moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults...

37
Reducing -Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks On -Safety of Stochastic Differential Dynamics Shenghua Feng1, Mingshuai Chen2, Bai Xue1, Sriram Sankaranarayanan3, Naijun Zhan1 1Institute of Software, Chinese Academy of Sciences 2Lehrstuhl für Informatik 2, RWTH Aachen University 3University of Colorado Boulder Los Angeles · July 2020 Mingshuai Chen · i2, RWTH Aachen Univ. On -Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 1 / 21

Transcript of moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults...

Page 1: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

On∞-Safety of Stochastic Differential Dynamics

Shenghua Feng1,Mingshuai Chen2, Bai Xue1,Sriram Sankaranarayanan3, Naijun Zhan1

1Institute of Software, Chinese Academy of Sciences2Lehrstuhl für Informatik 2, RWTH Aachen University

3University of Colorado Boulder

Los Angeles · July 2020

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 1 / 21

Page 2: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Stochasticity

”While writing my book [Stochastic Processes] I had an argu-mentwith Feller. He asserted that everyone said ’randomvariable’and I asserted that everyone said ’chance variable’. We obviouslyhad to use the same name in our books, so we decided the issueby a stochastic procedure. That is, we tossed for it and he won.”

[Joseph L. Doob, 1910 – 2004]

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 2 / 21

Page 3: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Stochasticity in Differential Dynamics

©[Wikipedia]

Louis Bachelier©[Wikipedia]

Brownian motion

”The mathematical expectation of the speculator is zero.”

[L. Bachelier, Théorie de la spéculation, 1900]

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 3 / 21

Page 4: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Stochasticity in Differential Dynamics

©[Wikipedia]

Louis Bachelier©[Wikipedia]

Brownian motion

”The mathematical expectation of the speculator is zero.”

[L. Bachelier, Théorie de la spéculation, 1900]

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 3 / 21

Page 5: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Stochasticity in Differential Dynamics

©[Wikipedia]

A. Einstein©[Wikipedia]

M. Smoluchowski©[Wikipedia]

P. Langevin

©[Mathsoc.jp]

K. Itô©[Alchetron]

R. Stratonovich

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 3 / 21

Page 6: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Applications of Stochastic Differential Dynamics

©[PNGGuru]

Wind forces©[SAGEPub]

Pedestrian motion©[Wikipedia]

Brownian motion

©[J. Pastor, 2016]

Population dynamics©[GettyImages]

Stock options

Plant

ControlAnalogswitch

Continuouscontrollers

D/A

Discretesupervisor

A/D

Plant

observablestate

environmentalinfluence

disturbances ("noise")

control

selection

setpoints

active control law

setpointspart ofobservablestate

task selection

BBB

©[M. Fränzle]

Robust control

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 4 / 21

Page 7: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Stochastic Differential Equations (SDEs)

dXt = b(Xt) dt+ σ(Xt) dWt, t ≥ 0.

The unique solution is the stochastic process Xt(ω) = X(t, ω) : [0,∞)× Ω → Rn s.t.

Xt = X0 +

∫ t

0b(Xs) ds+

∫ t

0σ(Xs) dWs.

The solution Xt is also referred to as an (Itô) diffusion process.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 5 / 21

Page 8: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Stochastic Differential Equations (SDEs)

dXt = b(Xt) dt+ σ(Xt) dWt, t ≥ 0.

The unique solution is the stochastic process Xt(ω) = X(t, ω) : [0,∞)× Ω → Rn s.t.

Xt = X0 +

∫ t

0b(Xs) ds+

∫ t

0σ(Xs) dWs.

The solution Xt is also referred to as an (Itô) diffusion process.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 5 / 21

Page 9: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Stochastic Differential Equations (SDEs)

dXt = b(Xt) dt+ σ(Xt) dWt, t ≥ 0.

The unique solution is the stochastic process Xt(ω) = X(t, ω) : [0,∞)× Ω → Rn s.t.

Xt = X0 +

∫ t

0b(Xs) ds+

∫ t

0σ(Xs) dWs.

