Méthodes Expérimentales en Mécanique des Fluides Optically ...

41
ethodes Exp´ erimentales en M´ ecanique des Fluides Optically-based visualisation Luc Pastur Master 1 PAM (P-PAM-305A) MEMF 2010-2011 1 / 43

Transcript of Méthodes Expérimentales en Mécanique des Fluides Optically ...

Page 1: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Methodes Experimentales en Mecanique des FluidesOptically-based visualisation

Luc Pastur

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 1 / 43

Page 2: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Outline

1 Basics on Fourier optics

2 Shadowgraphy (ombroscopie)

3 Sclieren (strioscopie)

4 Interferometry and holography

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 2 / 43

Page 3: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Basics on Fourier Optics

Domain of relevanceBased on the Huygens-Fresnel principle

Deals with solutions of the wave equation with boundary conditions

Diffraction ≡ object convolution by impulse response h(x , y) of the optical system

Approximations : Fresnel for the near field or Fraunhofer for the far field

Lenses ≡ optical processors (Fourier transform).

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 3 / 43

Page 4: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Huygens-Fresnel principle

HuygensEach point P′ of a wave surface behaves as a (fictive) ponctual source, at the same frequencyas the parent source, with a phase which is the incident wave phase in P′

FresnelThe spherical wavelets emitted by such fictive sources propagate toward any point P where theyinterfer.

source

O

S ′ S

r0

r

θ

z

x ′

y ′

x

y

P

P′

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 4 / 43

Page 5: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Amplitude of the light vibration at point P

ψ(P) =

∫∫S′

f (P′)e ikP′P

P′PK(a) dS(P′)

ψ(P) amplitude at point P,

f (P′)dS(P′) = ψSe ikr0

r0dS(P′) amplitude of sources over dS(P′) centered on P′,

e ikP′P

P′P for spherical propagation from P′ to P,

K(a) is the inclinaison factor introduced by Fresnel to take into account :

the distribution anisotropy of the diffracted energy

lack of “back” diffraction

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 5 / 43

Page 6: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Basics of Fourier Optics

Helmholtz equation for wave propagationGreen function (diverging monochromatic spherical wave)

ψ(P) = −1

∫∫S′ψ(P′)

(ik −

1

P′P

)e ikP′P

P′Pcos(~n,

−−→P′P) dS ′

⇒ Rayleigh-Sommerfeld integralWhen P′P � λ

2π(|ik| � 1

P′P ) :

ψ(P) = −i

λ

∫∫S′ψ(P′)

e ikP′P

P′Pcos(~n,

−−→P′P) dS ′

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 6 / 43

Page 7: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Fresnel near-field approximation

Validity conditions

1 Paraxial optics :−−→P′P '

−→OP = ~r and cos(~n,

−−→P′P) ' cos θ

2 Far from the object : e ikP′P

P′P ' e ikP′P

z

3 About phase : P′P = z

(1 + 1

2

(x−x′

z

)2+ 1

2

(y−y′

z

)2)

+O((

x−x′

z

)4,(

y−y′

z

)4)

Resulting near field

ψ(P) =e ikz

iλzcos θ

∫∫S′ψ(P′)e ik

(r−r′)2

2z dS ′

Impulse response

h(x , y , z) =e ikz

iλzexp

(ik

x2 + y2

2z

),

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 7 / 43

Page 8: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Fraunhofer far-field approximation

→ Further simplification when z � 12

k(x2 + y2)max :

ψ(P) = −e ikz

iλzcos θ e ik x2+y2

2z

∫∫S′ψ(P′)e−2iπ xx′+yy′

λz dS ′

ψ(P) = −e ikz

iλzcos θ e ik x2+y2

2z F{ψ(P′)}.

Spatial frequency : px = xλz, py = y

λz.

→ Severity of the approximation : (x2 + y2)max = 1 mm2, λ = 0.500 µm⇒ z � 6.3 m

→ Diffraction field in the focal plane of a converging lens

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 8 / 43

Page 9: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Examples of diffraction figures

circular pupil vertical slit vertical edge

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 9 / 43

Page 10: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Example of optical filtering

Figure: Optical Fourier transform (after Yves Usson).

