MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards,...

24
1 SLAU739 – October 2017 Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated MSP430FR2433 LaunchPad™ Development Kit (MSPEXP430FR2433) User's Guide SLAU739 – October 2017 MSP430FR2433 LaunchPad™ Development Kit (MSPEXP430FR2433) The MSP-EXP430FR2433 LaunchPad™ Development Kit is an easy-to-use evaluation module (EVM) based on the MSP430FR2433 Value Line Sensing microcontroller (MCU). It contains everything needed to start developing on the ultra-low-power MSP430FR2x Value Line Sensing MCU platform, including onboard debug probe for programming, debugging, and energy measurements. The board includes two buttons and two LEDs for creating a simple user interface. It also supports using a supercapacitor (must be purchased and installed by the user) that acts like a rechargeable battery, enabling stand-alone applications without an external power supply. Figure 1 shows the MSP-EXP430FR2433 LaunchPad development kit. Figure 1. MSP-EXP430FR2433 LaunchPad Development Kit

Transcript of MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards,...

Page 1: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

1SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

User's GuideSLAU739–October 2017

MSP430FR2433 LaunchPad™ Development Kit(MSP‑‑EXP430FR2433)

The MSP-EXP430FR2433 LaunchPad™ Development Kit is an easy-to-use evaluation module (EVM)based on the MSP430FR2433 Value Line Sensing microcontroller (MCU). It contains everything neededto start developing on the ultra-low-power MSP430FR2x Value Line Sensing MCU platform, includingonboard debug probe for programming, debugging, and energy measurements. The board includes twobuttons and two LEDs for creating a simple user interface. It also supports using a supercapacitor (mustbe purchased and installed by the user) that acts like a rechargeable battery, enabling stand-aloneapplications without an external power supply.

Figure 1 shows the MSP-EXP430FR2433 LaunchPad development kit.

Figure 1. MSP-EXP430FR2433 LaunchPad Development Kit

Page 2: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

www.ti.com

2 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

Contents1 Getting Started ............................................................................................................... 3

1.1 Introduction .......................................................................................................... 31.2 Key Features ........................................................................................................ 31.3 What's Included ..................................................................................................... 31.4 First Steps: Out-of-Box Experience .............................................................................. 41.5 Next Steps: Looking Into the Provided Code ................................................................... 4

2 Hardware...................................................................................................................... 52.1 Block Diagram....................................................................................................... 52.2 Hardware Features ................................................................................................. 62.3 Power ............................................................................................................... 102.4 Measure Current Draw of the MSP430 MCU.................................................................. 122.5 Clocking ............................................................................................................ 122.6 Using the eZ-FET Debug Probe With a Different Target .................................................... 122.7 BoosterPack Pinout ............................................................................................... 132.8 Design Files ........................................................................................................ 142.9 Hardware Change log ............................................................................................ 14

3 Software Examples ........................................................................................................ 143.1 Out-of-Box Software Example ................................................................................... 153.2 Blink LED Example................................................................................................ 16

4 Resources ................................................................................................................... 164.1 Integrated Development Environments......................................................................... 164.2 LaunchPad Websites ............................................................................................. 194.3 MSPWare and TI Resource Explorer........................................................................... 204.4 FRAM Utilities...................................................................................................... 204.5 MSP430FR2433 MCU ............................................................................................ 214.6 Community Resources ........................................................................................... 21

5 FAQ .......................................................................................................................... 216 Schematics.................................................................................................................. 22

List of Figures

1 MSP-EXP430FR2433 LaunchPad Development Kit .................................................................... 12 MSP-EXP430FR2433 Overview ........................................................................................... 53 MSP-EXP430FR2433 Block Diagram..................................................................................... 54 MSP430FR2433 Pinout..................................................................................................... 65 eZ-FET Debug Probe ....................................................................................................... 76 eZ-FET Isolation Jumper Block Diagram ................................................................................. 87 Application Backchannel UART in Device Manager .................................................................... 98 MSP-EXP430FR2433 Power Block Diagram........................................................................... 109 MSP-EXP430FR2433 Supercap Power Block Diagram .............................................................. 1110 BoosterPack Checker Tool ............................................................................................... 1311 LaunchPad Kit to BoosterPack Module Connector Pinout............................................................ 1412 TI Resource Explorer Cloud .............................................................................................. 1713 CCS Cloud .................................................................................................................. 1714 Directing the Project>Import Function to the Demo Project .......................................................... 1815 When CCS Has Found the Project ...................................................................................... 1916 Using TI Resource Explorer to Browse MSP-EXP430FR2433 in MSPWare ...................................... 2017 Schematics (1 of 2) ........................................................................................................ 2218 Schematics (2 of 2) ........................................................................................................ 23

List of Tables

1 EnergyTrace Technology ................................................................................................... 7

Page 3: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

www.ti.com Getting Started

3SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

2 Isolation Block Connections ................................................................................................ 83 Hardware Change Log .................................................................................................... 144 Software Examples ........................................................................................................ 145 IDE Minimum Requirements for MSP-EXP430FR2433 ............................................................... 146 Source File and Folders ................................................................................................... 157 Source File and Folders ................................................................................................... 168 How MSP Device Documentation is Organized........................................................................ 21

TrademarksLaunchPad, BoosterPack, Code Composer Studio, EnergyTrace, MSP430, E2E are trademarks of TexasInstruments.IAR Embedded Workbench is a registered trademark of IAR Systems.All other trademarks are the property of their respective owners.

1 Getting Started

1.1 IntroductionThe 16-MHz MSP430FR2433 device features 15.5KB of embedded FRAM (ferroelectric random accessmemory), a nonvolatile memory known for its ultra-low power, high endurance, and high-speed writeaccess. Combined with the 4KB of on-chip SRAM, users have access to 15.5KB of memory to splitbetween their program and data as required. For example, a data logging application may require a largedata memory with a relatively small program memory, so the memory may be allocated as requiredbetween program and data memory.

Rapid prototyping is simplified by the 20-pin BoosterPack™ plug-in module headers, which support a widerange of available BoosterPack modules. You can quickly add features like wireless connectivity, graphicaldisplays, environmental sensing, and much more. Design your own BoosterPack plug-in module orchoose among many already available from TI and third-party developers.

Free software development tools are also available, such as TI's Eclipse-based Code Composer Studio™IDE (CCS) and IAR Embedded Workbench® IDE. Both of these IDEs support EnergyTrace™ technologyfor real-time power profiling and debugging when paired with the MSP430FR2433 LaunchPaddevelopment kit.

