Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for...

48
Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process Steve Taylor Earth and Physical Sciences Department Western Oregon University Monmouth, Oregon 97361

Transcript of Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for...

Page 1: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative

Ages and Structural Control on Eruptive Process

Steve TaylorEarth and Physical Sciences Department

Western Oregon UniversityMonmouth, Oregon 97361

Page 2: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

• Introduction

• Geologic Setting

• Morphometric Analysis

• Cone Alignment Analysis

• Summary and Conclusion

Page 3: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

INTRODUCTION

Page 4: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

History of Newberry Work at Western Oregon University

2000 Friends of the Pleistocene Field Trip to Newberry Volcano

2002-2003 Giles and others, GIS Compilation and Digitization of Newberry Geologic Map (after MacLeod and others, 1995)

2003 Taylor and others, Cinder Cone Volume and Morphometric Analysis I (GSA Fall Meeting)

2005 Taylor and others, Spatial Analysis of Cinder Cone Distribution II (GSA Fall Meeting)

2007 Taylor and others, Synthesis of Cinder Cone Morphometric and Spatial Analyses (GSA Cordilleran Section Meeting)

2001-Present Templeton, Petrology and Volcanology of PleistoceneAsh-Flow Tuffs (GSA Cordilleran Meeting 2004; Oregon Academy of Science, 2007; GSA Annual Meeting 2009; AGU Annual Meeting 2010)

2011-Present Taylor and WOU Students, ES407 Senior Seminar Project,Pilot Testing of Lidar Methodologies on Cinder Cone Morphometry

NOTE: Work presented today was conducted in pre-Lidar days mid-2000’s

Page 5: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Geologic Setting

Page 6: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Co

ast

Ran

ge

Wes

tern

C

asca

des

Klam athMountains

Cas

cad

ia

S

ub

du

ctio

n

Zo

ne

Hig

h

Cas

cad

es

Basin and Range

1 0987

6

5

1

4 . 5 c m / y r

OwyheeUpland

Blue Mountains

Deschutes-Um atillaPlateau

Will

amet

te V

alle

y

High LavaPlainsWRFZ

BFZ

TFZ

Extent o f New berry Lava F low s New berry C aldera

Rhyolite Isochrons (M a)9

Faults: TFZ = Tum alo Fault Zone W R FZ = W alker R im Fault Zone BFZ = B rother Fault Zone

M H

M J

T S

M W

C L

0 1 0 0 k m

4 2 N

4 4 N

4 6 N

1 2 4 W 1 2 2 W 1 2 0 W 1 1 8 W

Page 7: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Geology after Walker and MacLeod (1991); Isochrons in 1 m.y. increments (after MacLeod and others, 1976)

km

0 100

44N

122W120W

BR

HLPCR

TFZ

BFZ

WRFZ

1

8

5

7

6

1

6

109

Extent of Newberry lava flowsRhyolite isochrons (Ma)

Newberry Caldera

Fault Zones: BFZ=Brothers TFZ = Tumalo WRFZ=Walker Rim

Page 8: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

O regon

StudyArea

Basalt and basaltic andesite flows:early P le istocene to H olocene

R hyolite to dacite dom es, flow s, pum ice rings,and vent com plexes: early P le istocene toH olocene

Pum ice fa lls, ash flow s, and a lluvia l deposits:P le istocene to Holocene

Andesite Tuff (w est flank): P le istocene

B lack Lapilli Tuff (west flank): P le istocene

A lluvia l deposits w ith in terbedded lapilli tu ff, ashflow tuff, and pum ice fa ll deposits: P le istocene

Tepee D raw Tuff (east flank): P le istocene

Basalt and basaltic andesite of sm all sh ie lds:P le istocene

F luvia l and lacustrine sedim ents: P le istoceneand P liocene(?)