The solution Xt is also referred to as an (Itô) diffusion process.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 5 / 21

Page 10: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Safety Verification of ODEs

Given T ∈ R, X ⊆ Rn, X0 ⊂ X , Xu ⊂ X , weather

∀x0 ∈ X0 :

(⋃t≤T

xt,x0

)∩ Xu = ∅ ?

©[M. Althoff, 2010]

System is T-safe, if no trajectory enters Xu over [0, T] ; Unbounded : T = ∞.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 6 / 21

Page 11: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

∞-Safety of SDEs

Bound the failure probability

P(∃t ∈ [0,∞) : Xt ∈ Xu

), ∀X0 ∈ X | supp(X) ⊆ X0,

where Xt is the process that will stop at the boundary of X :

Xt = Xt∧τX =

X(t, ω) if t ≤ τ(ω),

X(τ(ω), ω) otherwise,

with τX = inft | Xt /∈ X.

ϕ = “Xt evolves within X ”, ψ = “Xt evolves into Xu”

∞-safety asks for a bound on P (ϕUψ).

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 7 / 21

Page 12: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

∞-Safety of SDEs

Bound the failure probability

P(∃t ∈ [0,∞) : Xt ∈ Xu

), ∀X0 ∈ X | supp(X) ⊆ X0,

where Xt is the process that will stop at the boundary of X :

Xt = Xt∧τX =

X(t, ω) if t ≤ τ(ω),

X(τ(ω), ω) otherwise,

with τX = inft | Xt /∈ X.

ϕ = “Xt evolves within X ”, ψ = “Xt evolves into Xu”

∞-safety asks for a bound on P (ϕUψ).

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 7 / 21

Page 13: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

∞-Safety of SDEs

Bound the failure probability

P(∃t ∈ [0,∞) : Xt ∈ Xu

), ∀X0 ∈ X | supp(X) ⊆ X0,

where Xt is the process that will stop at the boundary of X :

Xt = Xt∧τX =

X(t, ω) if t ≤ τ(ω),

X(τ(ω), ω) otherwise,

with τX = inft | Xt /∈ X.

ϕ = “Xt evolves within X ”, ψ = “Xt evolves into Xu”

∞-safety asks for a bound on P (ϕUψ).

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 7 / 21

Page 14: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Concluding Remarks

Overview of the Idea

; S. Feng, M. Chen, B. Xue, S. Sankaranarayanan, N. Zhan : Unbounded-time safety verification of stochastic

differential dynamics. CAV ’20.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics MOVES Seminar · Aachen · 2020 7 / 11

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Overview of the Idea

Observe that for any 0 ≤ T <∞,

P(∃t ≥ 0: Xt ∈ Xu) ≤ P(∃t ∈ [0, T] : Xt ∈ Xu) + P(∃t ≥ T : Xt ∈ Xu).

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 8 / 21

Page 15: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Concluding Remarks

Overview of the Idea

; S. Feng, M. Chen, B. Xue, S. Sankaranarayanan, N. Zhan : Unbounded-time safety verification of stochastic

differential dynamics. CAV ’20.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics MOVES Seminar · Aachen · 2020 7 / 11

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Overview of the Idea

Observe that for any 0 ≤ T <∞,

P(∃t ≥ 0: Xt ∈ Xu) ≤ P(∃t ∈ [0, T] : Xt ∈ Xu) + P(∃t ≥ T : Xt ∈ Xu)︸ ︷︷ ︸ .Bounded by an exponential barrier certificate

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 8 / 21

Page 16: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Concluding Remarks

Overview of the Idea

; S. Feng, M. Chen, B. Xue, S. Sankaranarayanan, N. Zhan : Unbounded-time safety verification of stochastic

differential dynamics. CAV ’20.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics MOVES Seminar · Aachen · 2020 7 / 11

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Overview of the Idea

Observe that for any 0 ≤ T <∞,

P(∃t ≥ 0: Xt ∈ Xu)≤ P(∃t ∈ [0, T] : Xt ∈ Xu)︸ ︷︷ ︸ + P(∃t ≥ T : Xt ∈ Xu)︸ ︷︷ ︸ .Bounded by an exponential barrier certificate

Bounded by a time-dependent barrier certificate

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 8 / 21

Page 17: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Recap : Barrier Certificate Witnesses∞-Safety

B(x) > 0 ∀x ∈ Xu,

B(x) ≤ 0 ∀x ∈ X0,

∂B

∂x(x)b(x) < 0 ∀x ∈ ∂B.