1.2 Key Features• MSP ULP FRAM technology based MSP430FR2433 16-bit MCU• EnergyTrace Technology available for ultra-low-power debugging• 20-pin LaunchPad development kit standard leveraging the BoosterPack plug-in module ecosystem• Onboard eZ-FET debug probe• 2 buttons and 2 LEDs for user interaction

1.3 What's Included

1.3.1 Kit Contents• 1 MSP-EXP430FR2433 LaunchPad development kit• 1 Micro USB cable• 1 Quick start guide• The supercapacitor is not included and must be provided by the user

1.3.2 Software Examples• Out-of-Box Software

Page 4: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

Getting Started www.ti.com

4 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

1.4 First Steps: Out-of-Box ExperienceAn easy way to get started with the EVM is by using its preprogrammed out-of-box code. This codedemonstrates some key features of the EVM.

1.4.1 Connecting to the ComputerConnect the LaunchPad development kit to a computer using the included USB cable. A green power LEDshould illuminate. For proper operation, drivers are needed. It is recommended to get drivers by installingan IDE such as TI's CCS or IAR EW430. Drivers are also available at www.ti.com/MSPdrivers.

1.4.2 Running the Out-of-Box DemoThe out-of-box (OOB) demo for the MSP-EXP430FR2433 LaunchPad development kit demonstrates howto setup a periodic temperature data logger, by using a ring buffer inside the FRAM memory of theMSP430FR2433 MCU. Alternatively, the demo also implements a real-time temperature sensor.

Both the logged and the real-time temperature data can be transmitted to the PC and visualized using theaccompanying cloud GUI (visit MSP-EXP430FR2433 OOB GUI). If access to the cloud GUI is notavailable, the data can still be observed using any serial terminal application (application UART settings:115200, 8, 1, n).

By default after power up, the LaunchPad development kit enters the FRAM Data Log mode. The redLED1 blinks periodically (approximately every 5 seconds), which indicates that the device is waking up tolog the temperature and going back to sleep. Press the left user button S1 to transfer the storedtemperature to the PC.

Next, try pressing the S1 and S2 buttons simultaneously to enter the Live Temperature mode. TheLaunchPad development kit should start streaming live temperature data to the PC to be visualized in theMSP-EXP430FR2433 OOB GUI or displayed in a serial terminal. In this mode, the application also keepstrack of a temperature threshold (the default is 25°C), and when a new temperature data is acquired, it iscompared against that threshold. If the current temperature is above the threshold, the red LED1illuminates, and if the current temperature is below the threshold, the green LED2 illuminates. Pressing S1or S2 independently increases or decreases the temperature threshold in this mode.

The user can influence the temperature of the device by blowing hot or cold air and observing thechanges in the user LED brightness or see data changes on the GUI.

1.5 Next Steps: Looking Into the Provided CodeAfter the EVM features have been explored, the fun can begin. It is time to open an integrateddevelopment environment and start editing the code examples. See Section 4 for available IDEs andwhere to download them.

The quickest way to get started using the LaunchPad development kit is to use TI's Cloud DevelopmentTools. The cloud-based Resource Explorer provides access to all of the examples and resources inMSPWare software. Code Composer Studio Cloud is a simple cloud-based IDE that enables developingand running applications on the LaunchPad development kit.

The out-of-box source code and more code examples are provided and available on the download page.Code is licensed under BSD, and TI encourages reuse and modifications to fit specific needs.

Section 3 describes all functions in detail and provides a project structure to help familiarize you with thecode.

With the onboard eZ-FET debug probe debugging and downloading new code is simple. A USBconnection between the EVM and a PC through the provided USB cable is all that is needed.

Page 5: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

Target device MSP430FR2433

Crystal 32.768 kHz

Micro-B USB

3.3-V LDO

ESD Protection

Debug MCU

LED Red, Green

Crystal, 4 MHz

UART, SBW to Target

User interface2 buttons, 2 LEDs

20-pin LaunchPad

standard headers

Power to Target

Reset button

EnergyTraceTechnology

Supercapacitor

www.ti.com Hardware

5SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

2 HardwareFigure 2 shows an overview of the MSP-EXP430FR2433 hardware.

Figure 2. MSP-EXP430FR2433 Overview

2.1 Block DiagramFigure 3 shows the block diagram.

Figure 3. MSP-EXP430FR2433 Block Diagram

Page 6: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

RST/NMI/SBWTDIO

TEST/SBWTCK

P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+

P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A5

P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A6

P1.7/UCA0STE/SMCLK/TDO/A7

P1.0

/UC

B0S

TE

/TA

0C

LK

/A0/V

ere

f+

P1

.1/U

CB

0C

LK

/TA

0.1

/A1

P1.2

/UC

B0S

IMO

/UC

B0S

DA

/TA

0.2

/A2

/Vere

f-

P1.3

/UC

B0S

OM

I/U

CB

0S

CL/M

CLK

/A3

P2.2

/SY

NC

/AC

LK

P3.0

P2.3

P3.1/UCA1STE

P2.4/UCA1CLK

P2.5/UCA1RXD/UCA1SOMI

P2.6/UCA1TXD/UCA1SIMO

DVSS

P2.7

P3.2

P2.0

/XO

UT

P2.1

/XIN

DV

SS

DV

CC

MSP430FR2433IRGE

1

2

3

4

5

6

7 8 9 10 11 12

13

14

15

16

17

18

192021222324

Hardware www.ti.com

6 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

2.2 Hardware Features

2.2.1 MSP430FR2433 MCUThe MSP430FR2433 is an ultra-low-power MSP430FRx FRAM-based microcontroller (MCU), which offerextended data logging and security capabilities. The MSP430FR2433 offers the small VQFN package(4 mm × 4 mm) in the FRAM microcontroller portfolio, combined with a variety of integrated peripheralsand ultra-low power consumption. FRAM is a cutting edge memory technology, combining the bestfeatures of flash and RAM into one nonvolatile memory. More information on FRAM can be found atwww.ti.com/fram.

Device features include:• 1.8-V to 3.6-V operation• 16-bit RISC architecture up to 16-MHz system clock and 8-MHz FRAM access• 15KB of program FRAM, 512B of information FRAM, and 4KB of RAM• 8-channel 10-bit ADC• Four 16-Bit timers

– Two timers with three capture/compare registers each (Timer_A3)– Two timers with two capture/compare registers each (Timer_A2)

• 32-bit hardware multiplier (MPY)• 19 GPIOs• Two enhanced universal serial communication interfaces (eUSCI_A) support UART, IrDA, and SPI• One eUSCI (eUSCI_B) supports SPI and I2C

Figure 4. MSP430FR2433 Pinout

Page 7: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

www.ti.com Hardware

7SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

2.2.2 eZ-FET Onboard Debug Probe With EnergyTrace TechnologyTo keep development easy and cost effective, TI's LaunchPad development kits integrate an onboarddebug probe, which eliminates the need for expensive programmers. The MSP-EXP430FR2433 has theeZ-FET debug probe (see Figure 5), which is a simple and low-cost debugger that supports all MSP430™device derivatives.

Figure 5. eZ-FET Debug Probe

The MSP-EXP430FR2433 LaunchPad development kit features EnergyTrace technology but does nothave support for EnergyTrace++ technology. The EnergyTrace functionality varies across the MSPportfolio.