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 10 / 43

Page 11: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Example of optical filtering

Figure: Low-pass optical filter.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 11 / 43

Page 12: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Example of optical filtering

Figure: High-pass optical filter.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 12 / 43

Page 13: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Deflexion in a medium of index n = n(y)

Initial wave front Σ0 ; during δt, M and M′ moved by

δz(y) = c(y) δt, δz(y + δy) = c(y + δy) δt

Σδt tilted by δα′ :

tan δα′ =δz(y)− δz(y + δy)

δy= −

∂ δz

∂y

∣∣∣∣y

= −∂

∂y

(c0

n(y)δt

)

= − n(y)∂(1/n)

∂y

c0

n(y)δt =

1

n

∂n

∂yδz(y)

Weak deflexion : δα′ '1

n

∂n

∂yδz(y)

Total deflexion

α′ =

∫Cδα′ =

∫C

1

n

∂n

∂ydz

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 13 / 43

Page 14: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Taking into account the vein-glasses thickness

Fluid enclosed in between windows of index n. Let na be the outside optical index, different fromn. Then (Snell-Descartes) :

nα′ ' na α,

Deflexion angle α at the vein outlet :

α =n

na

∫C

1

n

∂n

∂ydz.

1/n slowly changing within the fluid can be considered constant with respect to fluctuations ∂n∂y

.

Since na ' 1, one gets :

α =

∫C

∂n

∂ydz.

Light rays are deviated in the direction of increasing refraction index

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 14 / 43

Page 15: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Dilute gaz

Gladstone-Dale law

n − 1 = Kρ

for air, K ' 0.22× 10−3m3 · kg−1

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 15 / 43

Page 16: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Non intrusive optical techniques

Shadowgraphy

Figure: Shock wave produced by a supersonic bullet. Source : Rochester Institute ofTechnology.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 16 / 43

Page 17: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Observation of deflected rays

Shadowgraphy is developed by Dvorak in 1880 (Ernst Mach’s collaborator)

Very common phenomenon when air is hot ⇒ light ray distorsion

Two distinct incident rays, distant by ∆y at inlet and ∆yE on the screen. Bottom raydeflected by α ; top ray deflected by α+ dα.

Displacement on the screen : ∆yE = ∆y + zE dα

Optical contrast : I0−ISIS' −zE

∂α∂y

= −zE

na

∫∂2n

∂y2dz :

→ Connected to variations of ∂2n∂y2 .

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 17 / 43

Page 18: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Shadowgraphy images

Widely used for visualizing supersonic and transonic flows ; reveals shocks, boundary layers, etc

Figure: Left : simulation of a space ship atmospheric entrance. Source : NASA. Right :turbulent jet, visualized by steam condensation on the left, by shadowgraphy on the right.Source : UC Irvine.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 18 / 43

Page 19: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Thermal boundary layer

T

y

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 19 / 43

Page 20: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Non intrusive optical techniques

Schlieren

Figure: Shock wave visualization by schlieren technique. Source : Rochester Institute ofTechnology.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 20 / 43

Page 21: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Sclieren principle

Schlieren (german) developed by Foucault (1859), used for flow visualization byToepler (1864).

Principle : Foucault knife in the plane of L2 : suppression of the object positive spectralcomponents :

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 21 / 43

Page 22: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Schlieren and optical filtering

→ In L2 focal plane :

ψ(px , py ) · H(px , py )

Filter H :

H(px , py ) =

{0 for py > 01 for py ≤ 0

=1

2(1− sgn(py ))

→ In the image plane E :

ψE (x , y) = 12F{ψ(px , py )− ψ(px , py ) · sgn(py )

}=

1

2

(ψ(−x ,−y)− ψ(−x ,−y) ∗

1

iπy

)

ψE =1

2(ψ(−x ,−y) + iH{ψ}(−x ,−y))

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 22 / 43

Page 23: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Hilbert Transform

→ Convolution product of input signal ψ with 1/(πy) :

