Moore’s Law Continues - Duke University

7
Dr. Robert Chau Dr. Gerald Marcyk Components Research Logic Technology Development 1 Moore’s Law Continues Transistors doubling every 2 years toward the billion-transistor microprocessor Moore’s Law Continues Transistors doubling every 2 years toward the billion-transistor microprocessor 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000 1,000,000,000 1970 1980 1990 2000 2010 4004 8080 8086 8008 Pentium® Processor 486™ DX Processor 386™ Processor 286 Pentium® II Processor Pentium® III Processor Pentium® 4 Processor Heading toward 1 billion transistors in 2007 4 Transistor Physical Gate Length Trend (Lithography generation > L GATE ) 0.01 0.10 1.00 1990 1995 2000 2005 2010 Year Microns Technology Node Transistor Physical Gate Length 0.5µ µ µm 0.35µ µ µm 0.25µ µ µm 0.18µ µ µm 0.13µ µ µm 90nm 65nm 45nm 30nm 130nm 70nm 50nm 30nm 20nm 15nm 0.2µ µ µm 5 Power consumption starting to rise exponentially Driven by: Transistor I OFF Leakage Transistor Gate Leakage High Operating Voltage 11

Transcript of Moore’s Law Continues - Duke University

Page 1: Moore’s Law Continues - Duke University

Dr.

Rob

ert C

hau

Dr.

Ger

ald

Mar

cyk

Com

pone

nts

Res

earc

hLo

gic

Tec

hnol

ogy

Dev

elop

men

t1

Moo

re’s

Law

Con

tinu

esT

rans

isto

rs d

oubl

ing

ever

y 2

year

s to

war

d th

e bi

llion

-tra

nsis

tor

mic

ropr

oces

sor

Moo

re’s

Law

Con

tinu

esT

rans

isto

rs d

oubl

ing

ever

y 2

year

s to

war

d th

e bi

llion

-tra

nsis

tor

mic

ropr

oces

sor

1,00

0

10,0

00

100

,000

1,00

0,0

00

10,0

00,

00

0

100

,000

,000

1,00

0,0

00

,000

197

01

980

1990

2000

201

0

4004

8080

8086

8008

Pen

tiu

Pro

cess

or

486™

DX

Pro

cess

or

386™

Pro

cess

or

286

Pen

tiu

II P

roce

sso

rP

enti

um

® II

I Pro

cess

or

Pen

tiu

4 P

roce

sso

r

Hea

din

g t

ow

ard

1 b

illio

n t

ran

sist

ors

in 2

007

4

Tra

nsi

sto

r P

hys

ical

Gat

e L

eng

th T

ren

d

(Lit

ho

gra

ph

y g

ener

atio

n >

LG

AT

E)

0.01

0.10

1.00

1990

1995

2000

2005

2010

Yea

r

Microns

Tec

hn

olo

gy

No

de

Tra

nsi

sto

rP

hys

ical

Gat

eL

eng

th

0.5µ µµµ

m0.

35µ µµµm

0.25

µ µµµm0.

18µ µµµm

0.13

µ µµµm90

nm

65n

m45

nm

30n

m

130n

m

70n

m50

nm

30n

m20

nm

15n

m

0.2µ µµµ

m

5

•P

ow

er c

on

sum

pti

on

sta

rtin

g t

o r

ise

exp

on

enti

ally

•D

rive

n b

y:−

Tra

nsi

sto

r I O

FF

Lea

kag

e−

Tra

nsi

sto

r G

ate

Lea

kag

e−

Hig

h O

per

atin

g V

olt

age

11

Page 2: Moore’s Law Continues - Duke University

Pow

er D

ensi

ty E

xtra

pola

tion

Ho

t P

late

Ho

t P

late

Nu

clea

r R

eact

or

Nu

clea

r R

eact

or

Ro

cket

No

zzle

Ro

cket

No

zzle

Su

n’s

Su

rfac

eS

un

’s S

urf

ace

4004

4004 80

0880

0880

8080

8080

8580

85

8086

8086 28

628

638

638

648

648

6

Pen

tiu

mP

enti

um

®®

pro

cess

ors

pro

cess

ors

111010100

100

1,00

01,

000

10,0

0010

,000

’70

’70

’80

’80

’90

’90

’00

’00

’10

’10

Po

wer

Den

sity

Po

wer

Den

sity

(W/c

m2)

(W/c

m2) Gel

sing

er’s

Slid

e fr

om I

SSC

C 2

001

12

•C

on

tin

ue

Mo

ore

’s L

aw w

ith

ou

t E

xpo

nen

tial

in

crea

se in

Po

wer

Co

nsu

mp

tio

n•

Inte

l is

intr

od

uci

ng

tw

o im

po

rtan

t

tech

no

log

ies

at IE

DM

:D

eple

ted

su

bst

rate

tra

nsi

sto

rsH

igh

K g

ate

die

lect

ric

•O

ur

lon

g t

erm

ap

pro

ach

is:

Ter

aHer

tz T

ran

sist

ors

13

•S

cien

tifi

c N

ota

tio

n f

or

big

−K

ilo (

tho

usa

nd

)

−M

ega

( m

illio

n)

−G

iga

( b

illio

n

−T

era

( tr

illio

n)

•S

cien

tifi

c n

ota

tio

n f

or

smal

l−

Mill

i ( t

ho

usa

nd

th)

−M

icro

( m

illio

nth

)

−N

ano

( b

illio

nth

)

−P

ico

( t

rilli

on

th)