Table 1. EnergyTrace Technology

Features EnergyTrace Technology EnergyTrace++ TechnologyCurrent monitoring Yes YesCPU state No YesPeripheral and system state No Yes

Devices supported All MSP430 MCUs MSP430FR59xx andMSP430FR69xx MCUs

Development tool required MSP-FET or eZ-FET MSP-FET or eZ-FET

The dotted line through J101 shown in Figure 5 divides the eZ-FET debug probe from the target area. Thesignals that cross this line can be disconnected by jumpers on J101, the isolation jumper block. For moredetails on the isolation jumper block, see Section 2.2.3.

The eZ-FET also provides a backchannel UART-over-USB connection with the host, which can be veryuseful during debugging and for easy communication with a PC. For more details, see Section 2.2.4.

The eZ-FET hardware can be found in the schematics in Section 6 and in the MSP-EXP430FR2433design files download page. The software and more information about the debugger can be found on theeZ-FET wiki. More information on the eZ-FET can be found in the MSP Debuggers User's Guide.

Page 8: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

eZ-FET DebugProbe

Isolation Jumper Block

Spy

-Bi-W

ire (

SB

W)

Em

ulat

ion

App

licat

ion

UA

RT

3.3-

V P

ower

5-V

Pow

er

Target MSP430FR2433

eZ-F

ET

MS

P43

0 T

arg

et

USB Connector

in outLDO

Boo

ster

Pac

k H

eade

r

Boo

ster

Pac

k H

eade

r

USB

EnergyTraceTechnology

Hardware www.ti.com

8 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

2.2.3 Debug Probe Connection: Isolation Jumper BlockThe isolation jumper block at jumper J101 allows the user to connect or disconnect signals that cross fromthe eZ-FET domain into the MSP430FR2433 target domain. This includes eZ-FET Spy-Bi-Wire signals,application UART signals, and 3.3-V and 5-V power. Table 2 describes these connections.

Reasons to open these connections:• To remove any and all influence from the eZ-FET debug probe for high accuracy target power

measurements• To control 3-V and 5-V power flow between the eZ-FET and target domains• To expose the target MCU pins for other use than onboard debugging and application UART

communication• To expose the programming and UART interface of the eZ-FET so that it can be used for devices other

than the onboard MCU. See Section 2.6 for how to use the eZ-FET Debug Probe with a differenttarget.

Table 2. Isolation Block Connections

Jumper DescriptionGND Ground5V 5-V VBUS from USB3V3 3.3-V rail, derived from VBUS in the eZ-FET domain

RXD << Backchannel UART: The target FR2433 receives data through this signal. The arrows indicate thedirection of the signal.

TXD >> Backchannel UART: The target FR2433 sends data through this signal. The arrows indicate the directionof the signal.

SBW RST Spy-Bi-Wire debug: SBWTDIO data signal. This pin also functions as the RST signal (active low).SBW TST Spy-Bi-Wire debug: SBWTCK clock signal. This pin also functions as the TST signal.

Figure 6. eZ-FET Isolation Jumper Block Diagram

Page 9: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

www.ti.com Hardware

9SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

2.2.4 Application (or Backchannel) UARTThe backchannel UART allows communication with the USB host that is not part of the target application'smain functionality. This is very useful during development, and also provides a communication channel tothe PC host side. This can be used to create graphical user interfaces (GUIs) and other programs on thePC that communicate with the LaunchPad.

Figure 6 shows the pathway of the backchannel UART. The backchannel UART is the UART oneUSCI_A0.

On the host side, a virtual COM port for the application backchannel UART is generated when theLaunchPad enumerates on the host. You can use any PC application that interfaces with COM ports,including terminal applications like Hyperterminal or Docklight, to open this port and communicate with thetarget application. You need to identify the COM port for the backchannel. On Windows PCs, DeviceManager can assist.

Figure 7. Application Backchannel UART in Device Manager

The backchannel UART is the MSP Application UART1 port. In this case, Figure 7 shows COM13, but thisport can vary from one host PC to the next. After you identify the correct COM port, configure it in yourhost application according to its documentation. You can then open the port and begin communication to itfrom the host.

On the target MSP430FR2433 side, the backchannel is connected to the eUSCI_A0 module. The eZ-FEThas a configurable baud rate; therefore, it is important that the PC application configures the baud rate tobe the same as what is configured on the eUSCI_A0.

2.2.5 Optional Features

2.2.5.1 SupercapacitorA through-hole component footprint is available on the board and allows user to populate a supercapacitorto power the system without any external power. The recommended part is the Panasonic EEC-S0HD224H 220 mF (0.22 F) supercapacitor and can be purchased from major electronic componentdistributers.

NOTE: A supercapacitor is not included in the kit and must be supplied by the user.

Using the onboard jumper headers, the supercapacitor can configured in the following ways: charging,using (direct connection to 3V3 rail), or disconnected. For more details on these use modes and how touse them, see Section 2.3.

Page 10: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

Hardware www.ti.com

10 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

2.3 PowerThe board was designed to accommodate various powering methods, including through the onboard eZ-FET as well as from external or BoosterPack power. Figure 8 shows power from the ez-FET and powerfrom external source through header J5 or the BoosterPack module.

Figure 8. MSP-EXP430FR2433 Power Block Diagram

2.3.1 eZ-FET USB PowerThe most common power-supply scenario is from USB through the eZ-FET debugger. This provides 5-Vpower from the USB and also regulates this power rail to 3.3 V for eZ-FET operation and 3.3 V to thetarget side of the LaunchPad. Power from the eZ-FET is controlled by jumper J101. For 3.3 V, make surethat a jumper is connected across the J101 3V3 terminal.

2.3.2 BoosterPack and External Power SupplyHeader J5 is present on the board to supply external power directly. It is important to comply with thedevice voltage operation specifications when supplying external power. The MSP430FR2433 has anoperating range of 1.8 V to 3.6 V. More information can be found in the MSP430FR2433 Mixed-SignalMicrocontroller data sheet.

Page 11: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

www.ti.com Hardware

11SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

2.3.3 Supercap (C6)If the supercapacitor is populated, it can be used to evaluate the ultra-low power feature of theMSP430FR2433 target device. See how long you can run your application on the supercap alone.

NOTE: A supercapacitor is not included in the kit and must be supplied by the user.

Figure 9 shows charging the supercap and powering directly from it.

Figure 9. MSP-EXP430FR2433 Supercap Power Block Diagram

2.3.3.1 Charging the SupercapThe supercapacitor can be charged when the EVM is plugged into the PC or when the board is externallypowered. During charging, set J4 to the “Charge” setting, this adds in a current limiting resistor forcharging.

To charge the supercap, power must be coming from the eZ-FET debug probe, external power throughJ5, or a BoosterPack module powering through J1. Allow two to three minutes for the supercap to charge(time may vary depending on initial charge of the supercap and your power source) to full VCC.