ψH (x , y) = H{ψ(x , y)} =1

π

∫ ∞−∞

ψ(x , y ′)

y − y ′dy ′

→ In the reciprocal space :

F {H{ψ}} = F {ψ ∗ (1/πy)}= F {ψ} · F {1/(πy)}= ψ(ν) · (−i sgn(py ))

→ ±π/2 rotation of the signal negative/positive spectral components

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 23 / 43

Page 24: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Hilbert transform of some imput signal

Signal s(t) Hilbert transform H{s}(t)

1 0sin t − cos tcos t sin t

sin t

t

1− cos t

t

u(t)1

πln

∣∣∣∣∣ t + 12

t − 12

∣∣∣∣∣δ(t)

1

πt

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 24 / 43

Page 25: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Analytical signal

Consider ψ(x , y) = cos(

2πy

λ

), determine ψE and IE

Idem with ψ(x , y) = A(y) cos(ky + φ)

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 25 / 43

Page 26: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Complex demodulation

ψ(y) = A(y) · cos(ky + φ)

By Hilbert transform :

ψH (y) = H{ψ(y)} = A(y) · sin(ky + φ)

it follows the analytical signal :

ψ+(y) = ψ(y) + i ψH (y) = A(y) · e i(ky+φ)

from which can be extracted amplitude and phase :A2(y) = |ψ+(y)|2 = |ψ(y)|2 + |ψH (y)|2

tan(ky + φ) =ψH (y)

ψ(y)

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 26 / 43

Page 27: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Schlieren of a phase modulation

→ Object ≡ weak phase modulation (a� 1) :

ψ(x , y) = e ia cos 2πyλ ' 1 + ia cos

2πy

λ

→ Hilbert transform :

ψH (x , y) = −ia sin2πy

λ

→ Intensity at screen is :

IE (x , y) =1

4

(1 + 2a sin

2πy

λ

).

→ Modulation factor :

M =Imax − Imin

Imax + Imin= 2a.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 27 / 43

Page 28: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Deflected rays with Schlieren

Let the couple D1 − D2 be a square hole - knife edge ; intensity at screen :

Id = I1ak +∆a

ak= I1

(1 + ∆a

ak

),

Contrast : ∆II1

= ∆aak

= αf2ak

= f2ak na

∫∂n∂y

dz.

⇒ Schlieren reveals variations of optical index gradient ∂n∂y

.

Brightest regions on screen ⇔ n increasing in the knife direction.

Axisymmetric flow ⇒ anti-symmetry of the intensity distribution apart of the symmetryplane defined by the knife.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 28 / 43

Page 29: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Couples of diaphragms

Large variety of couples of diaphragms D1 − D2

Balck and white images or coulor ;

Directional couples (square-knife), or non directional (circular mask).

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 29 / 43

Page 30: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Examples of Schlieren visualization

Figure: Left : Shock wave visualization around a nose cone. Source : Georgia Tech. Right :Shock wave around a projectile. Source : Aerospace Sciences Corporation Pty. Ltd.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 30 / 43

Page 31: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Shadowgraphy vs Schlieren visualisation

Figure: Left : shadowgrapohy, right : schlieren (vertical knife). Photographs by AndrewDavidhazy, Kennedy Space Center.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 31 / 43

Page 32: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Non intrusive optical techniques

Interferometry

Figure: Michelson (left) and Zehnder (right) interferometers.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 32 / 43

Page 33: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Light coherence

Technique due to Ludwig Mach (son of) & Ludwig Zehnder.

Beam coherence featuresCoherence time∆t ∼ 1/∆ν : time duration over which the wave train keeps its mean frequency. For apure monochromatic wave (∆ν → 0), ∆t →∞. Over ∆t, wave behaves roughly as amonochromatic wave, its phase at a given point in space, in the direction of propagation,can be reasonnably predicted.

Coherence lengthL = c∆t : distance covered during ∆t. A few µm for mercury lamps ; several metres forsome laser.

