USA, o t est at o a abo ato y, c a d, US , est g a U e s ty, o ga to , US ,hPrinceton University, Princeton, NJ USA

8-9 September 2015p

Page 2: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Challenge: Accelerate Development/Scale UpTraditional time to deploy new technology in the power industry

Laboratory Development Process Scale Up

20 30

1 MWe1 kWe 10 MWe 100 MWe 500 MWe

Development10-15 years 20-30 years

Accelerated deployment timeline

Process Scale UpProcess Scale Up15 yearsee

1 M

We

10 M

We

500

MW

e

100

MW

e

2010 2015 2020 2025 2030 2035 2040 2045 2050

2

Page 3: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

For Accelerating Technology Development

Rapidly synthesize optimized processes to identify promising

concepts

Better understand internal behavior to

reduce time for troubleshooting

Quantify sources and effects of uncertainty to

guide testing & reach larger scales faster

Stabilize the cost during commercial

deployment

National Labs Academia Industry

33

Page 4: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Goals & Objectives of CCSI• Develop new computational tools and models to enable industry to

more rapidly develop and deploy new advanced energy technologies

B d l t i d t d / t i t– Base development on industry needs/constraints

• Demonstrate the capabilities of the CCSI Toolset on non-i t t diproprietary case studies

– Examples of how new capabilities improve ability to develop capture technology

• Deploy the CCSI Toolset to industry– Initial licensees, CRADA

4

Page 5: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Advanced Computational Tools to Accelerate Carbon Capture Technology DevelopmentCarbon Capture Technology Development

Lab & Pilot ScaleExperiments & Data

Physical PropertiesKinetics

Thermodynamics

Device Scale ModelsProcess Systems Device Scale Models Validated 3-D, CFD

Process SystemsDesign, Optimization & Control

5

Page 6: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

CCSI Toolset Workflow and Connections

Process Models

Superstructure Optimization

  Algebraic Surrogate ModelsFramework for

Uncertainty

Uncertainty

UncertaintyOptimization

Q tifi ti fBasic Data Submodels

Optimized P

Uncertainty

Simulation-Based Optimization

Uncertainty Quantification

Quantification of Uncertainty &

Data ManagementFramework

Submodels Process

UncertaintyProcess

Dynamics and Control

Uncertainty & Sensitivity

UncertaintyUncertainty

Control

CFD Device Models

y

6

Uncertainty

Page 7: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Solid Sorbent: Process Systems Example

Lab & Pilot ScaleExperiments & Data

Physical PropertiesKinetics

Thermodynamics

Device Scale ModelsProcess Systems Device Scale Models Validated 3-D, CFD

Process SystemsDesign, Optimization & Control

7

Page 8: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Basic Data Model

Alkylammonium carbamate formed by two molecules of tetraethylene pentamine (TEPA) and CO2.y p ( ) 2

8

Page 9: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Process ModelsBubbling Fluidized Bed (BFB) ModelBubbling Fluidized Bed (BFB) Model• 1-D, nonisothermal with heat exchange• Unified steady-state and dynamic• Adsorber and Regenerator

0 08

0.1

0.12

0.14

kmol

/km

ol)

CO2H2O

• Variable solids inlet and outlet location• Modular for multiple bed configurations

Moving Bed (MB) Model0 0.2 0.4 0.6 0.8 1

0.04

0.06

0.08

z/L

yb (

g ( )• 1-D, nonisothermal with heat exchange• Unified steady-state and dynamic• Adsorber and Regenerator• Heat recovery system

800

1000

r

Solid Component Flow Profile of MB Regenerator

Bicarb. Carb. H2O

• Heat recovery system

Compression System Model• Integral-gear and inline compressors

0 0.5 1200

400

600

kmol

/hr

• Determines stage required stages, intercoolers• Based on impeller speed limitations• Estimates stage efficiency• CO2 drying (TEG absorption system)

0 0.5 1z/L

CO2 drying (TEG absorption system)• Off-design performance.• Includes surge control algorithm

9

Page 10: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Carbon Capture System Configuration

Surrogate models for geach reactor and technology used

• Discrete decisions: How many units? Parallel trains? What technology used for each reactor?