2.3.3.2 Using the SupercapAfter charging of the supercapacitor, you can move the J4 jumper to the Use setting and then unplugpower. This connects the supercapacitor to the 3V3 rail without the charging resistor in between. At thispoint, the LaunchPad kit is being powered completely by the C6 supercapacitor.

For lowest power operation, make sure to disconnect the J101 jumpers so that the eZ-FET is not alsopowered by the C6 supercap.

2.3.3.3 Disabling the SupercapThe supercapacitor can be completely decoupled from the board by removing the J4 jumper. Hanging thisjumper off only one pin can prevent losing the jumper.

Page 12: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

Hardware www.ti.com

12 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

2.4 Measure Current Draw of the MSP430 MCUTo measure the current draw of the MSP430FR2433 using a multimeter, use the 3V3 jumper on the J101jumper isolation block. The current measured includes the target device and any current drawn throughthe BoosterPack headers.

To measure ultra-low power, follow these steps:1. Remove the 3V3 jumper in the J101 isolation block, and attach an ammeter across this jumper.2. Consider the effect that the backchannel UART and any circuitry attached to the MSP430FR2433 may

have on current draw. Consider disconnecting these at the isolation jumper block, or at least considertheir current sinking and sourcing capability in the final measurement.

3. Make sure there are no floating inputs/outputs (I/Os) on the MSP430FR2433. These causeunnecessary extra current draw. Every I/O should either be driven out or, if it is an input, should bepulled or driven to a high or low level.

4. Begin target execution.5. Measure the current. Keep in mind that if the current levels are fluctuating, it may be difficult to get a

stable measurement. It is easier to measure quiescent states.

EnergyTrace can also be used to compare various current profiles and better optimize your energyperformance!

2.5 ClockingThe MSP-EXP430FR2433 provides external clocks in addition to the internal clocks in the device.• Q1: 32-kHz Epson crystal (FC-135R) 12.5-pF crystal, part number: X1A0001410014

The 32-kHz crystal allows for lower LPM sleep currents than do the other low-frequency clock sources.Therefore, the presence of the crystal allows the full range of low-power modes to be used.

By default, the crystal is not connected to the MSP430FR2433 because the target pins are multiplexedwith 2 BoosterPack header pins. 0-Ω resistors R4 and R5 need to be removed, while R2 and R3 must beshorted across, to connect the external crystal to the MSP430FR2433. See the onboard crystal selectionresistors silkscreen for how to configure the resistors to select between the crystal or the BoosterPackpins.

The internal clocks in the device default to the following configuration:• MCLK: DCO 1 MHz• SMCLK: DCO 1 MHz• ACLK: REFO 32.768 kHz

For more information about configuring internal clocks and using the external oscillators, see theMSP430FR4xx and MSP430FR2xx Family User's Guide.

2.6 Using the eZ-FET Debug Probe With a Different TargetThe eZ-FET debug probe on the LaunchPad can interface to most MSP430 derivative devices, not just theonboard MSP430FR2433 target device.

To do this, disconnect every jumper in the isolation jumper block. This is necessary, because the debugprobe cannot connect to more than one target at a time over the Spy-Bi-Wire (SBW) connection.

Next, make sure the target board has proper connections for SBW. To be compatible with SBW, thecapacitor on RST/SBWTDIO cannot be greater than 2.2 nF. The documentation for designing MSP430JTAG interface circuitry is the MSP430 Hardware Tools User's Guide.

Finally, wire together these signals from the debug probe side of the isolation jumper block to the targethardware:• 5 V (if 5 V is needed)• 3.3 V• GND• SBWTDIO

Page 13: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

www.ti.com Hardware

13SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

• SBWTCK• TXD (if the UART backchannel is to be used)• RXD (if the UART backchannel is to be used)

This wiring can be done either with jumper wires or by designing the board with a connector that plugs intothe isolation jumper block.

2.7 BoosterPack PinoutThe LaunchPad kit adheres to the 20-pin LaunchPad pinout standard. A standard was created to aidcompatibility between LaunchPad kits and BoosterPack modules across the TI ecosystem.

While most BoosterPack modules are compliant with the standard, some are not. The MSP-EXP430FR2433 LaunchPad kit is compatible with all 20-pin BoosterPack modules that are compliant withthe standard. If the reseller or owner of the BoosterPack module does not explicitly indicate compatibilitywith the MSP-EXP430FR2433 LaunchPad development kit, compare the schematic of the candidateBoosterPack module with the LaunchPad kit to ensure compatibility. Keep in mind that sometimesconflicts can be resolved by changing the MSP430FR2433 device pin function configuration in software.

Figure 10. BoosterPack Checker Tool

To check the compatibility of your desired BoosterPack modules for your design, with a LaunchPad kit ofyour choice, you can use the BoosterPack Checker tool. This allows you to select any LaunchPad kit thatTI offers and determine its compatibility with any number of BoosterPack modules. You can also add yourown BoosterPack module to check its compatibility as you prototype that next design.

Figure 11 shows the 20-pin pinout of the MSP430FR2433 LaunchPad development kit.

The inner side of the dashed line shows some of the software selectable functions on each pin, includingthe functions that conform to the standard. However, each pin may have other functionalities that can beconfigured by the software. See the MSP430FR2433 data sheet for more details on individual pinfunctions.

Page 14: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

Hardware www.ti.com

14 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

Figure 11. LaunchPad Kit to BoosterPack Module Connector Pinout

2.8 Design Files

2.8.1 HardwareSection 6 shows the schematics. All design files including schematics, layout, bill of materials (BOM),Gerber files, and documentation are available on the MSP-EXP430FR2433 design files download page.

2.8.2 SoftwareAll design files including TI-TXT object-code firmware images, software example projects, anddocumentation are available on the MSP-EXP430FR2433 design files download page.

2.9 Hardware Change logTable 3 lists the revision history of the MSP-EXP430FR2433 hardware.

Table 3. Hardware Change Log

PCB Revision DescriptionRev 1.0 Initial release

3 Software ExamplesFour software examples are included with the MSP430FR2433 LaunchPad development kit (see Table 4),which can be found in the MSP430FR2433 LaunchPad development kit download page and are alsoavailable inside the MSPWare software.

Table 4. Software Examples

Demo Name BoosterPackRequired Description More Details

OutOfBox_FR2433 None The out-of-box demo preprogrammed on the LaunchPad kit from thefactory. Demonstrates features of MSP430FR2433 device Section 3.1

BlinkLED_FR2433 None Blinks an LED on the LaunchPad kit at a fixed interval Section 3.2

To use any of the software examples with the LaunchPad development kit, you must have an integrateddevelopment environment (IDE) that supports the MSP430FR2433 device (see Table 5).

Table 5. IDE Minimum Requirements for MSP-EXP430FR2433

Code Composer Studio IDE IAR Embedded Workbench for TexasInstruments MSP430 IDE

Version 6.1.3 or later Version 6.30 or later

Page 15: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

www.ti.com Software Examples

15SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

For more details on how to get started quickly, and where to download the latest CCS and IAR IDEs, seeSection 4.