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

x1

x 2

Example 1

Fig. 1. Phase portrait of the system in Example 1. Solid patches are (from the left)Xu and X0, respectively. Dashed curves are the zero level set of B(x, p), whereas solidcurves are some trajectories of the system.

continuous state evolves according to x = f1(x, d), until it reaches some point inthe guard set Guard(1, 2) = x ∈ R

3 : 0.99 ≤ x21 + 0.01x2

2 + 0.01x23 ≤ 1.01, at

which instance a controller whose objective is to prevent |x1| from getting toobig will be turned on, and the system jumps to location 2 (CONTROL mode).In location 2, the continuous dynamics is described by x = f2(x, d). The systemwill remain in this location until the continuous state enters the second guard setGuard(2, 1) = x ∈ R

3 : 0.03 ≤ x21 + x2

2 + x23 ≤ 0.05, where the controller will

be turned off and the system jumps to location 1. We assume nondeterminismin the jump from location 1 to location 2 and vice versa. The invariant sets ofboth locations are shown in Figure 2, and the vector fields are given by

f1(x, d) =

x2

−x1 + x3

x1 + (2x2 + 3x3)(1 + x23) + d

, f2(x, d) =

x2

−x1 + x3

−x1 − 2x2 − 3x3 + d

.

Our task in this example is to verify that |x1| never gets bigger than 5, ifthe instantaneous magnitude of the disturbance d is bounded by 1. We defineour unsafe sets as Unsafe(1) = ∅, Unsafe(2) = x ∈ R

3 : 5 ≤ x1 ≤ 5.1 ∪ x ∈R

3 : −5.1 ≤ x1 ≤ −5, and compute a quartic barrier certificate satisfying theconditions in Theorem 2. Using the iterative method described in Section 4 toenlarge the verifiable disturbance set, we obtain the results shown in Table 1.At the third iteration, we are able to prove the safety of the system.

5.3 Example 3

In this example, we analyze the reachability of a linear system in feedback inter-connection with a relay. The block diagram of the system is shown in Figure 3,

©[S. Prajna & A. Jadbabaie, 2004]

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 9 / 21

Page 18: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Outline

1 Reducing∞-Safety to T-Safety

2 Synthesizing Stochastic BCs

3 Experimental Results

4 Concluding Remarks

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 10 / 21

Page 19: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Tail Failure Probability

Infinitesimal Generator

Definition (Infinitesimal generator [Øksendal, 2013])

Let Xt be a diffusion process in Rn. The infinitesimal generatorA of Xt is defined by

Af(s,x) = limt↓0

Es,x [f(s+ t,Xt)]− f(s,x)t

, x ∈ Rn.

LetDA denote the set of functions for which the limit exists for all (s,x) ∈ R× Rn.

Lemma ([Øksendal, 2013])

Let Xt be a diffusion process defined by an SDE. If f ∈ C1,2(R× Rn)with compactsupport, then f ∈ DA and

Af(t,x) = ∂f

∂t+

n∑i=1

bi(x)∂f

∂xi+

1

2

∑i,j

(σσT)ij∂2f

∂xi∂xj.

Af(t,x) generalizes the Lie derivative that captures the evolution of f(t,x) along Xt.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 11 / 21

Page 20: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Tail Failure Probability

Infinitesimal Generator

Definition (Infinitesimal generator [Øksendal, 2013])

Let Xt be a diffusion process in Rn. The infinitesimal generatorA of Xt is defined by

Af(s,x) = limt↓0

Es,x [f(s+ t,Xt)]− f(s,x)t

, x ∈ Rn.

LetDA denote the set of functions for which the limit exists for all (s,x) ∈ R× Rn.

Lemma ([Øksendal, 2013])

Let Xt be a diffusion process defined by an SDE. If f ∈ C1,2(R× Rn)with compactsupport, then f ∈ DA and

Af(t,x) = ∂f

∂t+

n∑i=1

bi(x)∂f

∂xi+

1

2

∑i,j

(σσT)ij∂2f

∂xi∂xj.

