MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region...

22
MOSFET & IC Basics โ€“ GATE Problems (Part - II) 1. In MOSFET devices the N-channel type is better than the P โ€“ Channel type in the following respects. (a) It has better immunity (b) It is faster (c) It is TTL compatible (d) It has better drive capability [GATE 1988: 2 Marks] Soln. In N โ€“ Channel MOSFETs the charge carriers are electrons while in P โ€“ channel MOSFETs holes are the charge carriers. The mobility of electrons is always greater than the mobility of holes. i.e. > Thus, N โ€“ Channel MOSFETs are faster Option (b) 2. In a MOSFET, the polarity of the inversion layer is the same as that of the (a) Charge on the GATE โ€“ EC โ€“ electrode (b) Minority carries in the drain (c) Majority carriers in the substrate (d) Majority carries in the source [GATE 1989: 2 Marks] Soln. In a MOSFET the polarity of inversion layer is the same as that of majority carriers in the source. For example, for N โ€“ MOSFETs the source is of N โ€“ type and inversion layer formed is of electrons. Option (d) 3. Which of the following effects can be caused by a rise in the temperature? (a) Increase in MOSFET current (I DS ) (b) Increase in BJT current (I C ) (c) Decrease in MOSFET current (I DS ) (d) Decrease in BJT current (I C ) [GATE 1990: 2 Marks]

Transcript of MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region...

Page 1: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

MOSFET & IC Basics โ€“ GATE Problems (Part - II)

1. In MOSFET devices the N-channel type is better than the P โ€“ Channel

type in the following respects.

(a) It has better immunity

(b) It is faster

(c) It is TTL compatible

(d) It has better drive

capability

[GATE 1988: 2 Marks]

Soln. In N โ€“ Channel MOSFETs the charge carriers are electrons while in

P โ€“ channel MOSFETs holes are the charge carriers.

The mobility of electrons is always greater than the mobility of holes.

i.e. ๐๐’ > ๐๐’‘

Thus, N โ€“ Channel MOSFETs are faster

Option (b)

2. In a MOSFET, the polarity of the inversion layer is the same as that of the

(a) Charge on the GATE โ€“ EC โ€“ electrode

(b) Minority carries in the drain

(c) Majority carriers in the substrate

(d) Majority carries in the source

[GATE 1989: 2 Marks]

Soln. In a MOSFET the polarity of inversion layer is the same as that of

majority carriers in the source.

For example, for N โ€“ MOSFETs the source is of N โ€“ type and

inversion layer formed is of electrons.

Option (d)

3. Which of the following effects can be caused by a rise in the

temperature?

(a) Increase in MOSFET current (IDS)

(b) Increase in BJT current (IC)

(c) Decrease in MOSFET current (IDS)

(d) Decrease in BJT current (IC)

[GATE 1990: 2 Marks]

Page 2: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

Soln. The current equation for BJT is

๐‘ฐ๐‘ช = ๐œท ๐‘ฐ๐’ƒ + (๐Ÿ + ๐œท)๐‘ฐ๐‘ช๐‘ถ

As temperature increases, the leakage current ICO increases, so the

current IC increases in BJT.

Since mobility decreases as temperature increases. So in MOSFETs

current IDS decreases with rise in temperature

Option (b) and (c)

4. When the gate โ€“ to โ€“ source voltage (VGS) of a MOSFET with threshold

voltage of 400 mV, working in saturation is 900 mV, the drain current is

observed to be 1 mA. Neglecting the channel width modulation effect and

assuming that the MOSFET is operating at saturation, the drain current

for an applied VGS of 1400 mV is

(a) 0.5 mA

(b) 2.0 mA

(c) 3.5 mA

(d) 4.0 mA

[GATE 2003: 2 Marks]

Soln. Given,

๐‘ฝ๐‘ป = ๐Ÿ’๐ŸŽ๐ŸŽ ๐’Ž๐‘ฝ = ๐ŸŽ. ๐Ÿ’ ๐‘ฝ

Voltage applied at gate

๐‘ฝ๐‘ฎ๐‘บ = ๐Ÿ—๐ŸŽ๐ŸŽ ๐’Ž๐‘ฝ =0.9 V

๐‘ฐ๐‘ซ๐‘บ = ๐Ÿ ๐’Ž๐‘จ

Find the drain current for

๐‘ฝ๐‘ฎ๐‘บ = ๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ ๐’Ž๐‘ฝ

MOSFET is operating in saturation

๐‘ฐ๐‘ซ๐‘บ = ๐‘ฒ (๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐Ÿ

๐’๐’“, ๐Ÿ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘ = ๐‘ฒ (๐ŸŽ. ๐Ÿ— โˆ’ ๐ŸŽ. ๐Ÿ’)๐Ÿ

๐’๐’“, ๐‘ฒ =๐Ÿ๐ŸŽโˆ’๐Ÿ‘

(๐ŸŽ.๐Ÿ“)๐Ÿ= ๐Ÿ’ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘ ๐‘จ

๐‘ฝ๐Ÿ

For VGS = 1.4 V

๐‘ฐ๐‘ซ๐‘บ = ๐‘ฒ (๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐Ÿ

= ๐Ÿ’ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘ (๐Ÿ. ๐Ÿ’ โˆ’ ๐ŸŽ. ๐Ÿ’)๐Ÿ

Page 3: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

๐‘ฐ๐‘ซ๐‘บ = ๐Ÿ’ ๐’Ž๐‘จ

Option (d)

5. The drain of an n โ€“ channel MOSFET is shorted to the gate so that

๐‘‰๐บ๐‘† = ๐‘‰๐ท๐‘† . The threshold voltage (VT) of MOSFET is 1 V. If the drain

current (ID) is 1 mA for VGS = 2 V, then for ๐‘‰๐บ๐‘† = 3 ๐‘‰, ID is

(a) 2 mA

(b) 3 mA

(c) 9 mA

(d) 4 mA

[GATE 2004: 2 Marks]

Soln. Given,

๐‘ฝ๐‘ฎ๐‘บ = ๐‘ฝ๐‘ซ๐‘บ

Then the device is in saturation.