3.1 Out-of-Box Software ExampleThis section describes the functionality and structure of the out-of-box software that is preloaded on theEVM.

The Out-of-Box demo for the MSP-EXP430FR2433 LaunchPad development kit demonstrates how tosetup a periodic temperature data logger, by using a ring-buffer inside the FRAM memory of theMSP430FR2433 MCU. The demo also implements a real-time temperature sensor.

3.1.1 Source File StructureThe project is split into multiple files (see Table 6). This makes it easier to navigate and reuse parts of itfor other projects.

Table 6. Source File and Folders

Name Descriptionmain.c Out-of-Box demo main function

FRAMLogMode.c Contains functions for the FRAM data logging modeLiveTempMode.c Contains function for the live temperature streaming modeLibrary: driverlib Device driver library

Library: fram-utilities Contains the CTPL and NVS software libraries from the FRAM UtilitiesLibrary: iqmathlib Fixed Point Math Library for MSP

Library: jsmn Third-party library for parsing JSON formatted strings

3.1.2 OverviewAn online cloud GUI (MSP-EXP430FR2433 OOB GUI) can be used to download this demo to your boardand visualize the temperature data. A serial terminal can also be used to display the data being sent fromthe demo to the PC (application UART settings: 115200, 8, 1, n).

Upon powering up the Out-of-Box demo, the green LED2 lights up for 1 second, and then the boardenters FRAM data logging mode to measure and record the internal temperature of the MSP430FR2433MCU every 5 seconds.

By default after power up, the LaunchPad development kit enters the FRAM data logging mode. At anytime, press the S1 and S2 buttons simultaneously to switch between the live temperature mode and theFRAM data logging mode.

3.1.3 FRAM Data Logging ModeThis mode shows the FRAM data logging capabilities of the MSP430FR2433. After starting this mode, theLaunchPad wake up from LPM3.5 approximately every 5 seconds (indicated by short red LED1 blink) tolog temperature values. Data are stored into a ring buffer located in the FRAM memory. When the ringbuffer fills up to its capacity, the oldest temperature data is discarded and replaced with the newest data.• Press the left button S1 to transfer all data stored inside the ring buffer to the PC.• Press the right button S1 to clear all data and return to an empty ring buffer.• The compute through power loss (CTPL) and nonvolatile storage (NVS) libraries from the FRAM

Utilities are used in this demo to simplify the code to setup this simple data logging application.

3.1.4 Live Temperature ModeIn this mode, the LaunchPad kit repeatedly measures the internal temperature of the MSP430FR2433MCU and transfers the data to the PC through UART.

Page 16: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

Software Examples www.ti.com

16 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

The application also keeps track of a temperature threshold in this mode (default is 25°C), and when anew temperature data is acquired, it is compared against the threshold. If measured temperature is belowthe threshold, the green LED2 illuminates, and if the measured temperature is above the threshold, thered LED1 illuminates.

Independently pressing S1 or S2 increases or decreases, respectively, the temperature threshold in thismode. The further the recorded temperature is from the threshold, the brighter the corresponding LEDsilluminate.

The user can influence the temperature of the device by blowing hot or cold air and observing thechanges in the user LED brightness or see data changes on the GUI.

3.2 Blink LED ExampleThis very simple software example shows how to software toggle a GPIO to blink an LED on theLaunchPad kit.

3.2.1 Source File StructureThe project is split into multiple files (see Table 7). This makes it easier to navigate and reuse parts of itfor other projects.

Table 7. Source File and Folders

Name Descriptionmain.c The Blink LED main function

Library: Driverlib Device driver library

The main code simply uses the MSP430 Driver Library to halt the watchdog timer and to configure andtoggle the P1.0 GPIO pin connected to the LED inside a software loop.

4 Resources

4.1 Integrated Development EnvironmentsAlthough the source files can be viewed with any text editor, more can be done with the projects if theyare opened with a development environment like Code Composer Studio IDE and IAR EmbeddedWorkbench IDE.

4.1.1 TI Cloud Development ToolsTI's Cloud-based software development tools provide instant access to MSPWare content and a web-based IDE.

4.1.1.1 TI Resource Explorer CloudTI Resource Explorer Cloud provides a web interface for browsing examples, libraries and documentationfound in MSPWare without having to download files to your local drive (see Figure 12).

Visit TI Resource Explorer Cloud now at dev.ti.com.

Page 17: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

www.ti.com Resources

17SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

Figure 12. TI Resource Explorer Cloud

4.1.1.2 Code Composer Studio CloudCode Composer Studio Cloud (CCS Cloud) is a web-based IDE that enables you to quickly create, edit,build and debug applications for your LaunchPad development kit. No need to download and install largesoftware packages, simply connect your LaunchPad development kit and begin. You can choose to selectfrom a large variety of examples in MSPWare software and Energia or develop your own application. CCSCloud supports debug features such as execution control, breakpoints and viewing variables.

For a full comparison between CCS Cloud and CCS Desktop, visit the TI Cloud Tools page.

Visit Code Composer Studio Cloud now at dev.ti.com.

Figure 13. CCS Cloud

Page 18: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

Resources www.ti.com

18 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

4.1.2 Code Composer Studio IDECode Composer Studio Desktop is a professional integrated development environment that supports TI'sMicrocontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of toolsused to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source codeeditor, project build environment, debugger, profiler, and many other features.

Learn more about CCS and download it at www.ti.com/tool/ccstudio.

CCS v7.0.0 or higher is required. When CCS has been launched, and a workspace directory chosen, useProject>Import Existing CCS Eclipse Project. Direct it to the desired demo's project directory that containsmain.c.

Figure 14. Directing the Project>Import Function to the Demo Project

Selecting the \CCS subdirectory also works. The CCS-specific files are located there.

When you click OK, CCS should recognize the project and allow you to import it. The indication that CCShas found it is that the project appears in the box shown in Figure 15, and it has a checkmark to the left ofit.

Page 19: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

www.ti.com Resources

19SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

Figure 15. When CCS Has Found the Project

Sometimes CCS finds the project but does not show a checkmark; this might mean that your workspacealready has a project by that name. You can resolve this by renaming or deleting that project. (Even if youdo not see it in the CCS workspace, be sure to check the workspace directory on the file system.)

4.1.3 IAR Embedded Workbench for Texas Instruments 430IAR Embedded Workbench for MSP430 is another very powerful integrated development environment thatallows you to develop and manage complete embedded application projects. It integrates the IAR C/C++Compiler, IAR Assembler, IAR ILINK Linker, editor, project manager, command line build utility, and IARC-SPY® Debugger.

Learn more about IAR Embedded Workbench for MSP430 and download it atsupp.iar.com/Download/SW/?item=EW430-EVAL.

IAR 6.30 or higher is required. To open the demo in IAR, click File>Open>Workspace…, and browse tothe *.eww workspace file inside the \IAR subdirectory of the desired demo. All workspace information iscontained within this file.