Af(t,x) generalizes the Lie derivative that captures the evolution of f(t,x) along Xt.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 11 / 21

Page 21: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Tail Failure Probability

Exponential Stochastic Barrier Certificate

Theorem

Suppose there exists an essentially non-negative matrix Λ ∈ Rm×m, together with anm-dimensional polynomial function (termed exponential stochastic barrier certificate)V(x) = (V1(x),V2(x), . . . ,Vm(x))T, with Vi : Rn → R for 1 ≤ i ≤ m, satisfying

V(x) ≥ 0 for x ∈ X , (1)

AV(x) ≤ −ΛV(x) for x ∈ X , (2)

ΛV(x) ≤ 0 for x ∈ ∂X . (3)

Define a functionF(t,x) = eΛtV(x),

then every component of F(t, Xt) is a supermartingale.

Proof

Based on Dynkin’s formula [Dynkin, 1965] and Fatou’s lemma.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 12 / 21

Page 22: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Tail Failure Probability

Exponential Stochastic Barrier Certificate

Theorem

Suppose there exists an essentially non-negative matrix Λ ∈ Rm×m, together with anm-dimensional polynomial function (termed exponential stochastic barrier certificate)V(x) = (V1(x),V2(x), . . . ,Vm(x))T, with Vi : Rn → R for 1 ≤ i ≤ m, satisfying

V(x) ≥ 0 for x ∈ X , (1)

AV(x) ≤ −ΛV(x) for x ∈ X , (2)

ΛV(x) ≤ 0 for x ∈ ∂X . (3)

Define a functionF(t,x) = eΛtV(x),

then every component of F(t, Xt) is a supermartingale.

Proof

Based on Dynkin’s formula [Dynkin, 1965] and Fatou’s lemma.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 12 / 21

Page 23: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Tail Failure Probability

Doob’s Supermartingale Inequality

Lemma (Doob’s supermartingale inequality [Karatzas and Shreve, 2014])

Let Xtt>0 be a right continuous non-negative supermartingale adapted to a filtrationFt | t > 0. Then for any λ > 0,

λP

(supt≥0

Xt ≥ λ

)≤ E[X0].

A bound on the probability that a non-negative supermartingale exceeds some givenvalue over a given time interval.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 13 / 21

Page 24: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Tail Failure Probability

Exponentially Decreasing Bound on the Tail Failure Probability

For cases where V(x) is a scalar function 1 :

Proposition

Suppose there exists a positive constant Λ ∈ R and a scalar exponential stochasticbarrier certificate V : Rn → R. Then,

P

(supt≥T

V(Xt

)≥ γ

)≤

E [V(X0)]

eΛTγ

holds for any γ > 0 and T ≥ 0. Moreover, if there exists l > 0 s.t.

V(x) ≥ l for all x ∈ Xu,

then

P(∃t ≥ T : Xt ∈ Xu

)≤

E[V(X0)]

eΛTl

holds for any T ≥ 0.

Proof

Based on Doob’s supermartingale inequality.

1. The result generalizes to the slightly more involved case where V(x) is a vector function.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 14 / 21

Page 25: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Tail Failure Probability

Exponentially Decreasing Bound on the Tail Failure Probability

For cases where V(x) is a scalar function 1 :

Proposition

Suppose there exists a positive constant Λ ∈ R and a scalar exponential stochasticbarrier certificate V : Rn → R. Then,

P

(supt≥T

V(Xt

)≥ γ

)≤

E [V(X0)]

eΛTγ

holds for any γ > 0 and T ≥ 0. Moreover, if there exists l > 0 s.t.

V(x) ≥ l for all x ∈ Xu,

then

P(∃t ≥ T : Xt ∈ Xu

)≤

E[V(X0)]

eΛTl

holds for any T ≥ 0.

Proof

Based on Doob’s supermartingale inequality.