Basalt, basaltic andesite , and andesite flow s, ashflow tuffs, and pum ice deposits of the CascadeR ange: P le istocene

Basalt flow s and in terbedded cinders and scoriadeposits: la te M iocene

R hyolite and andesite flow s, dom es, andpyroclastic rocks of P ine M ounta in: earlyM iocene

N ew berry C aldera com plex

C inder cones and fissure vents

Faults

0 5 km

Basaltic Flows (Pl.- H)

Caldera

Tepee Draw Tuff

Cinder Cones “Qc”

Page 9: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Southeast Cinder Cone Field

Page 10: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Lava Butte: Poster child of cone youth…

Page 11: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

GEOMORPHIC ANALYSIS OFCINDER CONES

Page 12: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Time

Cinder Cone Morphology and Degradation Over Time

• Cone Relief Decreases• Cone Slope Decreases• Hco/Wco Ratio Decreases• Loss of Cater Definition• Increased Drainage Density

(Valentine et al., 2006)

S

Wcr

Hco

Wco

Wcr = crater diameter

Wco = cone basal diameter

Hco = cone height

S = average cone slope

MASS WASTING AND SLOPE WASH PROCESSES:

Transfer primary cone mass to debris apron

(Dohrenwend et al., 1986)

Page 13: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Cone Alignment Via Fracture-Related Plumbing

km

0 100

44N

122W120W

BR

HLPCR

TFZ

BFZ

WRFZ

1

8

5

7

6

Newberry: Junction of Tumalo-Brothers-Walker Rim Fault Zones

Rooney et al., 2011

Page 14: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Cinder Cone Research Questions

Are there morphologic groupings of ~400 cinder cones at Newberry? Can they be quantitatively documented?

Are morphologic groupings associated with age and state of erosional degradation?

Are there spatial patterns associated with the frequency, occurrence, and volume of cinder cones?

Are there spatial alignment patterns? Can they be statistically documented?

Do regional stress fields and fracture mechanics control the emplacement of cinder cones at Newberry volcano?O regon

StudyArea

Basalt and basaltic andesite flows:early P le istocene to H olocene

R hyolite to dacite dom es, flow s, pum ice rings,and vent com plexes: early P le istocene toH olocene

Pum ice fa lls, ash flow s, and alluvia l deposits:P le istocene to Holocene

Andesite Tuff (w est flank): P le istocene

B lack Lapilli Tuff (west flank): P le istocene

A lluvia l deposits w ith interbedded lapilli tu ff, ashflow tuff, and pum ice fa ll deposits: P le istocene

Tepee D raw Tuff (east flank): P le istocene

Basalt and basaltic andesite of sm all sh ie lds:P le istocene

F luvia l and lacustrine sedim ents: P le istoceneand P liocene(?)

Basalt, basaltic andesite , and andesite flow s, ashflow tuffs, and pum ice deposits of the CascadeR ange: P le istocene

Basalt flow s and interbedded cinders and scoriadeposits: la te M iocene

R hyolite and andesite flow s, dom es, andpyroclastic rocks of P ine M ountain: earlyM iocene

N ew berry C aldera com plex

C inder cones and fissure vents

Faults

0 5 km

Page 15: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Methodology Digital Geologic Map Compilation / GIS of

Newberry Volcano (after McLeod and others, 1995) GIS analysis of USGS 10-m DEMs

Phase 1 Single Cones/Vents (n = 182) Phase 2 Composite Cones/Vents (n = 165)

Morphometric analyses Cone Relief, Slope, Height/Width Ratio Morphometric Classification

Volumetric Analyses Cone Volume Modeling Volume Distribution Analysis

Cone Alignment Analysis Two-point Line Azimuth Distribution Comparative Monte Carlo Modeling (Random vs. Actual)

Page 16: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Single Cone DEM Example

Composite ConeDEM Example

(n = 182)

(n = 165)COMPOSITE

Page 17: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

RESULTS OF MORPHOMETRIC ANALYSES – SINGLE CONES

Page 18: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Table 1. Explanation of Qualitative Cone Morphology Rating

1 Good-Excellent Cone shape with vent morphology2 Good Cone shape with less defined vent morphology3 Moderate-Good Cone shape, lacks well-defined vent morphology4 Moderate Cone shape, no vent5 Moderate-Poor Cone shape, poor definition6 Poor Lacks cone shape7 Very Poor Lacks cone shape, very poorly defined morphology

Single Cones (n=182)

Page 19: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

0 500 m

Pum ice Butte(Cone Morphology Rating = 4)

Hunter Butte(Cone Morphology Rating = 7)

Lava Butte(Cone Morphology Rating = 1)

0 500 m

Pum ice Butte(Cone M orphology Rating = 4)

