Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts...

173
Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts...

Page 1: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Ms. Eckersley

Joel

Darcie Katherine

Chance

Terrence Alex

Bryce Danica

Matt

Taylor Terra

Handouts

Jordan

Emilia Maddie

James

Logan & Brayden

Sheldon

Page 2: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Ms. Eckersley

Cody Michael

John Ellen

Andrew Alex

Amy Jael

Kristin Kennedy

Ana Madison

Rebecca

Cierra Calla

Handouts

Mackenzie

Brandon Keegan

Brittany Sawyer

Renee Kae-Leigh

Page 3: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Unit 2: Chemistry in ActionLesson #1: A Bit of Review

Objectives: Describe the structure of an atom with its 3 subatomic particles Determine atomic number and atom mass of elements Define chemistry, matter, elements, atomic number, atomic mass, proton, neutron, electron, nucleus

Page 4: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Chemistry

Chemistry is the study of matter and the interactions/changes it undergoes

Page 5: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Some Definitions

Matter is anything that has mass and volume (occupies space)

Elements are pure substances whose atoms all have the same atomic number (same number of protons)

Atoms are the smallest part of an element that still retains all of the same properties of the element.

Page 6: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Atoms

Atoms are composed of 3 subatomic particles: 1) Protons – are found in the nucleus 2) Neutrons – are found in the nucleus 3) Electrons – are found in orbits

around the nucleus, called the electron cloud

Page 7: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Atoms

Page 8: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Subatomic Particle

Charge Mass Location

Recall the following information with respect to the parts of an atom:

Page 9: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Subatomic Particle

Charge Mass Location

Proton +1 1 a.m.u. NucleusNeutron 0 1 a.m.u. NucleusElectron -1 ~0 Electron

cloud

Recall the following information with respect to the parts of an atom:

Page 10: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Elements in the Periodic Table

The information about each element on the periodic table is arranged like this:

Page 11: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Atomic Number

The Atomic Number tells us the number of protons in the nucleus of an atom

In the example, an atom of fluorine has 9 protons in its nucleus

Page 12: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Atomic Mass

Almost all of the mass of an atom is found in the nucleus

Atomic Mass = # protons + # neutrons

Atomic mass is measured in atomic mass units (a.m.u.)

Atomic mass of fluorine is 19.00 a.m.u.

Page 13: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example Problems

Determine the number of protons, neutrons, and electrons in neon:

Protons = ________ Neutrons = _________ Electrons = __________

Page 14: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example Problems

Determine the number of protons, neutrons, and electrons in neon:

Protons = 10 Neutrons = 20 – 10 = 10 Electrons = # protons = 10

Page 15: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example Problems

Determine the number of protons, neutrons, and electrons in aluminum:

Protons = ________ Neutrons = _________ Electrons = __________

Page 16: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example Problems

Determine the number of protons, neutrons, and electrons in aluminum:

Protons = 13 Neutrons = 27 – 13 = 14 Electrons = # protons = 13

Page 17: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Unit 2: Chemistry in ActionLesson #2: The Periodic Table

Objectives: Describe the organization of the periodic table of elements • Metals, Non-metals,

Metalloids• Periods vs. families• Alkali metals, Alkaline

Earth metals, Chalcogens, Halogens, Noble gases

Relate an element’s position on the periodic table to its valence

Page 18: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The Elements Song: http://www.privatehand.com/flash/elements.htmlhttp://www.edu-cyberpg.com/IEC/elementsong.html

There’s antimony, arsenic, aluminum, selenium, And hydrogen and oxygen and nitrogen and rheniumAnd nickel, neodymium, neptunium, germanium, And iron, americium, ruthenium, uranium, Europium, zirconium, lutetium, vanadium And lanthanum and osmium and astatine and radium And gold, protactinium and indium and gallium And iodine and thorium and thulium and thallium.There’s yttrium, ytterbium, actinium, rubidium And boron, gadolinium, niobium, iridium And strontium and silicon and silver and samarium, And bismuth, bromine, lithium, beryllium and barium.There’s holmium and helium and hafnium and erbium And phosphorous and francium and fluorine and terbium 

And manganese and mercury, molybdinum, magnesium, Dysprosium and scandium and cerium and cesium And lead, praseodymium, and platinum, plutonium, Palladium, promethium, potassium, polonium, Tantalum, technetium, titanium, tellurium, And cadmium and calcium and chromium and curium.There’s sulfur, californium and fermium, berkelium And also mendelevium, einsteinium and nobelium And argon, krypton, neon, radon, xenon, zinc and rhodium And chlorine, carbon, cobalt, copper, Tungsten, tin and sodium.These are the only ones of which the news has come to Harvard, And there may be many others but they haven’t been discovered.