1. The result generalizes to the slightly more involved case where V(x) is a vector function.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 14 / 21

Page 26: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Tail Failure Probability

Exponentially Decreasing Bound on the Tail Failure Probability

∀ϵ > 0.∃T ≥ 0: the truncated T-tail failure probability is bounded by ϵ :

Theorem

If there exists α > 0, s.t. ∀x ∈ X0 : Vi(x) ≤ α holds for some i ∈ 1, . . . ,m. Then forany ϵ > 0, there exists T ≥ 0 s.t.

P(∃t ≥ T : Xt ∈ Xu

)≤ ϵ.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 14 / 21

Page 27: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Failure Probability over [0, T]

Time-Dependent Stochastic Barrier Certificate

Theorem

Suppose there exists a constant η > 0 and a polynomial function (termedtime-dependent stochastic barrier certificate) H(t,x) : R× Rn → R, satisfying

H(t,x) ≥ 0 for (t,x) ∈ [0, T]×X , (4)

AH(t,x) ≤ 0 for (t,x) ∈ [0, T]× (X \ Xu) , (5)

∂H

∂t≤ 0 for (t,x) ∈ [0, T]× ∂X , (6)

H(t,x) ≥ η for (t,x) ∈ [0, T]×Xu. (7)

Then,

P(∃t ∈ [0, T] : Xt ∈ Xu

)≤

E[H(0,X0)]

η.

Proof

Based on Dynkin’s formula and Doob’s supermartingale inequality.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 15 / 21

Page 28: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Failure Probability over [0, T]

Time-Dependent Stochastic Barrier Certificate

Theorem

Suppose there exists a constant η > 0 and a polynomial function (termedtime-dependent stochastic barrier certificate) H(t,x) : R× Rn → R, satisfying

H(t,x) ≥ 0 for (t,x) ∈ [0, T]×X , (4)

AH(t,x) ≤ 0 for (t,x) ∈ [0, T]× (X \ Xu) , (5)

∂H

∂t≤ 0 for (t,x) ∈ [0, T]× ∂X , (6)

H(t,x) ≥ η for (t,x) ∈ [0, T]×Xu. (7)

Then,

P(∃t ∈ [0, T] : Xt ∈ Xu

)≤

E[H(0,X0)]

η.

Proof

Based on Dynkin’s formula and Doob’s supermartingale inequality.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 15 / 21

Page 29: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Bounding the Failure Probability over [0, T]

Time-Dependent Stochastic Barrier Certificate

Corollary

Suppose there exists β > 0, s.t. H(0,x) ≤ β for x ∈ X0. Then,

P(∃t ∈ [0, T] : Xt ∈ Xu

)≤β

η.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 15 / 21

Page 30: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

SDP Encoding for Synthesizing V(x)

minimizea,α

α (8)

subject to Va(x) ≥ 0 for x ∈ X (9)

AVa(x) ≤ −ΛVa(x) for x ∈ X (10)

ΛVa(x) ≤ 0 for x ∈ ∂X (11)

Va(x) ≥ 1 for x ∈ Xu (12)

Va(x) ≤ α1 for x ∈ X0 (13)

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 16 / 21

Page 31: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

SDP Encoding for Synthesizing H(t,x)

minimizeb,β

β (14)

subject to Hb(t,x) ≥ 0 for (t,x) ∈ [0, T]×X (15)

AHb(t,x) ≤ 0 for (t,x) ∈ [0, T]× (X \ Xu) (16)

∂Hb

∂t≤ 0 for (t,x) ∈ [0, T]× ∂X (17)

Hb(t,x) ≥ 1 for (t,x) ∈ [0, T]×Xu (18)

Hb(0,x) ≤ β for x ∈ X0 (19)

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 17 / 21

Page 32: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Example : Population Dynamics

Example (Population growth [Panik, 2017])

dXt = −Xt dt+√2/2Xt dWt.

∞-safety setting : X = x | x ≥ 0,X0 = x | x = 1,Xu = x | x ≥ 2.

V(x) = 0.000001630047868 − 0.000048762786972x

+ 0.125025533525219x2+ 0.000000001603294x3

.

P(∃t ≥ T : Xt ∈ Xu

)≤

0.12498

eT∀T > 0.

16 S. Feng et al.

0 1 2 3 4 5 6 70

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fai

lure

pro

babi

lity

b.d. by Prajna et al.

