MPLS SDN 2014 - Topology independant LFA

54
Topology Independent LFA Orange use case & applicability Stéphane Litkowski, Orange Expert Bruno Decraene, Orange Expert MPLS 2014

Transcript of MPLS SDN 2014 - Topology independant LFA

Page 1: MPLS SDN 2014 - Topology independant LFA

Topology Independent LFAOrange use case & applicability

Stéphane Litkowski, Orange ExpertBruno Decraene, Orange ExpertMPLS 2014

Page 2: MPLS SDN 2014 - Topology independant LFA

2 TI-LFA

Orange Business Service

MPLS 2014

One of the largest dedicated network for business•Worldwide :

• 172 countries, 900+ cities•France :

• more than 2 million business clients, SMBs and companies in France

IP VPNEthernetInternetCloudVoice & TelepresenceHigh value: availability, security, SLA

Page 3: MPLS SDN 2014 - Topology independant LFA

3 TI-LFA MPLS 2014

Agenda

Requirements

Topology Independent LFA

Applicability on Orange topologies

Simulation results

Page 4: MPLS SDN 2014 - Topology independant LFA

4 TI-LFA MPLS 2014

Agenda

Requirements

Topology Independent LFA

Applicability on Orange topologies

Simulation results

Page 5: MPLS SDN 2014 - Topology independant LFA

5 TI-LFA MPLS 2014

Why using Fast Reroute ?

Fast convergence is below 1sec BUT:– hard to have the same performance on all nodes– hard to maintain convergence time while network is growing

Applications are more and more sensitive (VoIP, CRM, Sync, transport)

Customers do not want to rewrite or customize their applications code to handle network failures

Page 6: MPLS SDN 2014 - Topology independant LFA

6 TI-LFA

FRR issue

MPLS 2014MPLS 2014MPLS 2014

Page 7: MPLS SDN 2014 - Topology independant LFA

7 TI-LFA

FRR issue Primary path

MPLS 2014MPLS 2014MPLS 2014

South East

5ms

Page 8: MPLS SDN 2014 - Topology independant LFA

8 TI-LFA

FRR issue Primary path Backup path

MPLS 2014MPLS 2014MPLS 2014

South East

8ms

Page 9: MPLS SDN 2014 - Topology independant LFA

9 TI-LFA MPLS 2014

FRR issue

MPLS 2014MPLS 2014

Page 10: MPLS SDN 2014 - Topology independant LFA

10 TI-LFA MPLS 2014

FRR issue

MPLS 2014MPLS 2014

Primary path5ms

Page 11: MPLS SDN 2014 - Topology independant LFA

11 TI-LFA MPLS 2014

FRR issue

MPLS 2014MPLS 2014

Page 12: MPLS SDN 2014 - Topology independant LFA

12 TI-LFA MPLS 2014

FRR issue

MPLS 2014MPLS 2014

FRR33ms

Page 13: MPLS SDN 2014 - Topology independant LFA

13 TI-LFA

Backup8ms

MPLS 2014

FRR issue

MPLS 2014MPLS 2014

FRR33ms

Page 14: MPLS SDN 2014 - Topology independant LFA

14 TI-LFA

Backup8ms

MPLS 2014

FRR issue

MPLS 2014MPLS 2014

FRR33msCOMPLETELY

UNOPTIMAL !!!!

Page 15: MPLS SDN 2014 - Topology independant LFA

15 TI-LFA

Backup8ms

MPLS 2014

FRR issue

MPLS 2014MPLS 2014

FRR33msCOMPLETELY

UNOPTIMAL !!!!DAMAGE NETWORK

Page 16: MPLS SDN 2014 - Topology independant LFA

16 TI-LFA

Backup8ms

MPLS 2014

FRR issue

MPLS 2014MPLS 2014

FRR33msCOMPLETELY

UNOPTIMAL !!!!DAMAGE NETWORKDAMAGE CUSTOMER

SERVICE

Page 17: MPLS SDN 2014 - Topology independant LFA

17 TI-LFA

Backup8ms

MPLS 2014

FRR issue

MPLS 2014MPLS 2014

FRR33msCOMPLETELY

UNOPTIMAL !!!!DAMAGE NETWORKDAMAGE CUSTOMER

SERVICEFRR

Page 18: MPLS SDN 2014 - Topology independant LFA

18 TI-LFA MPLS 2014

How to improve ?

Requirements– 100% coverage link and node protection– No transient congestion– Optimal routing– Simple solution to operate and understand– Scalable solution

Page 19: MPLS SDN 2014 - Topology independant LFA

19 TI-LFA MPLS 2014

What is the more optimal and natural path upon a failure ?