Page 19: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The Periodic Table

The periodic table can be divided into 3 main sections: 1) Metals▪ Found on the left side of the table▪ Left of the zigzag line▪ Most are shiny (have luster) & are solids at

room temp.▪ Most are good conductors of electricity▪ Many are malleable and ductile

Page 20: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The Periodic Table

The periodic table can be divided into 3 main sections: 2) Non-metals▪ Found on the right side of the periodic

table▪ Always right of the zigzag line▪ Most are gases or dull brittle solids at

room temp.▪ Most are poor conductors of heat &

electricity

Page 21: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The Periodic Table

The periodic table can be divided into 3 main sections: 3) Metalloids▪ Found near the zigzag line▪ Have properties of metals & non-metals

Page 22: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 23: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The Periodic Table - Periods

The periodic table can also be divided up into periods and families

Periods are horizontal rows on the table

Periods show energy levels of the electrons

There are 7 periods in total Each period is numbered starting from

the top of the periodic table E.g. Period 1 contains hydrogen &

helium

Page 24: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

12

345

67

Page 25: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The Periodic Table – FamilIes (Groups)

Families are vertical columns on the periodic table

The tall columns are numbered IA-VIIIA, and the short columns are numbered IB-VIIIB

Sometimes they are numbered 1-18 Families often contain elements

with similar properties

Page 26: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

IA

IIA

IIIB IVB VB VIB VIIB VIIIB IB IIB

IIIA IVA VA VIA VIIA

VIIIA

Page 27: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Family IA – Alkali Metals

This group contains extremely reactive metals

They have only 1 valence electron

Page 28: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Family IIA – Alkaline Earth Metals

This group contains reactive metals

They contain 2 valence electrons

Page 29: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Family VIA – Chalcogens

This group contains the oxygen family

This group contains mainly non-metals

They contain 6 valence electrons

Page 30: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Family VIIA – Halogens

This group contains non-metals Halogens are gases or liquids at

room temp. They contain 7 valence electrons They are the most reactive of the

non-metals

Page 31: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Family VIIIA – Noble (Inert) Gases

This group contains non-metals Noble Gases are gases at room

temp. They contain 8 valence electrons

(except He – 2) They are the do not react with

other elements

Page 32: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Assignment: Alien Periodic Table

Use you knowledge of Earth’s periodic table to help you arrange the aliens’ elements onto a blank periodic table.

Each alien symbol should be located in the same position that earth’s corresponding element symbol would be located.

Use the clues in the handout to help you

Page 33: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 34: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Chemistry in Action

Topic #3: Bohr Models

Draw Bohr models of elements, showing valence electrons

http://www.teachertube.com/viewVideo.php?title=Explosive_Alkali_Metals&video_id=58932

Page 35: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Drawing Atoms (Bohr Models)

To draw a diagram of a particular atom, we need to know the atomic number and atomic mass of that atom

These numbers allow us to find the number of protons, electrons, and neutrons

Page 36: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Creating Bohr Models

1) Draw a circle to represent a nucleus

2) Fill the circle with the number of protons & neutrons

3) Electrons fill the rings/orbits/shells or “energy levels” surrounding the nucleus

Each shell is capable of holding a specific number of electrons

Page 37: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Electron Configuration

Each shell can hold a specific number of electrons: Shell 1: 2 Shell 2: 8 Shell 3: 8 Shell 4: 18

Page 38: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Drawing Bohr Models

Example: Draw a Bohr model for nitrogen (atomic number = 7; atomic mass = 14.00)

Page 39: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Drawing Bohr Models

Example: Draw a Bohr model for sodium (atomic number 11; atomic mass = 23.0)

Page 40: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Drawing Bohr Models

Identify the following element based on its Bohr model:

P = 10

N = 10

Page 41: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Electron Configuration - Advanced

Note: This information will not be for marks on a test (it may be for bonus).