Hunter Butte(Cone M orphology Rating = 7)

Lava Butte(Cone M orphology Rating = 1)

Page 20: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

0 500 m

Pum ice Butte(Cone Morphology Rating = 4)

Hunter Butte(Cone Morphology Rating = 7)

Lava Butte(Cone Morphology Rating = 1) 0 500 m

Pum ice Butte(Cone M orphology Rating = 4)

Hunter Butte(Cone M orphology Rating = 7)

Lava Butte(Cone M orphology Rating = 1)

Page 21: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

0 500 m

Pum ice Butte(Cone Morphology Rating = 4)

Hunter Butte(Cone Morphology Rating = 7)

Lava Butte(Cone Morphology Rating = 1)

0 500 m

Pum ice Butte(Cone M orphology Rating = 4)

Hunter Butte(Cone M orphology Rating = 7)

Lava Butte(Cone M orphology Rating = 1)

Page 22: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

n=182

Page 23: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Cone Morphology Class

No. Avg Slope (deg) Cone Height (m) Hco/Wco

Mean Variance Mean Variance Mean VarianceClass 1 11 19.9 11.8 132.4 1344.9 0.18 0.0012Class 2 21 18.2 10.5 124.4 2282.4 0.20 0.0073Class 3 10 18.1 2.7 126.2 1991.0 0.19 0.0017Class 4 35 14.9 12.1 76.2 1918.4 0.15 0.0014Class 5 35 14.4 10.6 78.1 1682.9 0.15 0.0012Class 6 11 11.9 13.7 59.5 1721.3 0.13 0.0025Class 7 59 10.2 19.0 50.4 1401.3 0.14 0.0046

All Cones 182 13.6 24.2 76.4 2520.7 0.2 0.0038

Table 2. Summary of Relevant Cone Morphometry Data.

Cone Morphology Class

No. Avg Slope (deg) Cone Height (m) Hco/Wco

Mean Variance Mean Variance Mean VarianceClass 1 11 19.9 11.8 132.4 1344.9 0.18 0.0012Class 2 21 18.2 10.5 124.4 2282.4 0.20 0.0073Class 3 10 18.1 2.7 126.2 1991.0 0.19 0.0017Class 4 35 14.9 12.1 76.2 1918.4 0.15 0.0014Class 5 35 14.4 10.6 78.1 1682.9 0.15 0.0012Class 6 11 11.9 13.7 59.5 1721.3 0.13 0.0025Class 7 59 10.2 19.0 50.4 1401.3 0.14 0.0046

All Cones 182 13.6 24.2 76.4 2520.7 0.2 0.0038

Cone Morphology Class

No. Avg Slope (deg) Cone Height (m) Hco/Wco

Mean Variance Mean Variance Mean VarianceClass 1 11 19.9 11.8 132.4 1344.9 0.18 0.0012Class 2 21 18.2 10.5 124.4 2282.4 0.20 0.0073Class 3 10 18.1 2.7 126.2 1991.0 0.19 0.0017Class 4 35 14.9 12.1 76.2 1918.4 0.15 0.0014Class 5 35 14.4 10.6 78.1 1682.9 0.15 0.0012Class 6 11 11.9 13.7 59.5 1721.3 0.13 0.0025Class 7 59 10.2 19.0 50.4 1401.3 0.14 0.0046

All Cones 182 13.6 24.2 76.4 2520.7 0.2 0.0038

Table 2. Summary of Relevant Cone Morphometry Data.Single Cones

Page 24: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Cone Morphology Class