Post-convergence path from the PLR

Benefits of using Postconvergence path :– Policy compliant and optimized– Well sized – Well known

D

S Potential backup Path

Postconvergence PathHow to use Post-convergence path

for FRR ?

How to improve ?

Page 20: MPLS SDN 2014 - Topology independant LFA

20 TI-LFA

Agenda

Requirements

Topology Independent LFA

Applicability on Orange topologies

Simulation results

Page 21: MPLS SDN 2014 - Topology independant LFA

21 TI-LFA

Providing 100% coverage (node/link/SRLG)

Segment Routing Fast-Reroute solution – SR allows to use « unlimited » number of paths

encoding any FRR path by using Segment Routing blocks :

– any Service Provider policy (LFA policy framework)– including post-convergence path as new criteria

Primary traffic does not require to be SR :– IP or LDP can be protected by SR

MPLS 2014

Topology Independent LFA

Page 22: MPLS SDN 2014 - Topology independant LFA

22 TI-LFA MPLS 2014

Topology Independent LFA

Cannot use a strict only Explicit Path due to depth of segment stack

We need to compress the stack Done by reusing rLFA/dLFA building blocks (P & Q space)

S R1 R2 R3 D

R4 R5 R6

MPLS MPLS MPLS MPLS

2

MPLS

AdjR5AdjR6AdjR3

MPLS

AdjR6AdjR3

MPLSAdjR3

MPLS

Primary

TI-LFA

Page 23: MPLS SDN 2014 - Topology independant LFA

23 TI-LFAMPLS 2014

Topology Independent LFA

FRR path is computed as follows :– Compute postconvergence shortest path (new SPF)– Enforce loop-freeness by :

– finding a P node on the path– finding a Q node on the path after P (P and Q may be

equal)– Only P to Q path would be explicit and may be

additionnaly compressed using nodal segments

S R1 R2 R3 D

R4 R5 R6

MPLS MPLS

2

MPLSNodeR5

MPLSNodeR5

MPLS

MPLS

PQ

S R1 R2 R3 D

R4 R5 R6

MPLS MPLS

2

MPLS

NodeR5

MPLS MPLS

MPLS

P50 Q

AdjR6

NodeR5AdjR6 AdjR6

Page 24: MPLS SDN 2014 - Topology independant LFA

24 TI-LFA MPLS 2014

Agenda

Requirements

Topology Independent LFA

Applicability on Orange topologies

Simulation results

Page 25: MPLS SDN 2014 - Topology independant LFA

25 TI-LFA

Analysis on topologies : case #1TI-LFA for path optimality

Paris

Paris

Paris

Paris STR

STR

Dijon

Lyon

Lyon

Paris

Lyon

Poitiers

Primary

MPLS 2014

Paris

Out of transitnode

Page 26: MPLS SDN 2014 - Topology independant LFA

26 TI-LFA

Analysis on topologies : case #1TI-LFA for path optimality

Paris

Paris

Paris

Paris STR

STR

Dijon

Lyon

Lyon

Paris

Lyon

Poitiers

Primary

MPLS 2014

Paris

Out of transitnode

Page 27: MPLS SDN 2014 - Topology independant LFA

27 TI-LFA

Analysis on topologies : case #1TI-LFA for path optimality

Paris

Paris

Paris

Paris STR

STR

Dijon

Lyon

Lyon

Paris

Lyon

Poitiers

Primary

BackupMPLS 2014

Paris

Out of transitnode

Page 28: MPLS SDN 2014 - Topology independant LFA

28 TI-LFA MPLS 2014

Analysis on topologies : case #1TI-LFA for path optimality

Paris

Paris

Paris

Paris STR

STR

Dijon

Lyon

Lyon

Paris

Lyon

Poitiers

FRR path

Paris

Out of transitnode

Page 29: MPLS SDN 2014 - Topology independant LFA

29 TI-LFA MPLS 2014

Analysis on topologies : case #1TI-LFA for path optimality

Paris

Paris

Paris

Paris STR

STR

Dijon

Lyon

Lyon

Paris

Lyon

Poitiers

MRT

FRR path

Paris

Out of transitnode

Page 30: MPLS SDN 2014 - Topology independant LFA

30 TI-LFA MPLS 2014

Analysis on topologies : case #1TI-LFA for path optimality

Paris

Paris

Paris

Paris STR

STR

Dijon

Lyon

Lyon

Paris

Lyon

Poitiers

MRT

FRR path

RSVP-TE link protection (1:n)

Paris

Out of transitnode

Page 31: MPLS SDN 2014 - Topology independant LFA

31 TI-LFA MPLS 2014

Analysis on topologies : case #1TI-LFA for path optimality

Paris

Paris

Paris

Paris STR

STR

Dijon

Lyon

Lyon

Paris

Lyon

Poitiers

LFA

MRT

FRR path

RSVP-TE link protection (1:n)