In reality, electrons are found in sub-shells within the shells.

Sub-shells include: s, p, d, and f

Page 42: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Electron Configuration - Advanced

  Energy Levels

  1st 2nd 3rd 4th 5th 6th 7th

Orbitals              

"s" 2 2 2 2 2 2 2

     

"p"   6 6 6 6 6 6

     

"d"   10 10 10 10 10

     

f"   14 14 14 14

               

Total 2 8 18 32 50 72 98

Page 43: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Electron Configuration - Example

An electron configuration table is a type of code that describes how many electrons are in each energy level of an atom and how the electrons are arranged in each energy level.

Example: The electron configuration of hydrogen is 1s1

1 s 1Number of electrons in the sub shellName of

the sub-shell

Energy Level

Page 44: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Electron Configuration - Example

Example: Electron configuration of carbon:

1s2

2s2 2p2

  Carbon has 2 electrons in the s sub-shell

of the 1st energy level Carbon has 2 electrons in the s sub-shell

of the 2nd energy level and 2 electrons in the p sub-shell of the 2nd energy level

Page 45: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Electron Configuration: Example

What is the electron configuration of fluorine (atomic number 9)?

Page 46: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The Bohr Game

You need: A partner Clean hands

Each group needs: A Bohr model template A non-permanent marker A damp piece of paper towel 20 jujubes

Page 47: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 48: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 49: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 50: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 51: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 52: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 53: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 54: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 55: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 56: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 57: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Chemistry in Action

Topic #4: Lewis Dot Diagrams

Objectives: To be able to draw Lewis Dot Diagrams for the first 20 elements To be able to relate the number of valence electrons to an elements position on the periodic table

Page 58: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Lewis Dot Diagrams

A Lewis dot diagram is a graphic method to represent an element and its valence electrons.

In Lewis dot diagrams, dots are placed around the outside of an element to illustrate the valence electrons

Page 59: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Lewis Dot Diagrams

Each dot represents one valence electron in the outermost shell of the atom

Page 60: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Rules for Drawing Lewis Dot Diagrams

1) The first 2 dots areput on opposite sides.2) A maximum of 2 dots go on each side.

Page 61: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The Octet Rule

The octet rule states that atoms with eight electrons in their valence shell will be stable

The exception to this rule is hydrogen and helium, which are stable with 2 valence electrons.

Page 62: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Lewis Structures & the Periodic Table Notice any patterns?

Page 63: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Patterns

All elements in the same family have the same number of valence electrons

Elements in the same family have very similar Lewis Dot Diagrams.

Page 64: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Alkali Metals

Alkali metals all have one valence electron

Page 65: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Alkaline Earth Metals

Alkaline earth metals all have two valence electrons

Page 66: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Chalcogens

Chalcogens have 6 valence electrons

Page 67: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Halogens

Halogens have 7 valence electrons

Page 68: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Noble Gases

Noble Gases have full valence shells

Most have 8 valence electrons (Helium has 2)

Page 69: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples:

Draw Bohr and Lewis Dot Diagrams for the following element: Helium (atomic number 2)

Page 70: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples:

Draw Bohr and Lewis Dot Diagrams for the following element: Potassium (atomic number 19)

Page 71: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples:

Draw Bohr and Lewis Dot Diagrams for the following element: Carbon (Atomic number 6)

Page 72: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples:

Draw Bohr and Lewis Dot Diagrams for the following element: Phosphorus (Atomic number 15)

Page 73: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 74: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Ions

Atoms are generally in their most stable form when they are filled to a maximum number of 8 electrons (2 for hydrogen or helium).

Atoms will often gain or lose electrons to reach this stable form

Atoms that gain or lose electrons are called ions or charged particles

Page 75: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Ions

Since protons are stuck in the nucleus, a transfer of electrons must occur for an ion to form

Atoms will form ions when they are gaining or losing electrons to their outer shell.

Page 76: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Monatomic vs. Polyatomic Ions

Ions that are formed from only one atom are called monatomic ions.