The subdirectory also has an *.ewp project file. This file can be opened into an existing workspace byclicking Project>Add-Existing-Project….

Although the software examples have all of the code required to run them, IAR users may download andinstall MSPWare, which contains MSP430 libraries and the TI Resource Explorer. These are alreadyincluded in a CCS installation (unless the user selected otherwise).

4.2 LaunchPad WebsitesMore information about the LaunchPad development kit, supported BoosterPack plug-in modules, andavailable resources can be found at:• MSP-EXP430FR2433 Tool Folder: Resources specific to this particular LaunchPad development kit• TI's LaunchPad portal: Information about all LaunchPad development kits from TI

Page 20: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

Resources www.ti.com

20 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

4.3 MSPWare and TI Resource ExplorerTI Resource Explorer is a tool integrated into CCS that allows you to browse through available designresources. TI Resource Explorer helps you quickly find what you need inside packages includingMSPWare, ControlSuite, TivaWare, and more. TI Resource Explorer is well organized to find everythingthat you need quickly, and you can import software projects into your workspace in one click.

TI Resource Explorer Cloud is one of the TI Cloud Development tools and is tightly integrated with CCSCloud. See Section 4.1.1 for more information.

MSPWare is a collection of code examples, software libraries, data sheets, and other design resources forall MSP devices delivered in a convenient package – essentially everything developers need to becomeMSP experts.

In addition to providing a complete collection of existing MSP design resources, MSPWare also includes ahigh-level API called MSP Driver Library. This library makes it easy to program MSP hardware. For moreinformation, see www.ti.com/tool/mspware.

Figure 16. Using TI Resource Explorer to Browse MSP-EXP430FR2433 in MSPWare

Inside TI Resource Explorer, these examples and many more can be found, and easily imported into CCSwith one click.

4.4 FRAM UtilitiesThe TI FRAM Utilities is a collection of embedded software utilities that leverage the ultra-low-power andvirtually unlimited write endurance of FRAM. The utilities are available for MSP430FRxx FRAMmicrocontrollers and provide example code to help start application development.

4.4.1 Compute Through Power Loss (CTPL)CTPL is a utility API set that enables ease of use with LPMx.5 low-power modes and a powerful shutdownmode that allows an application to save and restore critical system components when a power loss isdetected.

4.4.2 Nonvolatile Storage (NVS)The NVS library makes handling of nonvolatile data easy and robust against intermittent power loss orasynchronous device resets. To keep data storage constant, the nonvolatile storage library containsfunctions that store data in a way that is ensures recovery of the last valid entry without data corruption.

Page 21: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

www.ti.com Resources

21SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

4.5 MSP430FR2433 MCU

4.5.1 Device DocumentationAt some point, you will probably want more information about the MSP430FR2433 device. For every MSPdevice, the documentation is organized as shown in Table 8.

Table 8. How MSP Device Documentation is Organized

Document For MSP430FR2433 DescriptionDevice familyuser's guide

MSP430FR4xx and MSP430FR2xxFamily User's Guide

Architectural information about the device, including all modules andperipherals such as clocks, timers, ADC, and so on.

Device-specificdata sheet

MSP430FR2433 Mixed-SignalMicrocontroller data sheet Device-specific information and all parametric information for this device

4.5.2 MSP430FR2433 Code ExamplesMSP430FR243x, MSP430FR253x, MSP430FR263x Code Examples is a set of simple C examples thatdemonstrate how to use the entire set of peripherals on the MSP4302433 MCU, including serialcommunication, ADC10, Timer, and others, through direct register access. Every MSP derivative has a setof these code examples. When starting a new project or adding a new peripheral, these examples serveas a great starting point.

4.5.3 MSP430 Application Notes and TI DesignsMany application notes can be found at www.ti.com/msp430, along with TI Designs with practical designexamples and topics.

4.6 Community Resources

4.6.1 TI E2E™ CommunitySearch the forums at e2e.ti.com. If you cannot find your answer, post your question to the community.

4.6.2 Community at LargeMany online communities focus on the LaunchPad development kits – for example, www.43oh.com. Youcan find additional tools, resources, and support from these communities.

5 FAQQ: I can't get the backchannel UART to connect. What's wrong?A: Check the following:• See Section 5.8.2 of the MSP Debuggers User's Guide for supported baud rates when using the eZ-

FET.• Do the baud-rate settings in the terminal application on the host PC and the eUSCI match?• Are the appropriate jumpers in place on the isolation jumper block?• Probe on RXD and send data from the host. If you don't see data, it might be a problem on the host

side.• Probe on TXD while sending data from the MSP. If you don't see data, it might be a configuration

problem with the eUSCI module.• Consider the use of the hardware flow control lines (especially for higher baud rates).

Q: The MSP G2 LaunchPad kit has a socket that allows me change the target device. Why doesn'tthis LaunchPad kit use one?A: The target device on this LaunchPad kit does not come in the dual in-line package. Sockets for theavailable device package are too expensive for the target price of this LaunchPad kit.

Page 22: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

1

1

2

2

3

3

4

4

5

5

6

6

D D

C C

B B

A A

1 3

7/27/2017

LaunchPad_eZFET_1.4.SchDoc

Sheet Title:

Size:

Mod. Date:

File:Sheet: of

B http://www.ti.comContact: http://www.ti.com/support

MSP-EXP430FR2433Project Title:Designed for: Public Release

Assembly Variant: [No Variations]

!Texas Instruments 2017

Drawn By:Engineer: Eric Chen

Texas Instruments and/or its licensors do not warra nt the accuracy or completeness of this specificati on or any information contained therein. Texas Inst ruments and/or its licensors do notwarrant that this design will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Texas Instruments and/or itslicensors do not warrant that the design is product ion worthy. You should completely validate and testyour design implementation to confirm the system fu nctionality for your application.

