MR11

4
1 STRUCTURAL AND GEOTECHNICAL ENGINEERING DEPARTMENT ROCK MECHANICS 2 ROCK MECHANICS 2 Giovanni Barla Politecnico di Torino LECTURE 11 - OUTLINE Î Î The Finite Element Method 2D and 3D Problems (a) Triangular elements with quadratic and cubic interpolation functions (b) Triangular three noded isoparametric element x i k j P(x,y) Free Point Linear Function: u] k = a+bx+cy Quadratic Function: u] k = a+bx+cy+dx 2 +exy+fy 2 Cubic Function: u] k = a+bx+cy+dx 2 +…..+iy 3 y x x y x y Over each element the displacement components are assumed to have a simple polynomial form, where the order of the polynomial depends on the number of nodes in the element TRIANGULAR ELEMENTS WITH HIGH ORDER INTERPOLATION RECTANGULAR ELEMENT - LST x y Rectangular 4 noded element i k j P(x,y) Free Point u(x,y)=α 1 +α 2 x + α 3 y + α 4 xy v(x,y)=α 5 +α 6 x + α 7 y + α 8 xy l p NOTE: element with sides in the same direction as the coordinate axes u(x,y) v(x,y) = 1 x y xy 0 0 0 0 0 0 0 0 1 x y xy α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 (11.1) a b

description

Meccanica delle Rocce, Barla

Transcript of MR11

  • 1

    STRUCTURAL AND GEOTECHNICAL ENGINEERING DEPARTMENT

    ROCK MECHANICS 2ROCK MECHANICS 2

    Giovanni Barla

    Politecnico di Torino

    LECTURE 11 - OUTLINEThe Finite Element Method2D and 3D Problems

    (a) Triangular elements with quadraticand cubic interpolation functions(b) Triangular three noded isoparametricelement

    x

    y

    i

    k

    j

    P(x,y)

    Free Point

    Linear Function:u]k= a+bx+cyQuadratic Function:u]k= a+bx+cy+dx2+exy+fy2Cubic Function:u]k= a+bx+cy+dx2+..+iy3

    Linear Function:u]k= a+bx+cyQuadratic Function:u]k= a+bx+cy+dx2+exy+fy2Cubic Function:u]k= a+bx+cy+dx2+..+iy3

    y

    x

    x

    y

    x

    y

    Over each element the displacement components are assumed to have a simple polynomial form, where the order of the polynomial depends on the number of nodes in the element

    Over each element the displacement components are assumed to have a simple polynomial form, where the order of the polynomial depends on the number of nodes in the element

    TRIANGULAR ELEMENTS WITH HIGH ORDER INTERPOLATIONTRIANGULAR ELEMENTS WITH HIGH ORDER INTERPOLATIONRECTANGULAR ELEMENT - LSTRECTANGULAR ELEMENT - LST

    x

    y

    Rectangular 4 noded elementRectangular 4 noded element

    i

    k

    j

    P(x,y) Free Point u(x,y)=1+2x + 3y + 4xy

    v(x,y)=5+6x + 7y + 8xy

    l

    p NOTE: element with sides in the samedirection as the coordinate axes

    u(x,y)

    v(x,y)=

    1 x y xy 0 0 0 0

    0 0 0 0 1 x y xy

    12345678

    (11.1)

    a

    b

  • 2

    (a) SHAPE FUNCTION H[x,y] =[][A]-1

    (11.2)H[x,y] = 1ab

    (a-x)(b-y) x(b-y) xy y(a-x) 0 0 0 0

    0 0 0 0 (a-x)(b-y) x(b-y) xy y(a-x)

    (b) STRAIN MATRIX [B]

    B[x,y] =ab1 (11.3)

    (y-b) (b-y) y -y 0 0 0 0

    0 0 0 0 (x-a) -x x (a-x)

    (x-a) -x x (a-x) (y-b) (b-y) y -y

    RECTANGULAR ELEMENT - LSTRECTANGULAR ELEMENT - LST

    Isoparametric Elements - Area CoordinatesIsoparametric Elements - Area Coordinates

    ISOPARAMETRIC TRIANGULAR ELEMENTISOPARAMETRIC TRIANGULAR ELEMENT

    ISOPARAMETRIC ELEMENTS ( [H] can be defined directly) new formulation with respect to the generalizedcoordinates method the relationship between the nodal displacementsand the element displacements can be writtendirectly the relationship which describes the local coordinatesis used to define the shape function