So, ๐‘ฐ๐‘ซ๐‘บ = ๐‘ฒ (๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐Ÿ

For ๐‘ฐ๐‘ซ๐‘บ = ๐Ÿ ๐’Ž๐‘จ , ๐‘ฝ๐‘ฎ๐‘บ = ๐Ÿ๐‘ฝ , ๐‘ฝ๐‘ป = ๐Ÿ๐‘ฝ

๐Ÿ = ๐‘ฒ (๐Ÿ โˆ’ ๐Ÿ)๐Ÿ

๐’๐’“, ๐‘ฒ = ๐Ÿ ๐’Ž๐‘จ ๐‘ฝ๐Ÿโ„

Again,

๐‘ฐ๐‘ซ = ๐‘ฒ (๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐Ÿ

For ๐‘ฝ๐‘ฎ๐‘บ = ๐Ÿ‘ ๐‘ฝ

๐‘ฐ๐‘ซ = ๐Ÿ ร— (๐Ÿ‘ โˆ’ ๐Ÿ)๐Ÿ

๐‘ฐ๐‘ซ = ๐Ÿ’ ๐’Ž๐‘จ

Option (d)

6. An n โ€“ channel depletion MOSFET has following two points on its

๐ผ๐ท โˆ’ ๐‘‰๐บ๐‘† curve

(i) ๐‘‰๐บ๐‘† = 0 ๐‘Ž๐‘ก ๐ผ๐ท = 12 ๐‘š๐ด ๐‘Ž๐‘›๐‘‘

(ii) ๐‘‰๐บ๐‘† = โˆ’6 ๐‘‰ ๐‘Ž๐‘ก ๐ผ๐ท = 0

Which of the following Q point will give the highest transconductance

gain for small signals?

Page 4: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

(a) ๐‘‰๐บ๐‘† = โˆ’6 ๐‘‰

(b) ๐‘‰๐บ๐‘† = โˆ’3 ๐‘‰

(c) ๐‘‰๐บ๐‘† = 0 ๐‘‰

(d) ๐‘‰๐บ๐‘† = 3 ๐‘‰

[GATE 2006: 2 Marks]

Soln. Transconductance (๐’ˆ๐’Ž) =๐œน ๐‘ฐ๐‘ซ

๐œน ๐‘ฝ๐‘ฎ๐‘บ for ๐‘ฝ๐‘ซ๐‘บ = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’•

The characteristics is plotted.

VGS

12mA

-6V

๐‘ฐ๐‘ซ(๐’Ž๐‘จ)

0

As ID increases VGS also increases Larger VGS will have high

transconductance

Thus, Option (d)

7. In the C MOS inverter circuit shown if the transconductance parameters

of N MOS and P MOS transistor are

๐พ๐‘› = ๐พ๐‘ = ๐œ‡๐‘›๐ถ๐‘‚๐‘‹

๐‘Š๐‘›

๐ฟ๐‘›= ๐œ‡๐‘๐ถ๐‘‚๐‘‹

๐‘Š๐‘

๐ฟ๐‘= 40 ๐œ‡๐ด ๐‘‰2โ„

and threshold voltages are ๐‘‰๐‘‡ = 1๐‘‰ the current I is

NMOS

PMOS

5V

2.5V

Page 5: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

(a) 0 A

(b) 25 ยตA

(c) 45 ยตA

(d) 90 ยตA

[GATE 2007: 2 Marks]

Soln. Given

๐‘ฒ๐’ = ๐‘ฒ๐’‘ = ๐Ÿ’๐ŸŽ ๐๐‘จ ๐‘ฝ๐Ÿโ„

๐‘ฝ๐‘ป = ๐Ÿ ๐‘ฝ

The device is in saturation. So the current is given by

๐‘ฐ๐‘ซ๐‘บ =๐‘ฒ๐’

๐Ÿ (๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐Ÿ

๐Ÿ’๐ŸŽ

๐Ÿ(๐Ÿ. ๐Ÿ“ โˆ’ ๐Ÿ)๐Ÿ = ๐Ÿ๐ŸŽ ร— (๐Ÿ. ๐Ÿ“)๐Ÿ = ๐Ÿ’๐Ÿ“ ๐๐‘จ

Option (c)

8. Two identical N MOS transistors M1 and M2 are connected as shown

below. ๐‘‰๐‘๐‘–๐‘Ž๐‘  Chosen so that both transistor are in saturation. The

equivalents ๐‘”๐‘š of the pair is defined to be ๐œ• ๐ผ๐‘œ๐‘ข๐‘ก

๐œ• ๐‘‰๐‘– at constant๐‘‰๐‘œ๐‘ข๐‘ก. The

equivalent ๐‘”๐‘š of the pair is

M2

M1

๐‘ฝ๐’๐’–๐’•

๐‘ฝ๐’ƒ๐’Š๐’‚๐’”

๐‘ฐ๐’๐’–๐’•

๐‘ฝ๐’Š

(a) The sum of individual ๐‘”๐‘š of two transistors.

(b) The product of individual ๐‘”๐‘š of the transistors.

(c) Nearly equal to the ๐‘”๐‘š of M1

(d) Nearly equal to ๐‘”๐‘š ๐‘”0โ„ of M2

[GATE 2008: 2 Marks]

Page 6: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

Soln. As per the principle of transconductance

๐Ÿ

๐’ˆ๐’Ž=

๐Ÿ

๐’ˆ๐’Ž๐Ÿ

=๐Ÿ

๐’ˆ๐’Ž๐Ÿ

๐’๐’“, ๐’ˆ๐’Ž =๐’ˆ๐’Ž๐Ÿ

๐’ˆ๐’Ž๐Ÿ

๐’ˆ๐’Ž๐Ÿ+๐’ˆ๐’Ž๐Ÿ

โ‰… ๐’ˆ๐’Ž๐Ÿ

Option (c)

9. The measured Transconductance ๐‘”๐‘š of an NMOS transistor operating in

the linear region is plotted against voltage VG at a Constant drain voltage

VD. Which of the following figures represents the expected dependence

of ๐‘”๐‘š on VG .

(a) (b)

(d)(c)

gm gm

gm gm

VG

VG VG

VG V

[GATE 2008: 2 Marks]

Soln. Drain current ID in the linear region is given by

๐‘ฐ๐‘ซ = ๐‘ฒ๐’ [(๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐‘ฝ๐‘ซ๐‘บ โˆ’๐‘ฝ๐‘ซ๐‘บ

๐Ÿ

๐Ÿ]

๐’‚๐’๐’… ๐’ˆ๐’Ž =๐ ๐‘ฐ๐‘ซ

๐ ๐‘ฝ๐‘ฎ๐‘บ= ๐‘ฒ๐’(๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐‘ฝ๐‘ซ๐‘บ

๐‘บ๐’, ๐’ˆ๐’Ž โˆ ๐‘ฝ๐‘ฎ๐‘บ

So, linear characteristic

Option (c)

Page 7: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

10. Consider the following two situations about the internal conditions in an

n โ€“ channel MOSFET operating in the active region.

S1: The inversion charge decreases from source to drain

S2 : The channel potential increases from source to drain

Which of the following is correct?

(a) Only S2 is true

(b) Both S1 and S2 are false

(c) Both S1 and S2 are true but S2 is not a reason for S1

(d) Both S1 and S2 are true and S2 is reason for S1

[GATE 2009: 2 Marks]

Soln. MOSFET is also considered as gate โ€“ controlled resistor.

When +ve gate voltage in an n โ€“ channel MOSFET exceeds VT,

electrons are induced in p โ€“ type substrate. This channel is also

connected to n+ source and drain regions. Channel looks like induced

n โ€“ type resistor. With increase in gate voltage the channel becomes

more conducting. The drain current increase (linear region). When

more drain current flows, there is more ohmic voltage drop along the

channel. The channel potential varies near zero from source to the

potential at drain end.