2 4 6 8 10 12 14 16 18 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fai

lure

pro

babi

lity

b.d. by Prajna et al.

Fig. 1: Different choices of T lead to different bounds on the failure probability (with the time-dependent stochastic barriercertificates of degree 4). Note that ‘’ = ‘×’ + ‘4’ and ‘•’ depicts the overall bound on the failure probability produced bythe method in [27,28].

which satisfies

V a(x) ≥ 1 for x ∈ Xu and V a(x) ≤ 0.12498 for x ∈ X0.

Thus by Proposition 1, we obtain the exponentially decreasing bound

P(∃t ≥ T : Xt ∈ Xu

)≤ 0.12498

eTfor all T > 0.

The user then may choose any T > 0 and solve the reduced T -safety problem. As de-picted in the left of Fig. 1, different choices lead to different bounds on the failure prob-ability. Nevertheless, one may surely select an appropriate T that yields a way tighteroverall bound on the failure probability than that produced by the method in [27,28].

Example 2 (Harmonic oscillator [13]). Consider a two-dimensional harmonic oscilla-tor with noisy damping:

dXt =

(0 ω−ω −k

)Xt dt+

(0 00 −σ

)Xt dWt,

with constants ω = 1, k = 7 and σ = 2. We instantiate the ∞-safety problem asX = Rn, X0 = (x1, x2) | −1.2 ≤ x1 ≤ 0.8,−0.6 ≤ x2 ≤ 0.4 and Xu =(x1, x2) | |x1| ≥ 2.

Let Λ =

(0.45 0.10.1 0.45

)and set the polynomial template degree of the exponential

stochastic barrier certificate V a(x) to 4, the SDP solver produces a two-dimensionalV a(x) (abbreviated for clear presentation) satisfying

V a(x) ≤(0.199270.19927

)for x ∈ X0 and V a(x) ≥ l =

(1.00031.0002

)for x ∈ Xu.

According to the proof of Proposition 2, we setM =

(0.3 0.10.1 0.3

)and aim to find T ∗ ≥ 0

such that for all T ≥ T ∗,

supt≥0

(e−Λte−(Λ−M)T

(1.00031.0002

))≤(1.00031.0002

). (31)

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 18 / 21

Page 33: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Example : Population Dynamics

Example (Population growth [Panik, 2017])

dXt = −Xt dt+√2/2Xt dWt.

∞-safety setting : X = x | x ≥ 0,X0 = x | x = 1,Xu = x | x ≥ 2.

V(x) = 0.000001630047868 − 0.000048762786972x

+ 0.125025533525219x2+ 0.000000001603294x3

.

P(∃t ≥ T : Xt ∈ Xu

)≤

0.12498

eT∀T > 0.

16 S. Feng et al.

0 1 2 3 4 5 6 70

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fai

lure

pro

babi

lity

b.d. by Prajna et al.

2 4 6 8 10 12 14 16 18 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fai

lure

pro

babi

lity

b.d. by Prajna et al.

Fig. 1: Different choices of T lead to different bounds on the failure probability (with the time-dependent stochastic barriercertificates of degree 4). Note that ‘’ = ‘×’ + ‘4’ and ‘•’ depicts the overall bound on the failure probability produced bythe method in [27,28].

which satisfies

V a(x) ≥ 1 for x ∈ Xu and V a(x) ≤ 0.12498 for x ∈ X0.

Thus by Proposition 1, we obtain the exponentially decreasing bound

P(∃t ≥ T : Xt ∈ Xu

)≤ 0.12498

eTfor all T > 0.

The user then may choose any T > 0 and solve the reduced T -safety problem. As de-picted in the left of Fig. 1, different choices lead to different bounds on the failure prob-ability. Nevertheless, one may surely select an appropriate T that yields a way tighteroverall bound on the failure probability than that produced by the method in [27,28].

Example 2 (Harmonic oscillator [13]). Consider a two-dimensional harmonic oscilla-tor with noisy damping:

dXt =

(0 ω−ω −k

)Xt dt+

(0 00 −σ

)Xt dWt,

with constants ω = 1, k = 7 and σ = 2. We instantiate the ∞-safety problem asX = Rn, X0 = (x1, x2) | −1.2 ≤ x1 ≤ 0.8,−0.6 ≤ x2 ≤ 0.4 and Xu =(x1, x2) | |x1| ≥ 2.