Version control disabledSVN Rev:MCU024Number: Rev: 1.0

TID #: N/AOrderable: EVM_orderable

IO11

IO22

GND3

IO34

IO45

VCC6

IC102

TPD4E004DRYR

33kR123

27

R104

27

R103

1.0MR106

10pFC110

10pFC111

0.1 F!C105

IN1

OUT3

NC4

NC5

EN6

2

GND

IC101

TLV70033DSET

TP101

TP102

TP103

TP104

TP105

TP106

TP107

TP108

TP109

EZ_GNDEZFET_TEST

EZFET_TDO

EZFET_TDI

EZFET_TMS

EZFET_TCK

EZFET_RST

EZFET_DCDCRST

EZFET_DCDCTEST

EZFET_DP

EZFET_DM

1.40k

R105

EZFET_PU.0/DP

EZFET_PU.1/DM

EZFET_PUR

EZ_GND EZ_GND EZ_GND

EZ_GND

EZFET_SHIELD

EZFET_SHIELD

EZFET_SHIELD

EZFET_VBUS

EZ_GND

EZ_GND

EZ_GND

EZ_GND

EZ_GND

Change IC101 to adjust target voltage from 2.8V to 3.6VTLV7033:3.3V

USB Interface and Power Supply

P6.0/CB0/A01

P6.1/CB1/A12

P6.2/CB2/A23

P6.3/CB3/A34

P6.4/CB4/A45

P6.5/CB5/A56

P6.6/CB6/A67

P6.7/CB7/A78

P5.0/A8/VREF+/VEREF+9

P5.1/A9/VREF-/VEREF-10

AVCC111

P5.4/XIN12

P5.5/XOUT13

AVSS114

DVCC115

DVSS116

VCORE17

P1.0/TA0CLK/ACLK18

P1.1/TA0.019

P1.2/TA0.120

P1.3/TA0.221

P1.4/TA0.322

P1.5/TA0.423

P1.6/TA1CLK/CBOUT24

P1.7/TA1.025

P2.0/TA1.126

P2.1/TA1.227

P2.2/TA2CLK/SMCLK28

P2.3/TA2.029

P2.4/TA2.130

P2.5/TA2.231

P2.6/RTCCLK/DMAE032

P2.7/UCB0STE/UCA0CLK33

P3.0/UCB0SIMO/UCB0SDA34

P3.1/UCB0SOMI/UCB0SCL35

P3.2/UCB0CLK/UCA0STE36

P3.3/UCA0TXD/UCA0SIMO37

P3.4/UCA0RXD/UCA0SOMI38

DVSS239

DVCC240

P4.0/PM_UCB1STE/PM_UCA1CLK41

P4.1/PM_UCB1SIMO/PM_UCB1SDA42

P4.2/PM_UCB1SOMI/PM_UCB1SCL43

P4.3/PM_UCB1CLK/PM_UCA1STE44

P4.4/PM_UCA1TXD/PM_UCA1SIMO45

P4.5/PM_UCA1RXD/PM_UCA1SOMI46

P4.6/PM_NONE47

P4.7/PM_NONE48

VSSU49

PU.0/DP50

PUR51

PU.1/DM52

VBUS53

VUSB54

V1855

AVSS256

P5.2/XT2IN57

P5.3/XT2OUT58

TEST/SBWTCK59

PJ.0/TDO60

PJ.1/TDI/TCLK61

PJ.2/TMS62

PJ.3/TCK63

RST/NMI/SBWTDIO64

QFN PAD65

MSP101

MSP430F5528IRGCT

0.1 F!C121

0.1 F!C103

0.1 F!C113

0.1 F!C114

EZ_GND EZ_GND EZ_GND

EZ_GND

EZFET_VBUS EZFET_VCC

EZFET_VREF

EZFET_VCC

10 F!C104

EZ_GND

240kR124

150kR125

33pFC123

1000pFC112

47kR109

0.22 F!C102

0.22 F!C107

0.47 F!C101

1

2

3

4 MHzQ101

EZFET_AVBUSEZFET_AVCCOUT2ADC

EZFET_DCDCIO0EZFET_DCDCIO1EZFET_DCDCRSTEZFET_DCDCTEST

EZFET_VBUS

EZ_GND EZ_GND

EZ_GND

EZFET_VUSB

EZFET_V18

EZFET_VBUS

EZ_GND EZ_GND EZ_GND

Red

LED101

Green

LED102

470

R101

390

R102

EZ_GND

EZ_GND

EZFET_LED0EZFET_LED1

EZFET_VCCEN1EZFET_VCCEN2EZFET_DCDCPULSE

EZFET_UARTCTSEZFET_UARTRTS

EZFET_HOSTSDAEZFET_HOSTSCL

EZFET_UARTTXDEZFET_UARTRXD

EZFET_SBWTDIOEZFET_SBWTCKEZFET_NC_TMSC

EZFET_PU.0/DPEZFET_PU.1/DM

EZFET_PUR

EZ_GND

EZFET_TEST

EZFET_TDOEZFET_TDIEZFET_TMSEZFET_TCK

EZFET_RST

EZFET_VCC

EZ_GND

Host MCU for emulation

P1.0/TA0CLK/ACLK/A0/CA01

TEST/SBWTCK10

P2.7/XOUT11

P2.6/XIN/TA0.112

AVSS13

DVSS14

AVCC15

DVCC16

QFN PAD17

P1.1/TA0.0/A1/CA12

P1.2/TA0.1/A2/CA23

P1.3/ADC10CLK/CAOUT/A3/VREF-/VEREF-/CA34

P1.4/SMCLK/TA0.2/A4/VREF+/VEREF+/CA4/TCK5

P1.5/TA0.0/SCLK/A5/CA5/TMS6

P1.6/TA0.1/SDO/SCL/A6/CA6/TDI/TCLK7

P1.7/CAOUT/SDI/SDA/A7/CA7/TDO/TDI8

RST/NMI/SBWTDIO9

MSP102

MSP430G2452IRSA16R

4.7 F!C106

4.7 F!C109

33pFC115

33pFC116

221kR112

221kR113

221kR114

221kR115

221kR121

221kR122

33pFC122

4.7 F!C117

4.7 F!C119

0.1 F!C124

0.1 F!C118

0.1 F!C120

0.1 F!C125

NO11

COM18

IN27

GND6

NO25

COM24

IN13

V+2

IC103

TS5A21366RSER

1

2

3

D101

BAS40-05W,115

1

2

3

D102

BAS40-05W,115

3

1

2

T102BC850CW,115

4.7kR116

4.7kR117

470R120

2.2 H!

L101

EZ_GNDEZ_GND

EZFET_AVCCOUT2ADC

EZFET_VCCOUT

EZ_GND EZ_GND

EZ_GND EZ_GND

EZFET_VCCOUT

EZFET_VCC

EZ_GND EZ_GND3.30kR127

EZFET_AVCCOUT

EZFET_DCDCPULSEEZFET_DCDCIO0EZFET_DCDCIO1EZFET_AVCC

EZFET_DCDCTESTEZFET_DCDCRST

EZFET_VCC

EZFET_VCCOUT

EZ_GND

EZFET_DCDCCAL0EZFET_DCDCCAL2

EZFET_VCCOUT

EZFET_DCDCCAL1

2.20kR126

6.81kR128

820R118

EZFET_VBUS

0R119

EZ_GNDEZ_GND EZ_GND EZ_GND

EZFET_VCCOUT

EZ_GND EZ_GND EZ_GND

EZ_GND

EZFET_VBUSEZFET_VCCEN1

EZFET_VCCEN2

EZFET_VCCOUT

EZFET_VCC

4.70k

R107

EZ_GND

4.70k

R108

EZ_GND

EZ_GND

Software-controlled DCDC converter

Energy measurement method protected under U.S. Pate ntApplication 13/329,073 and subsequent patent applic ations