• Continuous decisions: Unit geometries• Operating conditions: Vessel temperature and pressure, flow rates,

compositions

10

compositions

Page 11: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Superstructure Optimization

Mixed-integer nonlinear programming model in GAMS

• Parameters• Variables

E ti• Equations• Economic modules• Process modules

• Material balancesMaterial balances• Hydrodynamic/Energy

balances• Reactor surrogate models

Li k b t i• Link between economic modules and process modules

• Binary variable constraints• Bounds for variables

Optimal layout

Bounds for variables

11

Page 12: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Optimization &Optimization &Heat Integration

Objective: Max. Net efficiencyConstraint: CO2 removal ratio ≥ 90% Decision Variables (17): Bed length, diameter, sorbent and steam feed rate

w/o heat integration Sequential Simultaneousg

Net power efficiency (%) 31.0 32.7 35.7Net power output (MWe) 479.7 505.4 552.4

bElectricity consumption b (MWe) 67.0 67.0 80.4

Base case w/o CCS: 650 MWe, 42.1 %Chen, Y., J. C. Eslick, I. E. Grossmann and D. C. Miller (2015). "Simultaneous Process Optimization and Heat Integration Based on Rigorous Process

12

Simulations." Computers & Chemical Engineering. doi:10.1016/j.compchemeng.2015.04.033

Page 13: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Uncertainty Quantification for Prediction Confidence Now that we have Now that we have

• A chemical kinetics model with quantified uncertainty• A process model with other sources of uncertaintyp y• Surrogates with approximation errors• An optimized process based on the above

UQ questions• How do these errors and uncertainties affect our prediction

confidence (e g operating cost) for the optimized process?confidence (e.g. operating cost) for the optimized process?• Can the optimized system maintain >= 90% CO2 capture in the

presence of these uncertainties?• Which sources of uncertainty have the most impact on our prediction

uncertainty?• What additional experiments need to be performed to give acceptableWhat additional experiments need to be performed to give acceptable

uncertainty bounds?

CCSI UQ framework is designed to answer these questions

13

CCSI UQ framework is designed to answer these questions

Page 14: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Perform statistical analyses with FOQUSEnsemble AnalysesUncertainty analysisSensitivity analysisCorrelation analysisCorrelation analysisScatterplots for visualization

Response Surface (RS) AnalysesRS validation

Ensemble UA RS-based SA

RS validationRS visualizationRS-based uncertainty analysisRS-based sensitivity analysis

RS-based UA

RS-based Bayesian inference

RSvalidation

RS visualization

RS-based Bayesian inference

14

RS visualization

Page 15: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Solid Sorbents: Validated CFD Model Example

Lab & Pilot ScaleExperiments & Data

Physical PropertiesKinetics

Thermodynamics

Device Scale ModelsProcess Systems Device Scale Models Validated 3-D, CFD

Process SystemsDesign, Optimization & Control

15

Page 16: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Building Predictive Confidence for Device-scale CO2 Capture with Multiphase CFD Modelsp p

C2U BatchUnit

16

Page 17: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Quantitatively predicting scale up performance

17

Page 18: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Advanced Computational Tools to Accelerate Carbon Capture Technology DevelopmentCarbon Capture Technology Development

Lab & Pilot ScaleExperiments & Data

Physical PropertiesKinetics

Thermodynamics

Device Scale ModelsProcess Systems Device Scale Models Validated 3-D, CFD

Process SystemsDesign, Optimization & Control

18

Page 19: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Carbon Capture Simulation for Industry Impact

• Work closely with industry partners to help scale up– Large scale pilots

• Help ensure success at this scale• Help ensure success at this scale– Employ simulation to predict performance, potential issue– Help resolve issues using simulation tools

• Maximize learning at this scaleg– Data collection & experimental design– Develop & Validate models– UQ to identify critical data

H l d l d t ti l t d i• Help develop demonstration plant design– Utilize optimization tools (OUU, Heat Integration)– Quantitative confidence on predicted performance

Predict dynamic performance– Predict dynamic performance– Partnership via CRADA

19

Page 20: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Acknowledgements– SorbentFit

• David Mebane (NETL/ORISE, West Virginia University)• Joel Kress (LANL)