df t StatP(T<=t) one-tail

t Critical one-tail

P(T<=t) two-tail

t Critical two-tail

Test ResultMorphometric Group

Class 1-Class 2 30 0.05 1.38 0.089 1.70 0.177 2.04 Accept Ho Group I

Class 2-Class 3 29 0.05 0.11 0.458 1.70 0.915 2.05 Accept Ho Group I

Savg Class 3-Class 4 43 0.05 2.85 0.003 1.68 0.007 2.02 Reject Ho Group II

Class 4-Class 5 44 0.05 0.36 0.360 1.68 0.719 2.02 Accept Ho Group II

Class 5-Class 6 44 0.05 2.05 0.023 1.68 0.046 2.02 Accept Ho Group II

Class 6-Class 7 92 0.05 1.88 0.032 1.66 0.064 1.99 Accept Ho Group II

Class 1-Class 2 30 0.05 0.49 0.315 1.70 0.631 2.04 Accept Ho Group I

Class 2-Class 3 29 0.05 -0.10 0.459 1.70 0.918 2.05 Accept Ho Group I

Hco Class 3-Class 4 43 0.05 3.17 0.001 1.68 0.003 2.02 Reject Ho Group II

Class 4-Class 5 44 0.05 -0.13 0.450 1.68 0.899 2.02 Accept Ho Group II

Class 5-Class 6 44 0.05 1.30 0.100 1.68 0.200 2.02 Accept Ho Group II

Class 6-Class 7 92 0.05 1.09 0.140 1.66 0.280 1.99 Accept Ho Group II

Class 1-Class 2 30 0.05 -0.61 0.272 1.70 0.545 2.04 Accept Ho Group I

Class 2-Class 3 29 0.05 0.40 0.346 1.70 0.692 2.05 Accept Ho Group I

Hco/Wco Class 3-Class 4 43 0.05 2.92 0.003 1.68 0.006 2.02 Reject Ho Group II

Class 4-Class 5 44 0.05 0.20 0.420 1.68 0.840 2.02 Accept Ho Group II

Class 5-Class 6 44 0.05 0.93 0.179 1.68 0.359 2.02 Accept Ho Group II

Class 6-Class 7 92 0.05 -0.39 0.349 1.66 0.697 1.99 Accept Ho Group II

Table 3. Results of Systematic T-Test Analyses.