The voltage difference between gate and channel reduces from VG

(near source) to (๐‘ฝ๐‘ฎ โˆ’ ๐‘ฝ๐‘ซ) near drain. When drain bias is increased

(๐‘ฝ๐‘ฎ โˆ’ ๐‘ฝ๐‘ซ) = ๐‘ฝ๐‘ป, the channel is piched off. When VD increase further

the drain current is in saturation.

So, S1 & S2 are true and S2 is reason for S1

Option (d) (Refer: Streetman)

11. The source of a silicon (๐‘›๐‘– = 1010 ๐‘๐‘’๐‘Ÿ ๐‘๐‘š3) n โ€“ channel MOS transistor

has an area 1 sq ยตm and a depth of 1 ยตm. If the dopant density in the

source is 1019/๐‘๐‘š3 the no. of holes in the source region with above

volume is approx.

(a) 107

(b) 100

(c) 10

(d) 0

[GATE 2012: 2 Marks]

Page 8: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

Soln. Given,

๐’๐’Š = ๐Ÿ๐ŸŽ๐Ÿ๐ŸŽ ๐’„๐’Ž๐Ÿ‘โ„

๐‘จ๐’“๐’†๐’‚ (๐‘จ) = ๐Ÿ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ/๐’Ž๐Ÿ

๐’…๐’†๐’‘๐’•๐’‰ (๐’…) = ๐Ÿ๐ŸŽโˆ’๐Ÿ” ๐’Ž

๐‘ฝ๐’๐’๐’–๐’Ž๐’† = ๐‘จ . ๐’… = ๐Ÿ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ ร— ๐Ÿ๐ŸŽ๐Ÿ” ๐’Ž๐Ÿ‘

= ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ–/๐’Ž๐Ÿ‘

= ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ/๐’„๐’Ž๐Ÿ‘

๐‘ต๐‘ซ = ๐’ = ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ—/๐’„๐’Ž๐Ÿ‘

๐’‘ =๐’๐’Š

๐Ÿ

๐‘ต๐‘ซ=

๐Ÿ๐ŸŽ๐Ÿ๐ŸŽ

๐Ÿ๐ŸŽ๐Ÿ๐Ÿ— = ๐Ÿ๐ŸŽ ๐’„๐’Ž๐Ÿ‘โ„

So,

Holes in volume V is

๐‘ฏ = ๐’‘ . ๐‘ฝ = ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ ร— ๐Ÿ๐ŸŽ

= ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ

Since not integer number โ‰… ๐ŸŽ

Option (d)

12. A depletion type N โ€“ channel MOSFET in biased in its linear region for

use as a voltage controlled resistor . Assume threshold voltage ๐‘‰๐‘‡๐ป =

0.5๐‘‰ , ๐‘‰๐บ๐‘† = 2.0๐‘‰ , ๐‘‰๐ท๐‘† = 5๐‘‰ , ๐‘Š ๐ฟโ„ = 100, ๐ถ๐‘‚๐‘‹ = 10โˆ’8 ๐น/๐‘๐‘š2 and

๐œ‡๐‘› = 800 ๐‘๐‘š2 ๐‘‰ โˆ’ ๐‘ โ„ . The value of the resistance of the voltage

controlled resistor (๐‘–๐‘› ฮฉ) is __________

[GATE 2014: 2 Marks]

Soln. Given,

Depletion type MOSFET (N โ€“ Channel)

In linear region

๐‘ฝ๐‘ป๐‘ฏ = ๐ŸŽ. ๐Ÿ“๐‘ฝ

๐‘ฝ๐‘ฎ๐‘บ = ๐Ÿ. ๐ŸŽ๐‘ฝ

๐‘ฝ๐‘ซ๐‘บ = ๐Ÿ“๐‘ฝ

Page 9: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

๐‘พ/๐‘ณ = ๐Ÿ๐ŸŽ๐ŸŽ

๐‘ช๐‘ถ๐‘ฟ = ๐Ÿ๐ŸŽโˆ’๐Ÿ– ๐‘ญ ๐’„๐’Ž๐Ÿโ„

The value of voltage controlled resistor is given by

๐’“๐’…๐’” =๐Ÿ

๐๐’๐‘ช๐‘ถ๐‘ฟ๐‘พ๐‘ณ

(๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)

๐’“๐‘ซ๐‘บ =๐Ÿ

๐Ÿ–๐ŸŽ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ– ร— ๐Ÿ๐ŸŽ๐ŸŽ[๐Ÿ โˆ’ (โˆ’๐ŸŽ. ๐Ÿ“)]

๐’“๐‘ซ๐‘บ = ๐Ÿ“๐ŸŽ๐ŸŽ ๐›€

Answer: ๐Ÿ“๐ŸŽ๐ŸŽ ๐›€

13. For the n โ€“ channel MOS transistor shown in figure, the threshold

voltage VTH is 0.8V. Neglect channel length modulation effects. When

the drain voltage VD = 1.6, the drain current ID was found to be 0.5 mA. If

VD is adjusted to be 2V by changing the values of R and VDD, the new

value of ID (in m A) is

R

D

S

๐‘ฝ๐‘ซ๐‘ซ

G

(a) 0.625

(b) 0.75

(c) 1.125

(d) 1.5

[GATE 2014: 2 Marks]

Page 10: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

Soln. Given,

๐‘ฝ๐‘ป๐‘ฏ = ๐ŸŽ. ๐Ÿ– ๐‘ฝ

๐‘ฝ๐‘ซ = ๐Ÿ. ๐Ÿ” ๐‘ฝ

๐‘ฐ๐‘ซ = ๐ŸŽ. ๐Ÿ“ ๐’Ž๐‘จ

For the given figure we notice that Gate is connected to drain

So, ๐‘ฝ๐‘ฎ๐‘บ = ๐‘ฝ๐‘ซ๐‘บ = ๐‘ฝ๐‘ซ

In saturation ID is given by

๐‘ฐ๐‘ซ๐‘บ = ๐‘ฒ(๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐Ÿ

๐‘บ๐’, ๐‘ฐ๐‘ซ๐Ÿ

๐‘ฐ๐‘ซ๐Ÿ

=[๐‘ฝ๐‘ฎ๐‘บ๐Ÿโˆ’๐‘ฝ๐‘ป]

๐Ÿ

[๐‘ฝ๐‘ฎ๐‘บ๐Ÿโˆ’๐‘ฝ๐‘ป]๐Ÿ

๐‘บ๐’, ๐‘ฐ๐‘ซ๐Ÿ

๐‘ฐ๐‘ซ๐Ÿ

=(๐Ÿ โˆ’ ๐ŸŽ. ๐Ÿ–)๐Ÿ

(๐Ÿ. ๐Ÿ” โˆ’ ๐ŸŽ. ๐Ÿ–)๐Ÿ= ๐Ÿ. ๐Ÿ๐Ÿ“

๐’๐’“, ๐‘ฐ๐‘ซ๐Ÿ= ๐Ÿ. ๐Ÿ๐Ÿ“ ร— ๐ŸŽ. ๐Ÿ“

= ๐Ÿ. ๐Ÿ๐Ÿ๐Ÿ“ ๐’Ž๐‘จ

Option (c)