Let Λ =

(0.45 0.10.1 0.45

)and set the polynomial template degree of the exponential

stochastic barrier certificate V a(x) to 4, the SDP solver produces a two-dimensionalV a(x) (abbreviated for clear presentation) satisfying

V a(x) ≤(0.199270.19927

)for x ∈ X0 and V a(x) ≥ l =

(1.00031.0002

)for x ∈ Xu.

According to the proof of Proposition 2, we setM =

(0.3 0.10.1 0.3

)and aim to find T ∗ ≥ 0

such that for all T ≥ T ∗,

supt≥0

(e−Λte−(Λ−M)T

(1.00031.0002

))≤(1.00031.0002

). (31)

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 18 / 21

Page 34: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Example : Harmonic Oscillator

Example (Harmonic oscillator [Hafstein et al., 2018])

dXt =

(0 ω−ω −k

)Xt dt+

(0 00 −σ

)Xt dWt.

Constants : ω = 1, k = 7, σ = 2.∞-safety setting : X = Rn, X0 = (x1, x2) | −1.2 ≤ x1 ≤ 0.8,−0.6 ≤ x2 ≤ 0.4,Xu = (x1, x2) | |x1| ≥ 2.

∀T ≥ 1:

P(∃t ≥ T : Xt ∈ Xu

)≤

0.19927

0.00005e0.2T + 1.00025e0.4T.

16 S. Feng et al.

0 1 2 3 4 5 6 70

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fai

lure

pro

babi

lity

b.d. by Prajna et al.

2 4 6 8 10 12 14 16 18 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fai

lure

pro

babi

lity

b.d. by Prajna et al.

Fig. 1: Different choices of T lead to different bounds on the failure probability (with the time-dependent stochastic barriercertificates of degree 4). Note that ‘’ = ‘×’ + ‘4’ and ‘•’ depicts the overall bound on the failure probability produced bythe method in [27,28].

which satisfies

V a(x) ≥ 1 for x ∈ Xu and V a(x) ≤ 0.12498 for x ∈ X0.

Thus by Proposition 1, we obtain the exponentially decreasing bound

P(∃t ≥ T : Xt ∈ Xu

)≤ 0.12498

eTfor all T > 0.

The user then may choose any T > 0 and solve the reduced T -safety problem. As de-picted in the left of Fig. 1, different choices lead to different bounds on the failure prob-ability. Nevertheless, one may surely select an appropriate T that yields a way tighteroverall bound on the failure probability than that produced by the method in [27,28].

Example 2 (Harmonic oscillator [13]). Consider a two-dimensional harmonic oscilla-tor with noisy damping:

dXt =

(0 ω−ω −k

)Xt dt+

(0 00 −σ

)Xt dWt,

with constants ω = 1, k = 7 and σ = 2. We instantiate the ∞-safety problem asX = Rn, X0 = (x1, x2) | −1.2 ≤ x1 ≤ 0.8,−0.6 ≤ x2 ≤ 0.4 and Xu =(x1, x2) | |x1| ≥ 2.

Let Λ =

(0.45 0.10.1 0.45

)and set the polynomial template degree of the exponential

stochastic barrier certificate V a(x) to 4, the SDP solver produces a two-dimensionalV a(x) (abbreviated for clear presentation) satisfying

V a(x) ≤(0.199270.19927

)for x ∈ X0 and V a(x) ≥ l =

(1.00031.0002

)for x ∈ Xu.

According to the proof of Proposition 2, we setM =

(0.3 0.10.1 0.3

)and aim to find T ∗ ≥ 0

such that for all T ≥ T ∗,

supt≥0

(e−Λte−(Λ−M)T

(1.00031.0002

))≤(1.00031.0002

). (31)

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 19 / 21

Page 35: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Example : Harmonic Oscillator

Example (Harmonic oscillator [Hafstein et al., 2018])

dXt =

(0 ω−ω −k

)Xt dt+

(0 00 −σ

)Xt dWt.