Cone Morphology Class

df t StatP(T<=t) one-tail

t Critical one-tail

P(T<=t) two-tail

t Critical two-tail

Test ResultMorphometric Group

Class 1-Class 2 30 0.05 1.38 0.089 1.70 0.177 2.04 Accept Ho Group I

Class 2-Class 3 29 0.05 0.11 0.458 1.70 0.915 2.05 Accept Ho Group I

Savg Class 3-Class 4 43 0.05 2.85 0.003 1.68 0.007 2.02 Reject Ho Group II

Class 4-Class 5 44 0.05 0.36 0.360 1.68 0.719 2.02 Accept Ho Group II

Class 5-Class 6 44 0.05 2.05 0.023 1.68 0.046 2.02 Accept Ho Group II

Class 6-Class 7 92 0.05 1.88 0.032 1.66 0.064 1.99 Accept Ho Group II

Class 1-Class 2 30 0.05 0.49 0.315 1.70 0.631 2.04 Accept Ho Group I

Class 2-Class 3 29 0.05 -0.10 0.459 1.70 0.918 2.05 Accept Ho Group I

Hco Class 3-Class 4 43 0.05 3.17 0.001 1.68 0.003 2.02 Reject Ho Group II

Class 4-Class 5 44 0.05 -0.13 0.450 1.68 0.899 2.02 Accept Ho Group II

Class 5-Class 6 44 0.05 1.30 0.100 1.68 0.200 2.02 Accept Ho Group II

Class 6-Class 7 92 0.05 1.09 0.140 1.66 0.280 1.99 Accept Ho Group II

Class 1-Class 2 30 0.05 -0.61 0.272 1.70 0.545 2.04 Accept Ho Group I

Class 2-Class 3 29 0.05 0.40 0.346 1.70 0.692 2.05 Accept Ho Group I

Hco/Wco Class 3-Class 4 43 0.05 2.92 0.003 1.68 0.006 2.02 Reject Ho Group II

Class 4-Class 5 44 0.05 0.20 0.420 1.68 0.840 2.02 Accept Ho Group II

Class 5-Class 6 44 0.05 0.93 0.179 1.68 0.359 2.02 Accept Ho Group II

Class 6-Class 7 92 0.05 -0.39 0.349 1.66 0.697 1.99 Accept Ho Group II

Cone Morphology Class

df t StatP(T<=t) one-tail

t Critical one-tail

P(T<=t) two-tail

t Critical two-tail

Test ResultMorphometric Group

Class 1-Class 2 30 0.05 1.38 0.089 1.70 0.177 2.04 Accept Ho Group I

Class 2-Class 3 29 0.05 0.11 0.458 1.70 0.915 2.05 Accept Ho Group I

Savg Class 3-Class 4 43 0.05 2.85 0.003 1.68 0.007 2.02 Reject Ho Group II

Class 4-Class 5 44 0.05 0.36 0.360 1.68 0.719 2.02 Accept Ho Group II

Class 5-Class 6 44 0.05 2.05 0.023 1.68 0.046 2.02 Accept Ho Group II

Class 6-Class 7 92 0.05 1.88 0.032 1.66 0.064 1.99 Accept Ho Group II

Class 1-Class 2 30 0.05 0.49 0.315 1.70 0.631 2.04 Accept Ho Group I

Class 2-Class 3 29 0.05 -0.10 0.459 1.70 0.918 2.05 Accept Ho Group I

Hco Class 3-Class 4 43 0.05 3.17 0.001 1.68 0.003 2.02 Reject Ho Group II

Class 4-Class 5 44 0.05 -0.13 0.450 1.68 0.899 2.02 Accept Ho Group II

Class 5-Class 6 44 0.05 1.30 0.100 1.68 0.200 2.02 Accept Ho Group II

Class 6-Class 7 92 0.05 1.09 0.140 1.66 0.280 1.99 Accept Ho Group II

Class 1-Class 2 30 0.05 -0.61 0.272 1.70 0.545 2.04 Accept Ho Group I

Class 2-Class 3 29 0.05 0.40 0.346 1.70 0.692 2.05 Accept Ho Group I

Hco/Wco Class 3-Class 4 43 0.05 2.92 0.003 1.68 0.006 2.02 Reject Ho Group II

Class 4-Class 5 44 0.05 0.20 0.420 1.68 0.840 2.02 Accept Ho Group II

Class 5-Class 6 44 0.05 0.93 0.179 1.68 0.359 2.02 Accept Ho Group II

Class 6-Class 7 92 0.05 -0.39 0.349 1.66 0.697 1.99 Accept Ho Group II

Table 3. Results of Systematic T-Test Analyses.

Single Cones

Reject Ho

Reject Ho

Reject Ho

Page 25: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

1 2 3 4 5 6 7

Cone M orphology Rating

0

5

10

15

20

25

30

Av

era

ge

Co

ne

Slo

pe

(D

eg

ree

s)

n = 11 n = 21

n = 10n = 59

n = 35n = 11

n = 35

Morphom etric Group I

Morphometric Group II

Standard DeviationRangeM ean

Single Cones

Page 26: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

1 2 3 4 5 6 7

Cone M orphology Rating

0

50

100

150

200

250

Co

ne

He

igh

t (m

ete

rs)

Morphometric Group I

Morphometric Group II

n = 11 n = 21

n = 10n = 35

n = 11

n = 35n = 59

Single Cones

Page 27: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

1 2 3 4 5 6 7

Cone M orphology Rating

0

0.1

0.2

0.3

0.4

0.5

0.6

Co

ne

He

igh

t /

Co

ne

Wid

th

Morphometric Group I

Morphometric Group II

n = 11

n = 21

n = 10

n = 35

n = 11

n = 35

n = 59

Single Cones

Page 28: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

NewberryCaldera

0 5 km

Moprhom etric Group I(Morphology RatingClasses 1, 2, and 3)

Morphom etric Group II(Morphology RatingClasses 4, 5, 6, and 7)

“Youthful”

“Mature”

Southern Domain

Group I: n = 16 (9%)Group II: n = 64 (35%)

Northern Domain

Group I: n = 26 (14%) Group II: n = 76 (42%)

Single Cones

Page 29: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

VOLUMETRIC ANALYSES:SINGLE + COMPOSITE CONES

Page 30: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

VOLUME METHODOLOGY

Clip cone footprint from 10-m USGS DEM (Rectangle 2x Cone Dimension)

Zero-mask cone elevations, based on mapped extent from MacLeod and others (1995)

Re-interpolate “beheaded” cone elevations using kriging algorithm

Cone Volume = (Cone Surface – Mask Surface)

0 500 m

B. Masked 10-m DEM of Lava Butte Cone

A. Original 10-m DEM of Lava Butte Cone

Original DEM ofLava Butte

Masked DEM ofLava Butte

Page 31: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

CONE VOLUME SUMMARY(SINGLE AND COMPOSITE)