14. For the MOSFET shown in the figure the threshold voltage |๐‘‰๐‘ก| = 2๐‘‰

and ๐พ =1

2๐œ‡๐‘ (

๐‘Š

๐ฟ) = 0.1๐‘š๐ด/๐‘‰2. The value of ID (in mA) is ________

๐‘ฝ๐‘ซ๐‘ซ = +๐Ÿ๐Ÿ๐‘ฝ

๐‘น๐Ÿ

๐‘น๐Ÿ

๐Ÿ๐ŸŽ ๐‘ฒ๐›€

๐Ÿ๐ŸŽ ๐‘ฒ๐›€

๐‘ฝ๐‘บ๐‘บ = โˆ’๐Ÿ“๐‘ฝ

๐‘ฐ๐‘ซ

Page 11: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

[GATE 2014: 2 Marks]

Soln. The two MOSFET are in series so, same current will be flowing. For

the bottom MOSFET it is easier to find VGS

๐‘ฝ๐‘ฎ๐‘บ = ๐‘ฝ๐‘ฎ โˆ’ ๐‘ฝ๐‘บ = ๐ŸŽโ€” ๐Ÿ“

= ๐Ÿ“๐‘ฝ

VGS is greater than threshold voltage,

So, MOSFET is in saturation

๐‘ฐ๐‘ซ =๐Ÿ

๐Ÿ ๐๐’ ๐‘ช๐‘ถ๐‘ฟ

๐‘พ

๐‘ณ[๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป]๐Ÿ

= ๐ŸŽ. ๐Ÿ ๐’Ž๐‘จ/๐‘ฝ๐Ÿ [๐Ÿ“ โˆ’ ๐Ÿ]๐Ÿ

๐ŸŽ. ๐Ÿ ๐’Ž๐‘จ/๐‘ฝ๐Ÿ [๐Ÿ‘]๐Ÿ

๐‘ฐ๐‘ซ = ๐ŸŽ. ๐Ÿ— ๐’Ž๐‘จ

Answer: 0.9 mA

15. The slope of the ๐ผ๐ท ๐‘ฃ๐‘  . ๐‘‰๐บ๐‘† curve of an n โ€“ channel MOSFET in linear

region is 10โˆ’3 ฮฉโˆ’1 at ๐‘‰๐ท๐‘† = 0.1๐‘‰ . For the same device, neglecting

channel length modulation, the slope of the โˆš๐ผ๐ท ๐‘ฃ๐‘  ๐‘‰๐บ๐‘† curve

(๐‘–๐‘› โˆš๐ด ๐‘‰โ„ ) under saturation region is approximately ________

[GATE 2014: 2 Marks]

Soln. Given,

Slope of ๐‘ฐ๐‘ซ ๐’—๐’” . ๐‘ฝ๐‘ฎ๐‘บ curve for N โ€“ MOSFET in linear region is

๐Ÿ๐ŸŽโˆ’๐Ÿ‘ ๐›€โˆ’๐Ÿ

๐’Š. ๐’†. ๐ ๐‘ฐ๐‘ซ

๐ ๐‘ฝ๐‘ฎ๐‘บ= ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

In linear region the drain current is given by

๐‘ฐ๐‘ซ = ๐‘ฒ๐’ [(๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐‘ฝ๐‘ซ๐‘บ โˆ’๐Ÿ

๐Ÿ ๐‘ฝ๐‘ซ๐‘บ

๐Ÿ ]

๐’˜๐’‰๐’†๐’“๐’† ๐‘ฒ๐’ = ๐๐’ ๐‘ช๐‘ถ๐‘ฟ๐‘พ

๐‘ณ

Page 12: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

๐ ๐‘ฐ๐‘ซ

๐ ๐‘ฝ๐‘ฎ๐‘บ= ๐‘ฒ๐’ ๐‘ฝ๐‘ซ๐‘บ

๐’๐’“, ๐‘ฒ๐’ =

๐ ๐‘ฐ๐‘ซ๐ ๐‘ฝ๐‘ฎ๐‘บ

๐‘ฝ๐‘ซ๐‘บ=

๐Ÿ๐ŸŽโˆ’๐Ÿ‘

๐ŸŽ.๐Ÿ= ๐Ÿ๐ŸŽโˆ’๐Ÿ

For saturation region

๐‘ฐ๐‘ซ =๐Ÿ

๐Ÿ ๐‘ฒ๐’ [๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป]๐Ÿ

๐’๐’“, โˆš๐‘ฐ๐‘ซ = โˆš๐‘ฒ๐’

๐Ÿ [๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป]

๐ โˆš๐‘ฐ๐‘ซ

๐ ๐‘ฝ๐‘ฎ๐‘บ= โˆš

๐‘ฒ๐’

๐Ÿ

๐’๐’“,๐ โˆš๐‘ฐ๐‘ซ

๐ ๐‘ฝ๐‘ฎ๐‘บ= โˆš

๐Ÿ๐ŸŽโˆ’๐Ÿ

๐Ÿ= ๐ŸŽ. ๐ŸŽ๐Ÿ•๐ŸŽ๐Ÿ• โˆš๐‘จ / ๐‘ฝ

Answer: ๐ŸŽ. ๐ŸŽ๐Ÿ•๐ŸŽ๐Ÿ• โˆš๐‘จ / ๐‘ฝ

16. An ideal MOS capacitor has boron doping concentration of 1015 ๐‘๐‘šโˆ’3

in the substrate. When a gate voltage is applied, a depletion region of

width 0.5 ๐œ‡๐‘š is formed with a surface (channel) potential of 0.2 V. Given

that โˆˆ0= 8.854 ร— 10โˆ’14F/cm and the relative permittivity of silicon and

silicon dioxide are 12 and 4 respectively the peak electric filed in ๐‘‰ ๐œ‡๐‘šโ„

in the oxide region is _____________

[GATE 2014: 2 Marks]

Soln. Dopant is Boron, so p โ€“ type substrate

Thus device is n MOSFET. Peak electric field in Si substrate

๐‘ฌ๐’”๐’Š =๐Ÿ๐šฟ๐’”

๐‘พ๐’…

Page 13: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

Where, ๐šฟ๐’” โˆ’ ๐’”๐’–๐’“๐’‡๐’‚๐’„๐’† ๐’‘๐’๐’•๐’†๐’๐’•๐’Š๐’‚๐’