Paris

Out of transitnode

Page 32: MPLS SDN 2014 - Topology independant LFA

32 TI-LFA

Analysis on topologies : case #1TI-LFA for path optimality

Paris1

Paris2

Paris3

Paris5 STR

STR

Dijon

Lyon

Lyon

Paris4

Lyon

Poitiers

EPC FRR

Nodal

EPC stack composed of one segment

Protection stackNode_Pari

s4

MPLS 2014

Paris

Out of transitnode

Page 33: MPLS SDN 2014 - Topology independant LFA

33 TI-LFA MPLS 2014

Analysis on topologies : case #2TI-LFA using multiple segments

PE1

R1

PE2

R2R3

R4 R5

R6

R7

PE3

1

7

3

3

311 1

11

2

100 100

Primary

Backup

SR Segments

Page 34: MPLS SDN 2014 - Topology independant LFA

34 TI-LFA MPLS 2014

Analysis on topologies : case #2TI-LFA using multiple segments

PE1

R1

PE2

R2R3

R4 R5

R6

R7

PE3

1

7

3

3

311 1

11

2

100 100

Primary

Backup

SR Segments

Page 35: MPLS SDN 2014 - Topology independant LFA

35 TI-LFA MPLS 2014

Analysis on topologies : case #2TI-LFA using multiple segments

PE1

R1

PE2

R2R3

R4 R5

R6

R7

PE3

1

7

3

3

311 1

11

2

100 100

Primary

Backup

SR Segments

Page 36: MPLS SDN 2014 - Topology independant LFA

36 TI-LFA MPLS 2014

Analysis on topologies : case #2TI-LFA using multiple segments

PE1

R1

PE2

R2R3

R4 R5

R6

R7

PE3

1

7

3

3

311 1

11

2

100 100

Primary

Backup

SR Segments

P

Q

Page 37: MPLS SDN 2014 - Topology independant LFA

37 TI-LFA MPLS 2014

Analysis on topologies : case #2TI-LFA using multiple segments

PE1

R1

PE2

R2R3

R4 R5

R6

R7

PE3

1

7

3

3

311 1

11

2

100 100

Primary

Backup

SR Segments

P

QProtection stack (PQ)

Adj_R3

Adj_R4

Adj_R6

Adj_R7

Adj_PE3

Top

Bottom

Page 38: MPLS SDN 2014 - Topology independant LFA

38 TI-LFA MPLS 2014

Analysis on topologies : case #2TI-LFA using multiple segments

PE1

R1

PE2

R2R3

R4 R5

R6

R7

PE3

1

7

3

3

311 1

11

2

100 100

Primary

Backup

SR Segments

Protection stack compressed

P

QProtection stack (PQ)

Adj_R3

Adj_R4

Adj_R6

Adj_R7

Adj_PE3

Top

Bottom

Page 39: MPLS SDN 2014 - Topology independant LFA

39 TI-LFA MPLS 2014

Analysis on topologies : case #2TI-LFA using multiple segments

PE1

R1

PE2

R2R3

R4 R5

R6

R7

PE3

1

7

3

3

311 1

11

2

100 100

Primary

Backup

SR Segments

Protection stack compressed

Node_R3

P

QProtection stack (PQ)

Adj_R3

Adj_R4

Adj_R6

Adj_R7

Adj_PE3

Top

Bottom

Top

Nodal to R3

Nodal to PE3

Page 40: MPLS SDN 2014 - Topology independant LFA

40 TI-LFA MPLS 2014

Analysis on topologies : case #2TI-LFA using multiple segments

PE1

R1

PE2

R2R3

R4 R5

R6

R7

PE3

1

7

3

3

311 1

11

2

100 100

Primary

Backup

SR Segments

Nodal to PE3

Protection stack compressed

Node_R3

Node_PE3

P

QProtection stack (PQ)

Adj_R3

Adj_R4

Adj_R6

Adj_R7

Adj_PE3

Top

Bottom

Top

Bottom

Nodal to R3

Nodal to PE3

Page 41: MPLS SDN 2014 - Topology independant LFA

41 TI-LFA MPLS 2014

Analysis on topologies : case #2TI-LFA using multiple segments

PE1

R1

PE2

R2R3

R4 R5

R6

R7

PE3

1

7

3

3

311 1

11

2

100 100

Primary

Backup

SR Segments

Nodal to PE3

Protection stack compressed

Node_R3

Node_PE3

P

QProtection stack (PQ)