Cubic Meters

Page 32: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

CONE ALIGNMENT ANALYSESSINGLE + COMPOSITE

Page 33: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

km

0 100

44N

122W120W

BR

HLPCR

TFZ

BFZ

WRFZ

1

8

5

7

6

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

0

1 0

2 0

3 0

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0Azimuth

0

10

20

30

-90 -60 -30 0 30 60 90

0

10

20

30

Fre

qu

enc

y

Brothers Fault Zone

Tumalo Fault Zone

Walker Rim Fault Zone

n = 142

n = 92

n = 165

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

0

1 0

2 0

3 0

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0Azimuth

0

10

20

30

-90 -60 -30 0 30 60 90

0

10

20

30

Fre

qu

enc

y

Brothers Fault Zone

Tumalo Fault Zone

Walker Rim Fault Zone

n = 142

n = 92

n = 165

n = 142

n = 92

n = 165

REGIONAL FAULT-TREND ANALYSIS

Page 34: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Cone lineaments anyone? Question: How many lines can be created by connecting the dots between 296 select cone center points?

Page 35: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Answer:

Total Lines = [n(n-1)]/2 = [296*295]/2 = 43,660 possible line combinations

Follow-up Question: Which cone lineaments are due to random chance and which are statistically and geologically significant?

Page 36: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Fre

qu

ency

Azimuth

Azimuth

Fre

qu

ency

METHODS OF CONE LINEAMENT ANALYSIS

“TWO-POINTMETHOD”

(Lutz, 1986)

GIS

“POINT-DENSITYMETHOD”(Zhang andLutz, 1989)

Page 37: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0Azimuth

0

1000

2000

3000

-90 -60 -30 0 30 60 90

0

1000

2000

-90 -60 -30 0 30 60 90

0

1000

2000

3000

Fre

qu

en

cy

Two-Point Azimuths: Newberry Cones(Combined North and South Dom ains)

Two-Point Azimuths: Random Simulation(Combined North and South Domains)

n = 2 9 6 con esT ota l L ine S eg m e nts = 4 3,6 60

n = 29 6 con es / Re plica teRe plica te no . = 3 00Lin e S e gm e n ts / R e plica te = 4 3,6 60

Normalized Newberry Two-Point Azimuths(Combined North and South Domains)

A.

B.

C.

95% Critical Value

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0Azimuth

0

1000

2000

3000

-90 -60 -30 0 30 60 90

0

1000

2000

-90 -60 -30 0 30 60 90

0

1000

2000

3000

Fre

qu

en

cy

Two-Point Azimuths: Newberry Cones(Combined North and South Dom ains)

Two-Point Azimuths: Random Simulation(Combined North and South Domains)

n = 2 9 6 con esT ota l L ine S eg m e nts = 4 3,6 60

n = 29 6 con es / Re plica teRe plica te no . = 3 00Lin e S e gm e n ts / R e plica te = 4 3,6 60

Normalized Newberry Two-Point Azimuths(Combined North and South Domains)

A.

B.

C.

A.

B.

C.

95% Critical Value

Actual Two-Point Cone Azimuths

Random Two-Point Cone Azimuths

Normalized Two-Point Cone Azimuths

n = 296Line Segments = 43,660

n = 296 / replicateReplicates = 300

95% Critical Value

NORMALIZED ALIGNMENT FREQUENCY:FNORM = (FEXP / FAVG) * FOBS

FNORM = normalized bin frequency FEXP = expected bin frequency FAVG = average random bin frequency FOBS = observed bin frequency

EXPECTED ALIGNMENT FREQUENCY:FEXP = (n*(n-1) / (2*k)) n = No. of Cinder Cones k = No. of Azimuthal Bins

CONE TWO-POINT ALIGNMENT ANALYSIS (after Lutz, 1986)

NULL HYPOTHESISDistribution of Actual Cone Alignments = Random Cone Alignments

CRITICAL VALUE:LI = [(FEXP / FAVG) * FAVG] + (tCRIT * RSTD) FEXP = expected bin frequency FAVG = average random bin frequency RSTD = stdev of random bin frequency tCRIT = t distribution (a = 0.05)

Page 38: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Two-Point Azimuths: Newberry Cones(North Dom ain)

Two-Point Azimuths: Random Simulation(North Dom ain)

n = 1 49 co ne sTo tal L ine S eg m e nts = 1 1,02 6

n = 14 9 co ne s / R ep lica teR ep lica te n o. = 3 0 0Lin e Se gm en ts / Re pli ca te = 11 ,02 6

Normalized Newberry Two-Point Azimuths(North Domain)

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

Azim uth

0

500

-90 -60 -30 0 30 60 90

0

500

Fre

quen

cy

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

0

5 0 0

A.