EZFET_UARTRXDEZFET_UARTTXD

EZFET_VCCTARGET

EZFET_VCCTARGETEZFET_VBUS

EZ_GND GND

TEST/SBWTCKRST/SBWTDIOBCLUART_TXDBCLUART_RXD

3V35V0

TST/SBWTCK

RST/SBWTDIO

BCLUART_RXD

BCLUART_TXD

eZ-FET Target

0.22 F!C126

EZ_GND

10.0

R129

10.0

R130

EZFET_SBWTCK

EZFET_SBWTDIO

1 F!C108

180 ohm

L102

180 ohm

L103

3

1

2

T101DMG1013UW-7

VBUS1

D-2

D+3

ID4

GND5

678

11

109

J102

100pFDNP C127

EZ_GND

Updated: 13 Feb 2017

1 2

3 4

5 6

7 8

9 10

11 12

13 14

eZ

-FE

T

Targ

et

SBWTCKSBWTDIO

<TXD<>RXD>

3.3V5.0VGND

J101

J101: 1-2

SH-J101-1

J101: 3-4

SH-J101-2

J101: 5-6

SH-J101-3

J101: 7-8

SH-J101-4J101: 9-10

SH-J101-5

J101: 11-12

SH-J101-6

J101: 13-14

SH-J101-7

EZFET_HOSTSCLEZFET_HOSTSDA

Copyright © 2016, Texas Instruments Incorporated

Schematics www.ti.com

22 SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

6 Schematics

Figure 17. Schematics (1 of 2)

Page 23: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

1

1

2

2

3

3

4

4

5

5

6

6

D D

C C

B B

A A

2 3

7/26/2017

LaunchPad_TargetDevice.SchDoc

Sheet Title:

Size:

Mod. Date:

File:Sheet: of

B http://www.ti.comContact: http://www.ti.com/support

MSP-EXP430FR2433Project Title:Designed for: Public Release

Assembly Variant: [No Variations]

!Texas Instruments 2017

Drawn By:Engineer: Eric Chen

Texas Instruments and/or its licensors do not warra nt the accuracy or completeness of this specificati on or any information contained therein. Texas Inst ruments and/or its licensors do notwarrant that this design will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Texas Instruments and/or itslicensors do not warrant that the design is product ion worthy. You should completely validate and testyour design implementation to confirm the system fu nctionality for your application.

Version control disabledSVN Rev:MCU024Number: Rev: 1.0

TID #: N/AOrderable: EVM_orderable

DVCC24

DVSS23

DVSS18

P1.0/UCB0STE/TA0CLK/A0/VEREF+7

P1.1/UCB0CLK/TA0.1/A18

P1.2/UCB0SIMO/UCB0SDA/TA0.2/A2/VEREF-9

P1.3/UCB0SOMI/UCB0SCL/MCLK/A310

P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+3

P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A54

P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A65

P1.7/UCA0STE/SMCLK/TDO/A76

P2.0/XOUT21

P2.1/XIN22

P2.2/ACLK11

P2.313

P2.4/UCA1CLK15

P2.5/UCA1RXD/UCA1SOMI16

P2.6/UCA1TXD/UCA1SIMO17

P2.719

P3.012

P3.1/UCA1STE14

P3.220

PAD25

RST/NMI/SBWTDIO1

TEST/SBWTCK2

MSP1

MSP430FR2433IRGER

RST SBWTDIO

SBWTCKTST/SBWTCK

RST/SBWTDIOP2.0P2.1P2.2P2.3P2.4P2.5P2.6P2.7

P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7

P3.0P3.1P3.2

3V3

GND

34

12

S1

3 4

1 2

S2

3 4

1 2

S3

GND GND

GNDGND

GND GND

47.0kR1

1000pFC1

GND

3V3

RST

SW1

SW2

1 2

32.768kHz

Q1

12pFC2

12pFC3

GNDGND

0.1 F!C4

10 F!C5

3V3

GND

+3.3V1

Analog_In2

LP_UART_RX3

LP_UART_TX4

GPIO !5

Analog In6

SPI_CLK7

GPIO !8

I2C_SCL9

I2C_SDA10

J1

GPIO !11

SPI_CS/GPIO !12

SPI_CS/GPIO !13

SPI_MISO14

SPI_MOSI15

RST16

GPIO17

GPIO !18

PWM/GPIO !19

GND20

J2

GNDGND

5V01

2

3

J5 3V31

2

3

J6

GND

3V3

1

2

J101

2

J11

470R6

392R7

RedLED1

GreenLED2

GND GND

LEDs

P1.0 P1.1

B0_SDAB0_SCL

LED1LED2

BCLUART_TXD

BCLUART_RXD

BCL_TXDBCL_RXD

P1.6P1.7

A7

A7

SW1

SW2

A6

A6

P1.5BCL_RXDP1.4BCL_TXD

P1.0A0

P2.4

A1 CLK

A1 CLK

RST

A1 MOSIA1 MISO

A1 MISOA1 MOSI

TA0.1P1.1

P3.1

P3.2

P2.6P2.5

P2.2

TA0.1 A1 CS

5V21

GND22

J35V0

GND

A1 CS

A0

LED1 LED2

0 DNP

R2

0 DNP

R3XIN

XOUT

P2.0_BP

P2.1_BP0

R4

0

R5

P2.0_BPP2.1_BPP1.3

P1.2B0_SCLB0_SDA

P2.7SW2

Super Capacitor

3V3

220000 F!DNPC6

GND

22

R8

1 2 3

J4

Use ChargeJumper Right Position 2-3Jumper Left Position 1-2

Connect jumper here

when discharging the

capacitor to bypass

resistor R8 and

connect to 3V3

Connect jumper here

when charging the

capacitor to use

current limiting

resistor R8

Bypass/DisconnectJumper not connected

When jumper is not in the

"Charge" or "Use" position,

the capacitor is not

connected (bypassed).

We recommend hanging

Hang off single pin

the jumper from one pin so

it does not get lost

J10: 1-2

SH-J10

J11: 1-2

SH-J11

DNP, J4: 2

SH-J4

XIN

XO

UT

Copyright © 2016, Texas Instruments Incorporated

www.ti.com Schematics

23SLAU739–October 2017Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)

Figure 18. Schematics (2 of 2)

Page 24: MSP430FR2433 LaunchPad™ Development Kit (MSP … · Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components,

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who aredeveloping applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms ofthis Notice.TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TIproducts, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,enhancements, improvements and other changes to its TI Resources.You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing yourapplications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. Yourepresent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures thatmight cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, youwill thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted anytesting other than that specifically described in the published documentation for a particular TI Resource.You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that includethe TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TOANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTYRIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, orother intellectual property right relating to any combination, machine, or process in which TI products or services are used. Informationregarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty orendorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of thethird party, or a license from TI under the patents or other intellectual property of TI.TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES ORREPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TOACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OFMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUALPROPERTY RIGHTS.TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOTLIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IFDESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH ORARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THEPOSSIBILITY OF SUCH DAMAGES.You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluationmodules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2018, Texas Instruments Incorporated