๐‘พ๐’… โˆ’ ๐’…๐’†๐’‘๐’๐’†๐’•๐’Š๐’๐’ ๐’“๐’†๐’ˆ๐’Š๐’๐’ ๐’˜๐’Š๐’…๐’•๐’‰

๐‘ฌ๐’”๐’Š =๐Ÿ ร— ๐ŸŽ. ๐Ÿ

๐ŸŽ. ๐Ÿ“๐๐’Ž= ๐ŸŽ. ๐Ÿ– ๐๐’Žโ„

Electric field in oxide

๐‘ฌ๐‘ถ๐‘ฟ =โˆˆ๐’”

โˆˆ๐‘ถ๐‘ฟ . ๐‘ฌ๐’”๐’Š

=๐Ÿ๐Ÿ

๐Ÿ’ร— ๐ŸŽ. ๐Ÿ–๐‘ฝ ๐๐’Žโ„

= ๐Ÿ. ๐Ÿ’ ๐‘ฝ ๐๐’Žโ„

Answer: ๐‘ฌ๐‘ถ๐‘ฟ = ๐Ÿ. ๐Ÿ’๐‘ฝ ๐๐’Žโ„

17. For the MOSFET M1 shown in figure, assume

๐‘Š ๐ฟโ„ = 2, ๐‘‰๐ท๐ท = 2.0๐‘‰, ๐œ‡๐‘› ๐ถ๐‘‚๐‘‹ = 100 ๐œ‡๐‘š ๐‘‰2โ„ ๐‘Ž๐‘›๐‘‘ ๐‘‰๐‘‡๐ป = 0.5๐‘‰. The

transistor M1 switches from saturation region to linear region when ๐‘‰๐‘–๐‘›

(in volts) is ___________

๐‘ฝ๐‘ซ๐‘ซ

R = ๐Ÿ๐ŸŽ ๐‘ฒ๐›€

๐‘ฝ๐’๐’–๐’•

M1 ๐‘ฝ๐’Š๐’

[GATE 2014: 2 Marks]

Soln. For saturation region drain current is given by

๐‘ฐ๐‘ซ = ๐‘ฒ๐’[๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป]๐Ÿ

=๐Ÿ

๐Ÿ๐๐’๐‘ช๐‘ถ๐‘ฟ

๐‘พ

๐‘ณ[๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป]๐Ÿ

Page 14: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

=๐Ÿ

๐Ÿ๐๐’๐‘ช๐‘ถ๐‘ฟ

๐‘พ

๐‘ณ[๐‘ฝ๐ŸŽ]๐Ÿ

๐’”๐’Š๐’๐’„๐’†, ๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป = ๐‘ฝ๐‘ซ๐‘บ = ๐‘ฝ๐ŸŽ

๐‘บ๐’, ๐‘ฐ๐‘ซ =๐Ÿ

๐Ÿร— ๐Ÿ๐ŸŽ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ” ร— ๐Ÿ ร— ๐‘ฝ๐ŸŽ

๐Ÿ

๐’๐’“, ๐‘ฐ๐‘ซ = ๐Ÿ๐ŸŽ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ” ๐‘ฝ๐ŸŽ๐Ÿ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ (๐Ÿ)

Applying KVL in outer loop

๐‘ฝ๐‘ซ๐‘ซ = ๐‘ฐ๐‘ซ ร— ๐Ÿ๐ŸŽ๐‘ฒ + ๐‘ฝ๐ŸŽ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’(๐Ÿ)

From equation (1) and (2) we get

๐Ÿ = ๐Ÿ๐ŸŽ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ” ๐‘ฝ๐ŸŽ๐Ÿ + ๐‘ฝ๐ŸŽ

๐’๐’“, ๐Ÿ = ๐‘ฝ๐ŸŽ๐Ÿ + ๐‘ฝ๐ŸŽ

๐’๐’“, ๐‘ฝ๐ŸŽ๐Ÿ + ๐‘ฝ๐ŸŽ โˆ’ ๐Ÿ = ๐ŸŽ

๐‘ฝ๐ŸŽ =โˆ’๐Ÿ ยฑ โˆš๐Ÿ + ๐Ÿ’ ร— ๐Ÿ ร— ๐Ÿ

๐Ÿ ร— ๐Ÿ=

โˆ’๐Ÿ ยฑ ๐Ÿ‘

๐Ÿ

๐‘บ๐’, ๐‘ฝ๐ŸŽ = ๐Ÿ๐‘ฝ ๐’๐’“ โˆ’ ๐Ÿ๐‘ฝ

Taking ๐‘ฝ๐ŸŽ = ๐Ÿ๐‘ฝ

๐‘ฝ๐‘ซ๐‘บ = ๐‘ฝ๐‘ฎ๐‘บ = ๐‘ฝ๐‘ป

๐’๐’“, ๐‘ฝ๐ŸŽ = ๐‘ฝ๐’Š๐’ โˆ’ ๐‘ฝ๐‘ป

๐’๐’“, ๐‘ฝ๐’Š๐’ = ๐Ÿ + ๐ŸŽ. ๐Ÿ“ = ๐Ÿ. ๐Ÿ“๐‘ฝ

Answer: 1.5V

18. In a MOS capacitor with an oxide layer thickness of 10 nm, the

maximum depletion layer thickness is 100 nm. The permittivities of the

semiconductor and the oxide layer are ๐œ€๐‘  ๐‘Ž๐‘›๐‘‘ ๐œ€๐‘‚๐‘† respectively.

Assuming ๐œ€๐‘ /๐œ€๐‘‚๐‘‹ = 3, the ratio of the maximum capacitance of the

minimum capacitance of this MOS capacitor is .

[GATE 2015: 2 Marks]

Soln. Given,

Oxide layer thickness (๐’•๐‘ถ๐‘ฟ) = ๐Ÿ๐ŸŽ ๐’๐’Ž

Page 15: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

Depletion layer thickness (๐’•๐’…๐’†๐’‘) = ๐Ÿ๐ŸŽ๐ŸŽ ๐’๐’Ž

๐œบ๐’”

๐œบ๐‘ถ๐‘ฟ= ๐Ÿ‘

Metal

Si

tOX (10nm)

tdep =100

Both oxide layer capacitance (๐‘ช๐‘ถ๐‘ฟ) and depletion layer capacitances

are coming in series, so the maximum capacitance will be when

depletion layer capacitance (๐‘ช๐’…๐’†๐’‘) will be absent

Maximum capacitance (๐‘ช๐’Ž๐’‚๐’™) = ๐‘ช๐‘ถ๐‘ฟ

Minimum capacitance (๐‘ช๐’Ž๐’Š๐’) is

Given by

๐‘ช๐’Ž๐’Š๐’ =๐‘ช๐‘ถ๐‘ฟ ๐‘ช๐’…๐’†๐’‘

๐‘ช๐‘ถ๐‘ฟ + ๐‘ช๐’…๐’†๐’‘

Where ๐‘ช๐‘ถ๐‘ฟ ๐’‚๐’๐’… ๐‘ช๐’…๐’†๐’‘ are capacitances per unit area

๐‘ช๐’Ž๐’‚๐’™

๐‘ช๐’Ž๐’Š๐’=

๐‘ช๐‘ถ๐‘ฟ

๐‘ช๐‘ถ๐‘ฟ ๐‘ช๐’…๐’†๐’‘

๐‘ช๐‘ถ๐‘ฟ + ๐‘ช๐’…๐’†๐’‘

=๐‘ช๐‘ถ๐‘ฟ + ๐‘ช๐’…๐’†๐’‘

๐‘ช๐’…๐’†๐’‘

= ๐Ÿ +๐‘ช๐‘ถ๐‘ฟ

๐‘ช๐’…๐’†๐’‘= ๐Ÿ +

๐œบ๐‘ถ๐‘ฟ

๐’•๐‘ถ๐‘ฟ๐œบ๐‘บ

๐’…

Page 16: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

= ๐Ÿ +๐œบ๐‘ถ๐‘ฟ

๐œบ๐’“ .