    ISOPARAMETRIC ELEMENTS ( [H] can be defined directly) new formulation with respect to the generalizedcoordinates method the relationship between the nodal displacementsand the element displacements can be writtendirectly the relationship which describes the local coordinatesis used to define the shape function

    Derivation of shape and interpolation function (for the three noded element)

    1

    2

    3P(x,y)

    x

    y

    j

    i

    e1

    e2

    r

    r = xi + yj = x3i + y3j + e1 + e2

    x,y global coordinates, local coordinates

    Introduce:

    Let:

    L1 = /l31 L2 = /l32

    l31

    l32

    r = x3i + y3j + l31L1e1 + l32L2e2

    where:

    l31e1= (x1-x3)i+(y1-y3)j

    l32e2= (x2-x3)i+(y2-y3)j

    We can write for r:

    r =[L1x1+L2x2+(1-L1-L2)x3]i+[L1y1+L2y2+(1-L1-L2)y3]j

    continue

    (11.4)

    (11.5)

    The link between coordinates x,y and Li (i=1,2,3) is therefore given by:

    x=L1x1+L2x2+L3x3y=L1y1+L2y2+L3y3

    where: L3=1-L1-L2

    NOTE: 0

  • 3

    The area coordinates L1,L2,L3 can be taken as shape functions H1,H2,H3 so that we can write:

    u

    v=

    L1 L2 L3 0 0 0

    0 0 0 L1 L2 L3

    u1u2u3v1v2v3

    (11.11)

    Therefore we have for []:

    x= u L1L1 x+ uu L2 L3L2 L3x x

    +

    = 12A (b1u1 + b2 u2+ b3u3) and finally:

    continue

    (11.12)

    ISOPARAMETRIC TRIANGULAR ELEMENTISOPARAMETRIC TRIANGULAR ELEMENT

    x

    y

    xy

    =

    +

    ux

    yv

    uy

    vx

    []

    [] =

    2A=1

    [] = [B]e [u]e[] = [C]e [] = [C]e [B]e [u]e

    u1

    v1

    u2

    v2v3

    u3

    b1 b2 b3 0 0 0

    0 0 0 c1 c2 c3

    c1 c2 c3 b1 b2 b3

    plane strain plane stress

    with constant parameters

    continue

    (11.13)

    (11.14)

    ISOPARAMETRIC TRIANGULAR ELEMENTISOPARAMETRIC TRIANGULAR ELEMENT

    Ve [B]eT [C]e [B]e dV

    = [B]eT[C]e [B]e A t

    [k]e=

    Finally, we have for the element stiffness matrix:

    [k]e=

    kii kij kik

    kji kjj kjk

    kki kkj kkk

    (11.15)

    (11.16)

    kii kij

    kji kjj 22

    66

    ISOPARAMETRIC TRIANGULAR ELEMENTISOPARAMETRIC TRIANGULAR ELEMENT

    1 2

    3

    6

    4

    5

    x

    x

    x= hi(r,s) xi

    y= hi(r,s) yi

    u= hi(r,s) ui

    v= hi(r,s) vii=1

    i=1

    i=1

    i=1

    6 6

    6

    h1=1-r-sh2= rh3= s

    h4=4r(1-r-s)

    h5=4rsh6=4s(1-r-s)

    SIX NODED ISOPARAMETRIC TRIANGULAR ELEMENTSIX NODED ISOPARAMETRIC TRIANGULAR ELEMENT

    side nodes: corner nodes:

  • 4

    1 2

    34

    5

    68

    7

    1 2

    34

    5

    6

    7

    8r

    s

    xG

    yG

    x= hi(r,s) xi

    y= hi(r,s) yi

    8

    8

    i=1

    i=1

    (-1,-1)

    (1,1)

    u= hi(r,s) ui8

    i=1

    v= hi(r,s) vii=18

    side nodes:h5=1/2 (1-r2)(1-s)h6=1/2 (1+r)(1-s2)h7=1/2 (1-r2)(1+s)h8=1/2 (1-r)(1-s2)

    corner nodes:h1=1/4 (1-r)(1-s)-1/2h5-1/2h8h2=1/4 (1+r)(1-s)-1/2h5-1/2h6h3=1/4 (1+r)(1+s)-1/2h6-1/2h7h4=1/4 (1-r)(1+s)-1/2h7-1/2h8

    EIGHT NODED ISOPARAMETRIC QUADRILATERAL ELEMENTEIGHT NODED ISOPARAMETRIC QUADRILATERAL ELEMENT