B.

C.

95% Critical Value

Two-Point Azimuths: Newberry Cones(North Dom ain)

Two-Point Azimuths: Random Simulation(North Dom ain)

n = 1 49 co ne sTo tal L ine S eg m e nts = 1 1,02 6

n = 14 9 co ne s / R ep lica teR ep lica te n o. = 3 0 0Lin e Se gm en ts / Re pli ca te = 11 ,02 6

Normalized Newberry Two-Point Azimuths(North Domain)

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

Azim uth

0

500

-90 -60 -30 0 30 60 90

0

500

Fre

quen

cy

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

0

5 0 0

A.

B.

C.

95% Critical Value

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

0

2 0 0

4 0 0

6 0 0

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

Azim uth

0

200

400

600

-90 -60 -30 0 30 60 900

200

400

600

Fre

quen

cyTwo-Point Azimuths: Newberry Cones(South Domain)

Two-Point Azimuths: Random Simulation(South Domain)

n = 14 7 co ne sTo ta l Lin e S e gm en ts = 10 ,7 3 1

n = 1 47 co ne s / R ep licateR e plicate no . = 30 0L ine Seg m e nts / R ep licate = 10 ,73 1

Normalized Newberry Two-Point Azimuths(South Domain)

A.

B.

C.

95% Critical Value

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

0

2 0 0

4 0 0

6 0 0

- 9 0 - 6 0 - 3 0 0 3 0 6 0 9 0

Azim uth

0

200

400

600

-90 -60 -30 0 30 60 900

200

400

600

Fre

quen

cyTwo-Point Azimuths: Newberry Cones(South Domain)

Two-Point Azimuths: Random Simulation(South Domain)

n = 14 7 co ne sTo ta l Lin e S e gm en ts = 10 ,7 3 1

n = 1 47 co ne s / R ep licateR e plicate no . = 30 0L ine Seg m e nts / R ep licate = 10 ,73 1

Normalized Newberry Two-Point Azimuths(South Domain)

A.

B.

C.

95% Critical Value95% Critical Value95% Critical Value

n = 147 conesLine Segments = 10,731

n = 147 / replicateReplicates = 300

n = 149 conesLine Segments = 11,026

n = 149 / replicateReplicates = 300

TWO-POINT ANALYSIS RESULTS

NORTH DOMAIN SOUTH DOMAIN

Page 39: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

1-km wide filter strips with 50% overlap

Filter strip-sets rotated at 5-degree azimuth increments

Tally total number of cones / strip / azimuth bin

Calculate cone density per unit area

Compare actual densities to random (replicates = 50)

Normalize Cone Densities: D = (d – M) / S D = normalized cone density d = actual cone density (no. / sq. km) M = average density of random points (n = 50 reps) S = random standard deviation

Significant cone lineaments = >2-3 STDEV above random

POINT-DENSITY METHOD(Zhang and Lutz, 1989)

Page 40: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

0 1 0 km

TumaloFaultZone

BrothersFaultZone

10 20

n = 1 42

Comparison of Fault Trends andCinder Cone Lineaments at

Newberry Volcano

10 20

n = 9 2

10 20

n = 1 65

Walker RimFaultZone

C ind er c on e lo ca tio n

C o n e l ine am e nt d eter m in ed b yM ont e C a rlo po in t -d en sity m eth o do f Zh an g an d Lut z (19 89 )

TFZ

BFZ

M is singW R FZ ?