๐’…

๐’•๐‘ถ๐‘ฟ

๐‘ช๐’Ž๐’‚๐’™

๐‘ช๐’Ž๐’Š๐’= ๐Ÿ +

๐Ÿ

๐Ÿ‘ร—

๐Ÿ๐ŸŽ๐ŸŽ

๐Ÿ๐ŸŽ= ๐Ÿ’. ๐Ÿ‘๐Ÿ‘

Answer: 4.33

19. In the circuit shown both enhancement mode NMOS transistor have the

following characteristics: ๐พ๐‘› = ๐œ‡๐‘›๐ถ๐‘‚๐‘‹(๐‘Š ๐ฟโ„ ) = 1๐‘š๐ด/๐‘‰2; ๐‘‰๐‘‡๐‘ = 1๐‘‰. Assume that the channel length modulation parameter ฮป is zero and body

is shorted to source. The minimum supply voltage VDD (in volts) needed

to ensure that transistor M1 operates in saturation mode of operation is __

๐‘ฝ๐‘ซ๐‘ซ

M1

M2

2V

[GATE 2015: 2 Marks]

Soln. In the given circuit

M1 is to operate in saturation. Both MOSFETs are NMOS

๐‘ฒ๐’ = ๐๐’๐‘ช๐‘ถ๐‘ฟ(๐‘พ ๐‘ณโ„ ) = ๐Ÿ ๐’Ž๐‘จ/๐‘ฝ๐Ÿ

๐‘ฝ๐‘ป๐’ = ๐Ÿ ๐‘ฝ

Both MOSFETs are in series so same current will flow through then

For M1 : ๐‘ฝ๐‘ฎ๐‘บ๐Ÿ= ๐Ÿ๐‘ฝ (As per figure)

If M1 is assumed in saturation, then

๐‘ฐ๐‘ซ๐Ÿ=

๐Ÿ

๐Ÿ๐‘ฒ๐’[๐‘ฝ๐‘ฎ๐‘บ๐Ÿ

โˆ’ ๐‘ฝ๐‘ป]๐Ÿ

Page 17: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

Minimum VDS required for M1 to operate in saturation

๐‘ฝ๐‘ซ๐‘บ๐Ÿ= ๐‘ฝ๐‘ฎ๐‘บ๐Ÿ

โˆ’ ๐‘ฝ๐‘ป = ๐Ÿ โˆ’ ๐Ÿ = ๐Ÿ๐‘ฝ

For M2 : ๐‘ฝ๐‘ฎ๐‘บ๐Ÿโˆ’ ๐‘ฝ๐‘ซ๐‘ซ โˆ’ ๐‘ฝ๐‘ซ๐‘บ๐Ÿ

= ๐‘ฝ๐‘ซ๐‘ซ โˆ’ ๐Ÿ

๐‘ฐ๐‘ซ๐Ÿ=

๐Ÿ

๐Ÿ ๐‘ฒ๐’[๐‘ฝ๐‘ฎ๐‘บ๐Ÿ

โˆ’ ๐‘ฝ๐‘ป]๐Ÿ

Since ๐‘ฐ๐‘ซ๐Ÿ= ๐‘ฐ๐‘ซ๐Ÿ

๐Ÿ

๐Ÿ ๐‘ฒ๐’[๐‘ฝ๐‘ฎ๐‘บ๐Ÿ

โˆ’ ๐‘ฝ๐‘ป]๐Ÿ

=๐Ÿ

๐Ÿ ๐‘ฒ๐’[๐‘ฝ๐‘ฎ๐‘บ๐Ÿ

โˆ’ ๐‘ฝ๐‘ป]๐Ÿ

๐’๐’“, ๐‘ฝ๐‘ฝ๐‘ฎ๐Ÿโˆ’ ๐‘ฝ๐‘ป = ๐‘ฝ๐‘ฎ๐‘บ๐Ÿ

โˆ’ ๐‘ฝ๐‘ป

๐‘ฝ๐‘ฎ๐‘บ๐Ÿ= ๐‘ฝ๐‘ฎ๐‘บ๐Ÿ

๐’๐’“, ๐‘ฝ๐‘ฎ๐‘บ๐Ÿ= ๐‘ฝ๐‘ซ๐‘ซ โˆ’ ๐Ÿ

๐’๐’“, ๐‘ฝ๐‘ซ๐‘ซ = ๐Ÿ + ๐Ÿ = ๐Ÿ‘๐‘ฝ

Answer: ๐‘ฝ๐‘ซ๐‘ซ = ๐Ÿ‘๐‘ฝ

20. The current in an enhancement mode NMOS transistor biased in

saturation mode was measured to be 1 mA at a drain source voltage of

5V. When the drain source voltage was increased to 6V while keeping

gate source voltage same. The drain current increased to 1.02 mA.

Assume that drain to source saturation voltage is much smaller than the

applied drain source voltage. The channel length modulation parameter ฮป

(๐‘–๐‘› ๐‘‰โˆ’1) is ______________.

[GATE 2015: 2 Marks]

Soln. Given,

N MOS transistor

Biased in saturation ๐‘ฐ๐‘ซ = ๐Ÿ๐’Ž๐‘จ , ๐‘ฝ๐‘ซ๐‘บ = ๐Ÿ“๐‘ฝ

Drain current in saturation including the effect of channel length

modulation parameter

๐‘ฐ๐‘ซ =๐Ÿ

๐Ÿ ๐๐’๐‘ช๐‘ถ๐‘ฟ

๐‘พ

๐‘ณ(๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐Ÿ(๐Ÿ + ๐€ ๐‘ฝ๐‘ซ๐‘บ)