Sometimes ions can be formed from molecules or groups of atoms. These are called polyatomic ions. NH4

+ ammonium is a positive polyatomic ion

NO3- nitrate is a negative polyatomic

ion

Page 77: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Anions and Cations

Gain electrons = negative charge = anions

Lose electrons = positive charge = cations

E.g. Chloride anion E.g. Sodium cation

Chlorine accepts an extra Sodium donates an

electron from a cation electron to an anion

Na+

Page 78: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples

If Chlorine gains an electron, it becomes a negative ion with a charge -1This is written Cl-

Cl Cl

Page 79: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples

If Oxygen gains two electrons, it becomes a negative ion with a charge of -2

This is written O2- not O-2

If Lithium loses an electron, it becomes a positive ion with a charge of +1

This is written Li+

Page 80: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

How Elements Combine

Atoms will form bonds in order to find a stable electron configuration (8 valence electrons). To do this, they will:

Share Electrons Covalent Bond

Gain ElectronsLose Electrons

Ionic Bond

Page 81: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Electronegativities

We can tell what type of bond will form between 2 atoms by looking at the difference between their electronegativities

Electronegativity (En) is a chemical property that describes the tendency for an element to attract electrons to itself.

Page 82: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.
Page 83: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Covalent Bonds

Covalent bonds occur between 2 non-metals

Atoms share electrons The difference in electronegativity is

less than 1.8

E.g. H2O, O2

We will study covalent bonds more in depth in a couple of days...

Page 84: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Ionic Bonds

Ionic bonds form between metals and non-metals

They occur when the difference in electronegativity (En) is greater than 1.8

Electrons are lost or gained

E.g. NaCl, MgBr2

Page 85: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Ionic Compounds: Lewis Dot Diagrams

Opposites attract! When one atom donates an electron

and another atom accepts an electron to fill their valence shells, the positive and negative ions stick together to form an ionic bond.

Na+

Page 86: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Ionic Compounds – The Cris-Cross Method

1) Write the chemical symbols for each of the atoms involved

2) Calculate the combining capacity for each atom (ion) involved

3) Cris-cross the combining capacities and write the formula

4) Put the formula in lowest terms

Page 87: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example – Binary Compound

Combine Magnesium and Oxygen to make Magnesium Oxide

1) Chemical Symbols: Mg and O2) Combining Capacities Mg2+ and O2-

3) Criss Cross : Mg2+ O2- Mg2O2

4) Put in Lowest Terms MgO

Page 88: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Binary Compounds

Combine Magnesium and Bromine to make Magnesium Bromide

Page 89: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Binary Compounds

Combine Sodium and Chlorine to make Sodium Chloride

Page 90: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Compounds – Polyatomic Example

Combine Ammonium and Iodine to create Ammonium Iodide

Page 91: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Compounds – Polyatomic Example

Combine Calcium and Phosphate to make Calcium Phosphate.

Page 92: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Compounds – Multiple Valence Example

Combine Lead (II) and Sulfate to make Lead (II) Sulfate

Page 93: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Chemistry in Action

Topic #6: Naming Ionic Compounds

Objectives: Be able to determine the name of an ionic compound by looking at its formula Be able to discuss why it is important to have a standard system of naming

Page 94: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The IUPAC System of Naming Compounds

IUPAC is the International Union of Pure and Applied Chemistry

The goal of IUPAC is to ensure that spoken and written chemicals are unambiguous.

Each chemical name should refer to a specific substance.

Page 95: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Why is Naming Important? Dihydrogen Monoxide FAQ Dihydrogen Monoxide (DHMO) is a colorless and

odorless chemical compound, also referred to by some as Dihydrogen Oxide, Hydrogen Hydroxide, Hydronium Hydroxide, or simply Hydric acid. Its basis is the highly reactive hydroxyl radical, a species shown to mutate DNA, denature proteins, disrupt cell membranes, and chemically alter critical neurotransmitters. The atomic components of DHMO are found in a number of caustic, explosive and poisonous compoundssuch as Sulfuric Acid, Nitroglycerine and Ethyl Alcohol.

Page 96: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Naming Binary Ionic Compounds

Rules:1) The cation (positive ion) comes first2) The anion (negative ion) comes second3) The cation takes the element name4) The anion takes the elements name, but ends with “ide”

Page 97: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples: Binary Ionic Compounds

Example: NaCl Cation = Sodium Anion = Chlorine Chloride

Name: Sodium Chloride

Page 98: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples: Binary Ionic Compounds

Example: MgBr2

Cation = Magnesium Anion = Bromine Bromide

Name: Magnesium Bromide

Page 99: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples: Binary Ionic Compounds

Example: AlCl3

Example: SiO2

Page 100: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Naming Binary Ionic Compounds with Multiple Valences

Elements with more than one combining capacity need to be identified

Roman numerals after the cation are used to indicate the combining capacity

To determine what the oxidation number is, you must first determine what the combining capacity is.