Cinder Cone Linea ments(Critica l L-value >2 SD )

n = 87

5

Page 41: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

SUMMARY AND CONCLUSION

Page 42: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

I. CONE MORPHOLOGY

• Degradation Models Through Time (Dohrenwend and others, 1986)

Diffusive mass wasting processes Mass transfer: primary cone slope to debris apron Reduction of cone height and slope Loss of crater definition

• Newberry Results (Taylor and others, 2003)

Group I Cones: Avg. Slope = 19-20o; Avg. Relief = 125 m; Avg. Hc/Wc = 0.19

Group II Cones: Avg. Slope = 11-15o; Avg. Relief = 65 m; Avg. Hc/Wc = 0.14

Group I = “Youthful”; more abundant in northern domain Group II = “Mature”; common in northern and southern domains

Possible controlling factors include: degradation processes, age differences, climate, post-eruption cone burial, lava composition, and episodic (polygenetic) eruption cycles

II. CONE VOLUME RESULTS

• Newberry cone-volume maxima align NW-SE with the Tumalo fault zone; implies structure has an important control on eruptive process

Page 43: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

III. CONE ALIGNMENT PATTERNS

• Newberry cones align with Brothers and Tumalo fault zones• Poor alignment correlation with Walker Rim fault zone• Other significant cone alignment azimuths: 10-35o, 80o, and 280-

295o • Results suggest additional control by unmapped structural

conditions

• Cone-alignment and volume-distribution studies suggest that the Tumalo Fault Zone is a dominant structural control on magma emplacement at Newberry Volcano

IV. CONCLUDING STATEMENTS

• This study provides a preliminary framework to guide future geomorphic and geochemical analyses of Newberry cinder

cones

• This study provides a preliminary framework from which to pose additional questions regarding the complex interaction between stress regime, volcanism, and faulting in central Oregon

Page 44: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

ACKNOWLEDGMENTS

Funding Sources:Western Oregon University Faculty Development FundCascades Volcano Association

WOU Research Assistants and ES407 Senior Seminar Students:Jeff Budnick, Chandra Drury, Jamie Fisher, Tony FalettiDenise Giles, Diane Hale, Diane Horvath, Katie Noll, RachelPirot, Summer Runyan, Ryan Adams, Sandy Biester, Jody

Becker, Kelsii Dana, Bill Vreeland, Dan Dzieken, Rick Fletcher

Page 45: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.
Page 46: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Extent of Hypothesized Newberry Ice Cap (Donnelly-Nolan and Jensen, 2009)

Page 47: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

#

#

#

#

#

###

##

#

# # #

#

#

##

##

# ###

##

##

#

#

#

#

#

##

#

#

##

#

# #

# # ### #

##

# ##

##

#

###

#

#

#

##

#

#

##

##

##

#

#

#

###

#

#

#

###

#

#

#

##

#

#

#

##

#

#

##

#

##

#

#

#

##

##

##

# #

##

#

## ## # #

#

#

###

#

#

#

##

#

#

#

#

###

# ##

#

#

#

# #

#

#

##

##### #

##

##

##

##

####

##

##

##

#

##

###

## #

#

# ##

##

###

####

##

# ##

#

## #

#

#

##

#

#

#

#

#

#

#

#

#

#

####

##

#

#

#

#

##

##

##

####

#

#

####

##

##

##

#

##

##

##

######

#####

#

# #

###

##

#

###

#### #

#

## ##

#

##

#

##

# #

#

####

#

#

#

#

#

#

####

#

##

#

###

#

###

##

##

#

## # # #

##

# ##

# ##

#

##

##

#

# #

####

4 0 4 8 Kilometers

N

Caldera_lakes.shp# Composite_cones_no_ice.shp# Single_cones_no_ice.shp# Composite_cone_ice_cap.shp# Single_cones_ice_cap.shp

Ice_cap_limits.shpIce cap limit

Single cones within ice limit

Composite cones within ice limit

Single cones outside ice limit

Composite cones inside ice limit

Caldera lakes

Cinder Cone Distribution Relative to Hypothesized Extent of Newberry Ice Cap

Page 48: Morphology and Spatial Distribution of Cinder Cones at Newberry Volcano, Oregon: Implications for Relative Ages and Structural Control on Eruptive Process.

Cone Morphology Comparison Relative to Hypothesized Extent of Newberry Ice Cap

Avg. Cone Long Axis/Short Axis Ratio 1.30 1.35 No Significant Difference