– Process Models• Solid sorbents: Debangsu Bhattacharyya Srinivasarao Modekurti Ben Omell (West Virginia University) Andrew Lee• Solid sorbents: Debangsu Bhattacharyya, Srinivasarao Modekurti, Ben Omell (West Virginia University), Andrew Lee,

Hosoo Kim, Juan Morinelly, Yang Chen (NETL)• Solvents: Joshua Morgan, Anderson Soares Chinen, Benjamin Omell, Debangsu Bhattacharyya (WVU), Gary Rochelle

and Brent Sherman (UT, Austin)• MEA validation data: NCCC staff (John Wheeldon and his team)

– FOQUSFOQUS• ALAMO: Nick Sahinidis, Alison Cozad, Zach Wilson (CMU), David Miller (NETL)• Superstructure: Nick Sahinidis, Zhihong Yuan (CMU), David Miller (NETL)• DFO: John Eslick (CMU), David Miller (NETL)• Heat Integration: Yang Chen, Ignacio Grossmann (CMU), David Miller (NETL)• UQ: Charles Tong, Brenda Ng, Jeremey Ou (LLNL)Q g, g, y ( )• OUU: DFO Team, UQ Team, Alex Dowling (CMU)• D-RM Builder: Jinliang Ma (NETL)• Turbine: Josh Boverhof, Deb Agarwal (LBNL)• SimSinter: Jim Leek (LLNL), John Eslick (CMU)

– Data ManagementData Management• Tom Epperly (LLNL), Deb Agarwal, You-Wei Cheah (LBNL)

– CFD Models and Validation• Xin Sun, Jay Xu, Kevin Lai, Wenxiao Pan, Wesley Xu, Greg Whyatt, Charlie Freeman (PNNL), Curt Storlie, Peter

Marcey, Brett Okhuysen (LANL), S. Sundaresan, Ali Ozel (Princeton), Janine Carney, Rajesh Singh, Jeff Dietiker, Tingwen Li (NETL) Emily Ryan, William Lane (Boston University)g ( ) y y ( y)

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof

20

expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 21: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

Framework for Optimization, Quantification of Uncertainty and Sensitivity

SimulationBased

OptimizationUQ

ALAMO Surrogate

ModelsData Management

Framework

iREVEALSurrogate

Models

Optimization Under

Uncertainty

D-RMBuilder

Heat Integration

lts

FOQUSFramework for Optimization Quantification of Uncertainty and Sensitivity

les

Res

u

Meta-flowsheet: Links simulations, parallel execution, heat integration

Sam

p

SimSinter ConfigGUI

SimSinter Simulation

GUI

Turbine

D C Miller B Ng J C Eslick C Tong and Y Chen 2014 Advanced Computational Tools for Optimization and Uncertainty Quantification of Carbon Capture Processes In Proceedings

Standardized interface for simulation software

Steady state & dynamic

AspengPROMS

Excel

TurbineParallel simulation execution

management systemDesktop – Cloud – Cluster

21

D. C. Miller, B. Ng, J. C. Eslick, C. Tong and Y. Chen, 2014, Advanced Computational Tools for Optimization and Uncertainty Quantification of Carbon Capture Processes. In Proceedings of the 8th Foundations of Computer Aided Process Design Conference – FOCAPD 2014. M. R. Eden, J. D. Siirola and G. P. Towler Elsevier.

Page 22: Multi-scale modeling of carbon capture systems - · PDF fileMulti-scale modeling of carbon capture systems ... guide testing & reach ... gPROMS Excel Parallel simulation execution

CCSI Timeline• Organizational Meetings: March 2010 - October 2010• Technical work initiated: Feb. 1, 2011• Preliminary Release of CCSI Toolset: September 2012Preliminary Release of CCSI Toolset: September 2012

– Initial licenses signed• CCSI Year 3 starts Feb. 1, 2013

– Began solvent modeling/demonstration component• 2013 Toolset Release: October 31, 2013

– Multiple tools and models released and being used byMultiple tools and models released and being used by industry

• 2014 Toolset Release: October 31, 2014 • Future

– Final IAB meeting: Sept. 23-24, 2015 (Reston, VA) Final major release November 2015– Final major release November 2015

– Commercial licensing late 2015 or early 2016

2222