Page 101: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Ionic Compounds with Multiple Valences

Example: PbCl4

First, determine the charge of chlorine 1-

Second, determine what the charge of lead has to be to balance the chlorine 4+

Use the roman numeral to indicate the charge:

Lead (IV) chloride

Page 102: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Ionic Compounds with Multiple Valences

Name: CoBr3

Charge of bromine = 3- The charge of cobalt must be 3+ to

balance

Cobalt (III) bromide

Page 103: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Ionic Compounds with Multiple Valences

Name: PbO2

Charge of oxygen = 2- There are 2 oxygen atoms that we

must account for: 2 x 2- = 4-

Lead (IV) oxide

Page 104: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Ionic Compounds with Multiple Valences

Name: FeS

Page 105: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Ionic Compounds with Multiple Valences

Name: SnBr2

Page 106: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Ionic Compounds with Multiple Valences

Name: Cr2O3

Page 107: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Naming Polyatomic Ionic Compounds

To name polyatomic ionic compounds, use the names off the back side of the periodic table.

Page 108: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Naming Polyatomic Compounds

Name : AlPO4

Cation = Aluminum Anion = Phosphate

Name: Aluminum phosphate

Page 109: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Naming Polyatomic Compounds

Name : Ba(CN)2 Cation = Barium Anion = cynanide

Barium cyanide

Page 110: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Naming Polyatomic Compounds

Name NH4NO3

Cation = Ammonium Anion = Nitrate

Name: Ammonium nitrate

Page 111: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Naming Polyatomic Compounds

Name KNO2

Page 112: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Naming Polyatomic Compounds

Name CaCO3

Page 113: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example: Naming Polyatomic Compounds

Name Pb(OH)2

Page 114: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Chemistry in Action

Topic #7 – Covalent Compounds

Objectives: Be able to differentiate between ionic and covalent bonds Be able to show electron sharing of electrons in covalent bonds Be able to name covalent compounds Be able to write the formula for covalent compounds

Page 115: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Ionic Recap

Up until now, we have discussed ionic compounds

In ionic compounds, one element donates an electron to another, so both have complete valence shells

K Cl [K][ Cl ]+ -

Page 116: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Ionic Recap

In ionic bonds, the difference in electronegativity is greater than 1.8

Ionic bonds are formed between a metal and a nonmetal

Page 117: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Covalent Bonds

Covalent bonds are formed when atoms share electrons

They occur between two non-metals

The difference in electronegativity is less than 1.8

Page 118: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Electron Sharing in Covalent Bonds

In a covalent bond, electrons are shared.

Structures are drawn to show the sharing

OHH

• All atoms involved now think that they have complete outer shells• The electrons go around both atoms

Page 119: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Short-hand Form

Rather than drawing all electrons, we can draw a line to show the sharing of electrons

OHH

Page 120: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example

Example: Oxygen shares 2 sets of electrons

OO

O O• Sharing 2 sets of electrons is shown by a double line.

Page 121: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Try this one...

CO2

Page 122: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Try this one...

Cl2

Page 123: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Two Types of Covalent Bonds

There are 2 types of covalent bonds that you need to know for this class: 1) Non-polar covalent 2) Polar covalent

Page 124: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

1) Non-polar Covalent Bonds

Non-polar covalent bonds occur when there is equal sharing of electrons

The electrons spend the same amount of time in the orbit of both elements

Electronegativity difference is less than 0.5

Examples: (I Have No Bright Or Clever Friends) I2 H2 N2

Br2 O2 Cl2 F2

Page 125: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

1) Non-polar Covalent Bonds

Rules for naming non-polar covalent bonds: The compound takes the same name as

the element:

E.g. Cl2 = chlorine

Page 126: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

2) Polar Covalent Bonds

Polar covalent bonds occur when there is unequal sharing of electrons

The electrons spend more time orbiting one element than the other

Electronegativity difference is between 0.5 and 1.8

Page 127: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

2) Polar Covalent Bonds

Rules for naming polar covalent bonds:1) The element on the left side of the periodic table is listed first (exception: when there is carbon and hydrogen – carbon goes first)2) Use prefixes to show the number of each element in the compound3) The second element ends in “ide”

Page 128: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Prefixes for Polar Covalent Compounds

1 – mono (only for the 2nd element) 2 – di 3 – tri 4 – tetra 5 – penta 6 - hexa

Page 129: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples: Polar Covalent Compounds

Write formulae for the following:

Dihydrogen monoxide =

Phosphorus heptachloride =

Sulfur hexachloride =

Page 130: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Examples: Polar Covalent Compounds

Write the names of the following formulae:

CO2 =

N2O5 =

PCl5 =

Page 131: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Chemistry in MotionTopic #8: Chemical Reactions

Objectives: Be able to describe the Law of Conservation of Mass Be able to solve problems about the Law of Conservation of Mass Be able to write word equations and skeleton equations

Page 132: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Chemical Reactions

A chemical reaction is a process that involves the rearrangement of the molecular structure of a substance

Reactant 1 + Reactant 2 Product (Read “Reactant 1 reacts with

Reactant 2 to produce products”)

Page 133: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Law of Conservation of Mass

During a chemical reaction, the total mass of the reactants is always equal to the total mass of the products.

Matter is never destroyed or created.

Page 134: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Word Equations

Word equations summarize what’s happening in a chemical reaction.

Example: When magnesium reacted with oxygen, magnesium oxide was formed.

Magnesium + Oxygen Magnesium oxide

Page 135: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Try this one:

It was found that copper (II) sulfide was formed when copper reacted with sulfur.

Page 136: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Using Word Equations to Solve Conservation of Mass Problems

We can use word equations to help us solve conservation of mass problems.

Example: How many grams of sodium are needed to combine with 35.5 grams of chlorine to make 58.5 grams of sodium chloride?

Page 137: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Using Word Equations to Solve Conservation of Mass Problems

Example: How many grams of sodium are needed to combine with 35.5 grams of chlorine to make 58.5 grams of sodium chloride?

Step 1: Write a word equation Step 2: Write all known masses Step 3: Solve for the unknown mass

Page 138: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Try this one:

When 72 grams of water is decomposed, 8 grams of hydrogen is made along with some oxygen. What mass of oxygen is made?

Page 139: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Skeleton Equations

Chemical symbols and formulas contain more information about substances and how they react.

To develop a skeleton equation, you start by replacing words with chemical symbols and formulas.

Page 140: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Skeleton Equations

Skeleton equations summarize a chemical reaction in symbolic form.

They are not complete or accurate, however because it may violate the law of conservation of mass.

Page 141: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Skeleton Equations

Write the skeleton equation for the following reaction: Sodium combines with chlorine to make sodium chloride

Step 1: Write the word equation Step 2: Replace words with chemical

symbols

Page 142: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Try this one...

Potassium nitrate is mixed with sodium iodide and it reacts to form sodium nitrate and potassium iodide

Page 143: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

State of Substances

Often, it is useful to know the state of the chemicals that are involved in the reaction.

You can add this information to a chemical equation by inserting an abbreviation in brackets after each chemical formula

Page 144: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Abbreviations for States

State Abbreviation

Examples (at Room Temp)

Solid (s) Iron: Fe(s)

Salt: NaCl(s)

Liquid (l) Water: H2O(l)

Gas (g) Helium: He(g)

Aqueous Solution(Dissolved in water)

(aq) Salt solution: NaCl(aq)

Page 145: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example

Write the skeleton equation for:A solid piece of sodium was mixed

with water to form an aqueous solution of sodium hydroxide and hydrogen gas.

Page 146: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Chemistry in Motion

Topic #9: Balancing Chemical Equations

Objectives: Be able to determine the number of atoms of each element on the reactants side and the products side of chemical equations. Be able to determine whether or not an equation is balanced

Page 147: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The Law of Conservation of Mass

According to the law of conservation of mass, the mass of the products will always be equal to the mass of the reactants.

Reactants Products

Page 148: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

The Law of Conservation of Mass

In normal chemical reactions, there will be the same number of atoms of an element on the products side and the reactants side.