Page 18: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

So, we can write the ratio of two current

๐‘ฐ๐‘ซ๐Ÿ

๐‘ฐ๐‘ซ๐Ÿ

=๐Ÿ + ๐€ ๐‘ฝ๐‘ซ๐‘บ๐Ÿ

๐Ÿ + ๐€ ๐‘ฝ๐‘ซ๐‘บ๐Ÿ

๐’๐’“, ๐Ÿ. ๐ŸŽ๐Ÿ

๐Ÿ=

๐Ÿ + ๐Ÿ”๐€

๐Ÿ + ๐Ÿ“๐€

๐’๐’“, ๐Ÿ. ๐ŸŽ๐Ÿ + ๐Ÿ“. ๐Ÿ๐€ = ๐Ÿ + ๐Ÿ”๐€

๐’๐’“, ๐ŸŽ. ๐Ÿ— ๐€ = ๐ŸŽ. ๐ŸŽ๐Ÿ

๐’๐’“, ๐€ =๐ŸŽ. ๐ŸŽ๐Ÿ

๐ŸŽ. ๐Ÿ—= ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ๐‘ฝโˆ’๐Ÿ

21. Consider an n โ€“ channel metal oxide semiconductor field effect transistor

(MOSFET) with gate to source voltage of 1.8V. Assume that ๐‘Š

๐ฟ= 4, ๐œ‡๐‘›๐ถ๐‘‚๐‘‹ = 70 ร— 10โˆ’6 ๐ด๐‘‰โˆ’2

The threshold voltage is 0.3V, and the channel length modulation

parameter is 0.09๐‘‰โˆ’1. In the saturation region, the drain conduction (in

micro Siemens) is ________

[GATE 2016: 2 Marks]

Soln. Given,

N โ€“ MOSFET

๐‘ฝ๐‘ฎ๐‘บ = ๐Ÿ. ๐Ÿ–๐‘ฝ ,๐‘พ

๐‘ณ= ๐Ÿ’ , ๐๐’๐‘ช๐‘ถ๐‘ฟ = ๐Ÿ•๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ” ๐‘จ๐‘ฝโˆ’๐Ÿ

๐‘ฝ๐‘ป๐‘ฏ = ๐ŸŽ. ๐Ÿ‘๐‘ฝ , ๐€ = ๐ŸŽ. ๐ŸŽ๐Ÿ—๐‘ฝโˆ’๐Ÿ

Drain current in saturation including the effect of channel length

modulation is

๐‘ฐ๐‘ซ =๐Ÿ

๐Ÿ ๐๐’ ๐‘ช๐‘ถ๐‘ฟ (

๐‘พ

๐‘ณ) (๐‘ฝ๐‘ฎ โˆ’ ๐‘ฝ๐‘ป)๐Ÿ(๐Ÿ + ๐€๐‘ฝ๐‘ซ)

Channel conductance (๐’ˆ๐’…)

Page 19: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

(๐’ˆ๐’…) =๐ ๐‘ฐ๐‘ซ

๐ ๐‘ฝ๐‘ซ

๐‘ฝ๐‘ฎ = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’•

๐’ˆ๐’… =๐ ๐‘ฐ๐‘ซ

๐ ๐‘ฝ๐‘ซ=

๐Ÿ

๐Ÿ ๐๐’๐‘ช๐‘ถ๐‘ฟ (

๐‘พ

๐‘ณ) (๐‘ฝ๐‘ฎ โˆ’ ๐‘ฝ๐‘ป)๐Ÿ . ๐€

So,

๐’ˆ๐’… =๐Ÿ

๐Ÿร— ๐Ÿ•๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ” ร— ๐Ÿ’ ร— (๐Ÿ. ๐Ÿ– โˆ’ ๐ŸŽ. ๐Ÿ‘)๐Ÿ ร— ๐ŸŽ. ๐ŸŽ๐Ÿ—

= ๐Ÿ๐Ÿ’๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ” ร— ๐Ÿ. ๐Ÿ๐Ÿ“ ร— ๐ŸŽ. ๐ŸŽ๐Ÿ—

= ๐Ÿ๐Ÿ–. ๐Ÿ‘๐Ÿ“ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

๐’ˆ๐’… = ๐Ÿ๐Ÿ–. ๐Ÿ‘๐Ÿ“ ๐ ๐‘บ๐’Š๐’†๐’Ž๐’†๐’๐’”

Drain conductance ๐’ˆ๐’… = ๐Ÿ๐Ÿ–. ๐Ÿ‘๐Ÿ“ ๐ ๐’๐ข๐ž๐ฆ๐ž๐ง๐ฌ

22. A voltage VG is applied across the MOS capacitor with metal Gate and

p โ€“ type silicon substrate at ๐‘‡ = 300 ๐พ. The inversion carrier density (in

number of units per unit area) for

๐‘‰๐บ = 0.8๐‘‰ ๐‘–๐‘  2 ร— 1011๐‘๐‘šโˆ’2 ๐‘“๐‘œ๐‘Ÿ ๐‘‰๐บ = 1.3๐‘‰, the inversion carrier density

is 4 ร— 1011๐‘๐‘šโˆ’2. What is value of inversion carrier density of VG = 1.8V

(a) 4.5 ร— 1011๐‘๐‘šโˆ’2

(b) 6.0 ร— 1011๐‘๐‘šโˆ’2

(c) 7.2 ร— 1011๐‘๐‘šโˆ’2

(d) 8.4 ร— 1011๐‘๐‘šโˆ’2

[GATE 2016: 2 Marks]

Soln. Given,

For VG = 0.8V

Inversion layer carrier density = ๐Ÿ ร— ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ๐’„๐’Žโˆ’๐Ÿ

๐‘ญ๐’๐’“ ๐‘ฝ๐‘ฎ = ๐Ÿ. ๐Ÿ‘๐‘ฝ , ๐‘ฐ๐’๐’—๐’†๐’“๐’”๐’Š๐’๐’ ๐’๐’‚๐’š๐’†๐’“ ๐’„๐’‚๐’“๐’“๐’Š๐’†๐’“ ๐’…๐’†๐’๐’”๐’Š๐’•๐’š = ๐Ÿ’ ร—

๐Ÿ๐ŸŽ๐Ÿ๐Ÿ๐’„๐’Ž๐Ÿ

Find for VG = 1.8 V

For MOS capacitor

Charge (๐‘ธ) โˆ (๐‘ฝ๐‘ฎ โˆ’ ๐‘ฝ๐‘ป)

Charge ๐‘ธ๐Ÿ = ๐‘ฒ. (๐‘ฝ๐‘ฎ โˆ’ ๐‘ฝ๐‘ป)

Page 20: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

Or, ๐‘ธ๐Ÿ = ๐’’๐‘จ ร— ๐’Š๐’๐’—๐’†๐’“๐’”๐’Š๐’๐’ ๐’„๐’‚๐’“๐’“๐’Š๐’†๐’“ ๐’…๐’†๐’๐’”๐’Š๐’•๐’š

So,

๐Ÿ ร— ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ . ๐’’๐‘จ

๐Ÿ’ ร— ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ . ๐’’๐‘จ=

(๐ŸŽ. ๐Ÿ– โˆ’ ๐‘ฝ๐‘ป)

(๐Ÿ. ๐Ÿ‘ โˆ’ ๐‘ฝ๐‘ป)

Or, VT = 0.3V

๐‘ต๐’๐’˜ ๐’‡๐’๐’“ ๐‘ฝ๐‘ฎ = ๐Ÿ. ๐Ÿ–๐‘ฝ , ๐‘ธ๐Ÿ = ๐’’๐‘จ ๐†๐’Š

Where ๐†๐’Š is inversion carrier density

๐†๐’Š ๐’’ . ๐‘จ

๐Ÿ ร— ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ ๐’’ . ๐‘จ=

(๐Ÿ. ๐Ÿ– โˆ’ ๐ŸŽ. ๐Ÿ‘)

(๐ŸŽ. ๐Ÿ– โˆ’ ๐ŸŽ. ๐Ÿ‘)

๐’๐’“, ๐†๐’Š = ๐Ÿ” ร— ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ/๐’„๐’Ž๐Ÿ

Option (b)

23. Consider long channel N MOS transistor with source and body

connected together.