Constants : ω = 1, k = 7, σ = 2.∞-safety setting : X = Rn, X0 = (x1, x2) | −1.2 ≤ x1 ≤ 0.8,−0.6 ≤ x2 ≤ 0.4,Xu = (x1, x2) | |x1| ≥ 2.

∀T ≥ 1:

P(∃t ≥ T : Xt ∈ Xu

)≤

0.19927

0.00005e0.2T + 1.00025e0.4T.

16 S. Feng et al.

0 1 2 3 4 5 6 70

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fai

lure

pro

babi

lity

b.d. by Prajna et al.

2 4 6 8 10 12 14 16 18 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fai

lure

pro

babi

lity

b.d. by Prajna et al.

Fig. 1: Different choices of T lead to different bounds on the failure probability (with the time-dependent stochastic barriercertificates of degree 4). Note that ‘’ = ‘×’ + ‘4’ and ‘•’ depicts the overall bound on the failure probability produced bythe method in [27,28].

which satisfies

V a(x) ≥ 1 for x ∈ Xu and V a(x) ≤ 0.12498 for x ∈ X0.

Thus by Proposition 1, we obtain the exponentially decreasing bound

P(∃t ≥ T : Xt ∈ Xu

)≤ 0.12498

eTfor all T > 0.

The user then may choose any T > 0 and solve the reduced T -safety problem. As de-picted in the left of Fig. 1, different choices lead to different bounds on the failure prob-ability. Nevertheless, one may surely select an appropriate T that yields a way tighteroverall bound on the failure probability than that produced by the method in [27,28].

Example 2 (Harmonic oscillator [13]). Consider a two-dimensional harmonic oscilla-tor with noisy damping:

dXt =

(0 ω−ω −k

)Xt dt+

(0 00 −σ

)Xt dWt,

with constants ω = 1, k = 7 and σ = 2. We instantiate the ∞-safety problem asX = Rn, X0 = (x1, x2) | −1.2 ≤ x1 ≤ 0.8,−0.6 ≤ x2 ≤ 0.4 and Xu =(x1, x2) | |x1| ≥ 2.

Let Λ =

(0.45 0.10.1 0.45

)and set the polynomial template degree of the exponential

stochastic barrier certificate V a(x) to 4, the SDP solver produces a two-dimensionalV a(x) (abbreviated for clear presentation) satisfying

V a(x) ≤(0.199270.19927

)for x ∈ X0 and V a(x) ≥ l =

(1.00031.0002

)for x ∈ Xu.

According to the proof of Proposition 2, we setM =

(0.3 0.10.1 0.3

)and aim to find T ∗ ≥ 0

such that for all T ≥ T ∗,

supt≥0

(e−Λte−(Λ−M)T

(1.00031.0002

))≤(1.00031.0002

). (31)

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 19 / 21

Page 36: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Concluding Remarks

Overview of the Idea

; S. Feng, M. Chen, B. Xue, S. Sankaranarayanan, N. Zhan : Unbounded-time safety verification of stochastic

differential dynamics. CAV ’20.

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics MOVES Seminar · Aachen · 2020 7 / 11

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

Summary

For any 0 ≤ T <∞,

P(∃t ≥ 0: Xt ∈ Xu)≤ P(∃t ∈ [0, T] : Xt ∈ Xu)︸ ︷︷ ︸ + P(∃t ≥ T : Xt ∈ Xu)︸ ︷︷ ︸ .Bounded by an exponential barrier certificate

Bounded by a time-dependent barrier certificate

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 20 / 21

Page 37: moves.rwth-aachen.de · Reducing ∞-SafetytoT-Safety SynthesizingStochasticBCs ExperimentalResults ConcludingRemarks. ApplicationsofStochasticDifferentialDynamics ©[PNGGuru] Windforces

Reducing∞-Safety to T-Safety Synthesizing Stochastic BCs Experimental Results Concluding Remarks

SDEs with control inputs?

∞-Safety of Probabilistic Programs?…

Mingshuai Chen · i2, RWTH Aachen Univ. On∞-Safety of Stochastic Differential Dynamics CAV 2020 · Los Angeles, USA 21 / 21