Adj_R3

Adj_R4

Adj_R6

Adj_R7

Adj_PE3

Top

Bottom

Top

Bottom

Nodal to R3

Nodal to PE3

Page 42: MPLS SDN 2014 - Topology independant LFA

42 TI-LFA MPLS 2014

Analysis on topologies : case #3Maximum observed stack depth

PE1

PE2

R1

R2

R3

R4

R5R6

100

100

21

23

3

1

3

13

1000

Primary

Backup

SR Segments

Page 43: MPLS SDN 2014 - Topology independant LFA

43 TI-LFA MPLS 2014

Analysis on topologies : case #3Maximum observed stack depth

PE1

PE2

R1

R2

R3

R4

R5R6

100

100

21

23

3

1

3

13

1000

Primary

Backup

SR Segments

Page 44: MPLS SDN 2014 - Topology independant LFA

44 TI-LFA MPLS 2014

Analysis on topologies : case #3Maximum observed stack depth

PE1

PE2

R1

R2

R3

R4

R5R6

100

100

21

23

3

1

3

13

1000

P

QProtection stack (PQ)

Node_R3

Adj_R4

Adj_R5

Adj_R6

Adj_PE2

Primary

Backup

SR Segments

Top

Bottom

Page 45: MPLS SDN 2014 - Topology independant LFA

45 TI-LFA MPLS 2014

Analysis on topologies : case #3Maximum observed stack depth

PE1

PE2

R1

R2

R3

R4

R5R6

100

100

21

23

3

1

3

13

1000

P

QProtection stack (PQ)

Node_R3

Adj_R4

Adj_R5

Adj_R6

Adj_PE2 Node_R3

Primary

Backup

SR Segments

Top

Bottom

Page 46: MPLS SDN 2014 - Topology independant LFA

46 TI-LFA MPLS 2014

Analysis on topologies : case #3Maximum observed stack depth

PE1

PE2

R1

R2

R3

R4

R5R6

100

100

21

23

3

1

3

13

1000

P

QProtection stack (PQ)

Node_R3

Adj_R4

Adj_R5

Adj_R6

Adj_PE2

Node_R5

Node_R3

Primary

Backup

SR Segments

Top

Bottom

Page 47: MPLS SDN 2014 - Topology independant LFA

47 TI-LFA MPLS 2014

Analysis on topologies : case #3Maximum observed stack depth

PE1

PE2

R1

R2

R3

R4

R5R6

100

100

21

23

3

1

3

13

1000

P

QProtection stack (PQ)

Node_R3

Adj_R4

Adj_R5

Adj_R6

Adj_PE2

Node_R5

Node_R6

Node_R3

Primary

Backup

SR Segments

Top

Bottom

Page 48: MPLS SDN 2014 - Topology independant LFA

48 TI-LFA MPLS 2014

Analysis on topologies : case #3Maximum observed stack depth

PE1

PE2

R1

R2

R3

R4

R5R6

100

100

21

23

3

1

3

13

1000

P

QProtection stack (PQ)

Node_R3

Adj_R4

Adj_R5

Adj_R6

Adj_PE2

Node_R5

Node_R6

Node_R3

Adj_PE2

Primary

Backup

SR Segments

Top

Bottom

Page 49: MPLS SDN 2014 - Topology independant LFA

49 TI-LFA MPLS 2014

Analysis on topologies : case #3Maximum observed stack depth

PE1

PE2

R1

R2

R3

R4

R5R6

100

100

21

23

3

1

3

13

1000

P

QProtection stack (PQ)

Node_R3

Adj_R4

Adj_R5

Adj_R6

Adj_PE2

Protection stack compressed

Node_R5

Node_R6

Node_R3

Adj_PE2

Primary

Backup

SR Segments

Top

Bottom

Top

Bottom

Page 50: MPLS SDN 2014 - Topology independant LFA

50 TI-LFA MPLS 2014

Agenda

Requirements

Topology Independent LFA

Applicability on Orange topologies

Simulation results

Page 51: MPLS SDN 2014 - Topology independant LFA

51 TI-LFA MPLS 2014

Simulations results on 11 Orange NetworksDepth of protection stack

11 topologies have been analyzed including multiple network types and size

Page 52: MPLS SDN 2014 - Topology independant LFA

52 TI-LFA

Simulations results on 11 Orange Networks

MPLS 2014

80% of nodes have 12 or less distinct repair_lists

Page 53: MPLS SDN 2014 - Topology independant LFA

53 TI-LFA

100% FRR link/node protection is a requirement

Current FRR technics may cause some side effects :– Transient network congestion– Additionnal management for selection of the backup path

Topology Independent LFA :– Scalable : no additional state in the network– Simple to compute

– Provides 100% link/node protection– Prevents any side effect by using a well sized and optimal path– Simple to understand : well known path

MPLS 2014

Conclusion

Page 54: MPLS SDN 2014 - Topology independant LFA

Thank you !