Assume that the electron mobility is dependent of VGS and VDS. Given,

๐‘”๐‘š = 0.5 ๐œ‡ ๐ด ๐‘‰โ„ ๐‘“๐‘œ๐‘Ÿ ๐‘‰๐ท๐‘† = 50 ๐‘š๐‘‰ ๐‘Ž๐‘›๐‘‘ ๐‘‰๐บ๐‘† = 2๐‘‰

๐‘”๐‘‘ = 8 ๐œ‡ ๐ด ๐‘‰โ„ ๐‘“๐‘œ๐‘Ÿ ๐‘‰๐บ๐‘† = 2๐‘‰ ๐‘Ž๐‘›๐‘‘ ๐‘‰๐ท๐‘† = 0๐‘‰

Where

๐‘”๐‘š =๐œ• ๐ผ๐ท

๐œ• ๐‘‰๐บ๐‘† ๐‘Ž๐‘›๐‘‘ ๐‘”๐‘‘ =

๐œ• ๐ผ๐ท

๐œ• ๐‘‰๐ท๐‘†

The threshold voltage (in volts) of the transistor is _________

[GATE 2016: 2 Marks]

Soln. Given long channel N MOS, it means it does not have the effect of

channel length modulation. Since VDS is 50 mV (small) it is operating

in linear region. The drain current is given by

๐‘ฐ๐‘ซ = ๐๐’ ๐‘ช๐‘ถ๐‘ฟ (๐‘พ

๐‘ณ) [(๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป)๐‘ฝ๐‘ซ๐‘บ โˆ’

๐Ÿ

๐Ÿ๐‘ฝ๐‘ซ๐‘บ

๐Ÿ ]

๐’ˆ๐’Ž =๐ ๐‘ฐ๐‘ซ

๐ ๐‘ฝ๐‘ฎ๐‘บ= ๐๐’ ๐‘ช๐‘ถ๐‘ฟ (

๐‘พ

๐‘ณ) . ๐‘ฝ๐‘ซ๐‘บ

Page 21: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

๐’๐’“, ๐๐’ ๐‘ช๐‘ถ๐‘ฟ

๐‘พ

๐‘ณ=

๐’ˆ๐’Ž

๐‘ฝ๐‘ซ๐‘บ=

๐ŸŽ. ๐Ÿ“ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

๐Ÿ“๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘= ๐Ÿ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

Now,

๐’ˆ๐’… =๐ ๐‘ฐ๐‘ซ

๐ ๐‘ฝ๐‘ซ๐‘บ= ๐๐’ ๐‘ช๐‘ถ๐‘ฟ

๐‘พ

๐‘ณ[๐‘ฝ๐‘ฎ โˆ’ ๐‘ฝ๐‘ป]

๐’๐’“, ๐Ÿ– ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ” = ๐Ÿ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”[๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป]

๐’๐’“, ๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐‘ป =๐Ÿ– ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

๐Ÿ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

๐’๐’“, ๐‘ฝ๐‘ป = ๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐ŸŽ. ๐Ÿ–

= ๐Ÿ โˆ’ ๐ŸŽ. ๐Ÿ– = ๐Ÿ. ๐Ÿ๐‘ฝ

๐€๐ง๐ฌ๐ฐ๐ž๐ซ: ๐‘ฝ๐‘ป = ๐Ÿ. ๐Ÿ๐‘ฝ

24. Figure I and II show two MOS capacitors of unit area. The capacitor in

Figure I has insulator material X of (thickness t1 = 1 nm and dielectric

constant โˆˆ1= 4) and y (of thickness ๐‘ก2 = 3๐‘›๐‘š and dielectric

constantโˆˆ1= 20). The capacitor in figure II has only insulator material X

of thickness ๐‘ก๐‘’๐‘ž . If the capacitors are of equal capacitance, then the value

of ๐‘ก๐‘’๐‘ž (in nm) is________

Metal

ิ2 ิ1

Metal

ิ1

Si Si

t1 t2 teq

Figure IFigure II

[GATE 2016: 2 Marks]

Soln. MOS structure is like a parallel plate capacitor

The capacitance per unit area for this geometry is

Page 22: MOSFET & IC Basics GATE Problems (Part - II)ย ยท When a gate voltage is applied, a depletion region of width 0.5 ๐œ‡ is formed with a surface (channel) potential of 0.2 V. Given that

๐‘ชโ€ฒ =โˆˆ

๐’…

Where โˆˆ is permittivity of insulator

d is distance between plates

For area A,

๐‘ช =โˆˆ๐‘จ

๐’…

As per figure I the two capacitors formed by the two dielectrics are in

series

๐‘ช =๐‘ช๐Ÿ ๐‘ช๐Ÿ

๐‘ช๐Ÿ + ๐‘ช๐Ÿ

= [

๐Ÿ’๐Ÿ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ— ร—

๐Ÿ๐ŸŽ๐Ÿ‘ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

๐Ÿ’๐Ÿ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ— +

๐Ÿ๐ŸŽ๐Ÿ‘ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

] โˆˆ๐ŸŽ

๐‘ช = ๐Ÿ. ๐Ÿ“ ร— ๐Ÿ๐ŸŽ๐Ÿ— โˆˆ๐ŸŽ

For the II case

๐‘ช =โˆˆ๐’“ โˆˆ๐ŸŽ

๐’•๐’†๐’’

๐’๐’“, ๐’•๐’†๐’’=

โˆˆ๐’“ โˆˆ๐ŸŽ

๐‘ช

=โˆˆ๐’“ โˆˆ๐ŸŽ

๐Ÿ. ๐Ÿ“ ร— ๐Ÿ๐ŸŽ๐Ÿ— โˆˆ๐ŸŽ=

๐Ÿ’

๐Ÿ. ๐Ÿ“ ร— ๐Ÿ๐ŸŽ๐Ÿ—

= ๐Ÿ. ๐Ÿ” ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ— ๐’Ž

๐’•๐’†๐’’= ๐Ÿ. ๐Ÿ” ๐’๐’Ž

Ans.1.6 nm