Spatial coherencerelated to the finite spatial extension of the source. Two source points, distant by λ,usually emit at slightly different frequencies, with uncorrelated phases. If the two points,laterally displaced, remain on the same wave front, at a given time, then the wave trainsemitted by these two points are spatially coherent.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 33 / 43

Page 34: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Interference figures

Beams interfer under the same incidence ⇒ diffraction grating made of parallel fringeswith infinite inter-fringe.

If path difference ∆` = 0, uniform intensity on screen.Non zero path difference ⇒ ∆φ = 2π∆`

λ0= 2π

λ0

∫( 1

nprobe− 1

nref) dz

Amplitude superposition :

E = Eref + Eprobe = E0 cos

(2πcτ

λ

)+ E0 cos

(2πcτ

λ+ ∆φ

).

⇒ Intensity : I = |E |2 ' E 20 /2

(1 + 2 cos2

(∆φ

2

)).

⇒ Fringe grating.

Reference & probe beams cross with non zero angle θ ⇒ interference fringes, spaced out

by δ =λ/2

sin(θ/2)'λ

θ.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 34 / 43

Page 35: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Benefits and drawbacks of the technique

AssetsDirect access to fluctuations of n, and therefore ρ : most quantitative information aboutthe flow

More details in visualization than with shadowgraphy or schlieren

WeaknessesHigh setup stability required & highest quality of the optical elements (surface planeity< λ/10 !)

Inadapted to 3D flows, due to integration over the optical path

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 35 / 43

Page 36: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Non intrusive optical techniques

Holography

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 36 / 43

Page 37: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Holography principle

Interferometry : two beams, probe & reference, simultaneously propagate along differentpathes before being mixed

Holography : probe beam crossses the medium and interfers with reference beam. Figureof interference written on an holographic plate

Probe and reference beams travel again through the medium ⇒ different figure ofinterferenceGrating resulting from superposition ⇔ path difference in the fluid at rest and inmotion

⇒ Probe & reference beams, when writing and reading, follow the same path, at differenttimes

One propagation path ⇒ self-compensation of optical defects or misalignements⇒ Quality of optical components less rigorous

Reference beam diametre reduced ti a few mm

⇒ Lightened setup, less sensitive to surrounding perturbations ambiantes.

⇒ Simpler and cheaper technique than interferometry

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 37 / 43

Page 38: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Differentes configurations

Figure: Interference grating writing on a holographic plate

Parallel superposition of images with and without flows ⇒ distorted parallel fringe grating

Superposition with a tilt θ 6= 0 of images with and without flow ⇒ distorted tilted fringegrating

Superposition of two images with flow ⇒ visualize relative differences in the flow

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 38 / 43

Page 39: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Relecture

Information recorded on the plate :

I =∣∣Eref + Eprobe

∣∣2 = |Eref |2 +∣∣Eprobe

∣∣2 + E ref · Eprobe + Eref · E probe

When reading with the reference beam, the transmitted amplitude is

Electure = Eref

(|Eref |2 +

∣∣Eprobe

∣∣2) + Eprobe |Eref |2 + E probe E 2ref

(1) (2) (3)

(1) non diffracted transmitted beam (order 0)(2) reconstructed image of the probed object(3) conjugated image of the object.

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 39 / 43

Page 40: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Images of interferometry/holography

Figure: Left : Compressing propeller put in vibration. Visualization of resonances usingholography. Source : Warwick University Eng. Dpt. Right : supersonic flow upon a wing ;visualization of lines of constant density using holography. Source : Lab. Thermique Appliqueeet Turbomachines (Lausanne)

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 40 / 43

Page 41: Méthodes Expérimentales en Mécanique des Fluides Optically ...

Techniques comparaison

Shadowgraphy

→ give access to variations of ∂2n∂y2 .

→ Implementation of high simplicity

Schlieren

→ give access to variations of ∂n∂y

→ Implementation relatively simple

→ High variety of filtering couples

Interferometry→ give access to variations of n(y)

→ Meticulous implementation & optical elements of high quality ⇒ expensive in time andmoney !

→ interferometric holography much simpler and less demanding concerning the opticalelements

Master 1 PAM (P-PAM-305A) MEMF 2010-2011 41 / 43