Page 149: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Balanced Equations

Is the following equation balanced? E.g. Fe + S FeS

Page 150: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Tips:

1) Make a T-table out of the equation.

Fe + S FeS

Page 151: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Tips:

2) List all the elements.

Fe + S FeS

Fe Fe

S S

Page 152: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Tips:

3) List the number of atoms of each element on each side.

Fe + S FeS

Fe = 1 Fe = 1

S = 1 S = 1

Page 153: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Tips:

4) Form a conclusion.Fe + S FeS

Fe = 1 Fe = 1

S = 1 S = 1

There are equal numbers of atoms of each element on each side, so the equation is balanced

Page 154: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Is the following equation balanced? 2H2 + O2 2H2O

Page 155: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Unbalanced Equations

Are the following equations balanced?

K + Cl2 KCl

HgO Hg + O2

Page 156: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Try these...

Ca + H2O Ca(OH)2 + H2

N2 + H2 NH3

4Al + 3O2 2Al2O3

Page 157: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Try it!

For the rest of the week, we will be learning how to balance the equations if they are unbalanced.

Try it for yourself!

Page 158: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Chemistry in Action

Topic #10 – Balancing Chemical Equations Part 2

Objectives: Be able to balance chemical equations Describe why we never change the subscripts in chemical equations

Page 159: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Unbalanced Chemical Equations

A chemical equation is unbalanced if the number of atoms of each element on the products side is not equal to the number of atoms of each element on the reactants side.

Example: H2 + O2 H2OH = 2O = 2

H = 2O = 1

Page 160: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

NEVER CHANGE THE SUBSCRIPTS

You can’t just add atoms at random to each side – you have to work with the molecules

This means we can’t change the subscripts of a molecule, we can just change the number of molecules on each side.

Page 161: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example

Example: H2 + O2 H2O

Can we just change the equation to:H2 + O2 H2O2?

NO!!!

H = 2O = 2

H = 2O = 1

Page 162: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Never Change the Subscripts!!

H2O is not the same as H2O2

If we change the subscripts, we also change the type of product or reactant.

H

H

OH

HO O

Water Peroxide

Page 163: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example

Example: H2 + O2 H2O

So instead we change the number of molecules of the compound.

H = 2O = 2

H = 2O = 1

Page 164: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example

Example: H2 + O2 2H2O

If we have 2 molecules of water on the products side, now the oxygens are balanced – but what about the hydrogens?

H = 2O = 2

H = 2 4O = 1 2

Page 165: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example

Example: 2H2 + O2 2H2O

If we have 2 molecules of hydrogen on the reactants side, now the equation is balanced.

H = 2 4O = 2

H = 2 4O = 1 2

Page 166: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example

Example: 2H2 + O2 2H2O

If we have 2 molecules of hydrogen on the reactants side, now the equation is balanced.

H

H

OH

H

OH H

H H

O

O

Page 167: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Process for Balancing Chemical Equations

1) Draw boxes around the compounds. Never change anything in the box.

2) Make a list of the elements and the numbers of atoms of each element

3) Write numbers in front of each box until there is the same number of atoms of each element in the products and reactants. Whenever you change a number, make

sure to update your table

Page 168: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Try this one…

KCl K + Cl2

Page 169: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Try this one…

Fe + Cl2 FeCl3

Page 170: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Tips for Getting the Answer FasterMINOH = Me Know Chemistry

It won’t always work, but try this order for faster results.

M = Metals – Balance metals such as Fe or Na first

I = Ions – Look for polyatomic ions to balance next (more on this tomorrow)

N = Non-metals – Balance non-metals such as Cl or N next

O = Oxygen H = Hydrogen – save them for last

Page 171: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example:

S8 + O2 SO3

S = 8O = 2

S = 1O = 3

Page 172: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Example:

C7H16 + O2 CO2 + H2O

C = 7H = 16O = 2

C = 1H = 2O = 3

Page 173: Ms. Eckersley Joel Darcie Katherine Chance Terrence Alex Bryce Danica Matt Taylor Terra Handouts Jordan Emilia Maddie James Logan & Brayden Sheldon.

Tricky Example:

C2H4O2 + O2 CO2 + H2OC = 2H = 4O = 4

C = 1H = 2O = 3