A T

eraH

ertz

tra

nsis

tor

will

run

at

1 tr

illio

n cy

cles

per

sec

ond

14

Ch

ann

elS

ou

rce

Dra

in

Gat

e O

xid

eG

ate

Wel

l

15

Page 3: Moore’s Law Continues - Duke University

2.A

pp

lyin

g a

vo

ltag

e (V

T)

to t

he

gat

e “i

nve

rts”

th

e ch

ann

el r

egio

n,

crea

tin

g a

n e

lect

rica

l p

ath

b

etw

een

th

e so

urc

e an

d d

rain

VG

VG

3.A

pp

lyin

g a

vo

ltag

e to

th

e d

rain

p

ulls

cu

rren

t-ca

rrie

rs a

cro

ss

the

chan

nel

, cre

atin

g t

he

dri

ve

curr

ent

(ID).

VD

I D

1.T

ran

sist

or

in “

off

” st

ate

SD

G

SD

G

SD

G

16

•T

he

go

al is

to

cre

ate

smal

ler

and

fas

ter

tran

sist

ors

wh

ile r

etai

nin

g h

igh

leve

l of

per

form

ance

.

•30

% li

nea

r sh

rin

k y

ield

s ½

tra

nsi

sto

r ar

ea

Tra

nsi

sto

r co

un

t d

ou

ble

s ev

ery

two

yea

rs

30%

sh

rin

k

VG

VG

17

•G

ate

dela

yis

the

time

it ta

kes

for

curr

ent t

o tr

avel

from

the

sour

ce to

the

drai

n (a

cros

s th

e ch

anne

l).

•D

rive

curr

ent i

s th

e am

ount

of c

urre

nt th

at fl

ows

whe

n th

e tr

ansi

stor

is tu

rned

on.

•S

mal

ler

gate

del

ay a

nd la

rger

driv

e cu

rren

t tr

ansl

ates

into

FA

ST

ER

tran

sist

ors

and

circ

uits

. 21

Gat

e L

eaka

ge

Cu

rren

t:•

Thi

nner

gat

e ox

ides

pro

duce

fast

er tr

ansi

stor

s•

We

have

rea

ched

the

limit

of G

ate

Oxi

de (

SiO

2)sc

alin

g.•

30nm

tran

sist

or h

ad 0

.8nm

gat

e ox

ide

•T

hinn

er o

xide

s le

ak m

ore.

-

Gat

e ox

ide

can

get s

o th

in it

no

long

er a

cts

as a

goo

d in

sula

tor.

I Gat

e

So

urc

eD

rain

Gat

e O

xid

eG

ate

23

Page 4: Moore’s Law Continues - Duke University

1.E

-06

1.E

-05

1.E

-04

1.E

-03

1.E

-02

1.E

-01

1.E

+00

1.E

+01

1.E

+02

1.E

+03 5

1015

2025

Ph

ysic

al T

ox

(Å)

Jox(A/cm²) @1V Inversion

SiO

2 G

ate

Lea

kag

e(f

rom

lite

ratu

re)

1.E

-06

1.E

-05

1.E

-04

1.E

-03

1.E

-02

1.E

-01

1.E

+00

1.E

+01

1.E

+02

1.E

+03 5

1015

2025

Ph

ysic

al T

ox

(Å)

Jox(A/cm²) @1V Inversion

1.E

-06

1.E

-05

1.E

-04

1.E

-03

1.E

-02

1.E

-01

1.E

+00

1.E

+01

1.E

+02

1.E

+03 5

1015

2025

Ph

ysic

al T

ox

(Å)

Jox(A/cm²) @1V Inversion

SiO

2 G

ate

Lea

kag

e(f

rom

lite

ratu

re)

24

Off

-sta

te (

Su

b-t

hre

sho

ld)

leak

age:

•Id

eally

, cur

rent

onl

y flo

ws

acro

ss th

e ch

anne

l (di

rect

ly b

enea

thth

e ga

te)

from

sou

rce

to

drai

n w

hen

the

tran

sist

or is

turn

ed o

n.•

If cu

rren

t flo

ws

unde

r th

e ch

anne

l whe

n th

e tr

ansi

stor

is tu

rned

off,

it is

cal

led

Off-

stat

e (o

r S

ub-t

hres

hold

) le

akag

e.•

Sub

-thr

esho

ld le

akag

e co

nsum

es p

ower

in th

e st

andb

y or

off

stat

e.•

A le

aky

devi

ce r

equi

res

a hi

gher

ope

ratin

g vo

ltage

I Off

So

urc

eD

rain

Gat

e O

xid

eG

ate

I Su

bsu

rfac

e

25

•D

eple

ted

Sub

stra

te T

rans

isto

r (D

ST

)W

ith R

aise

d so

urce

and

dra

in•

Hig

h-K

gat

e di

elec

tric

s•

Low

vol

tage

ope

ratio

n

28

Hig

h K

Gat

e D

iele

ctri

c

Hig

h K

die

lect

ric

•N

ew m

ater

ial r

epla

ces

SiO

2•

Thi

cker

phy

sica

l film

but

sam

e ca

paci

tanc

e•

10,0

00x

low

er g

ate

leak

age

curr

ent f

or s

ame

capa

cita

nce

Gat

e

So

urc

eD

rain

29

Page 5: Moore’s Law Continues - Duke University

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+

0

1E+

1 0.50

1.00

1.50

2.00

2.50

3.00

3.50

Co

x ( µ µµµ

F/c

m2 )

JOX @1V (A/cm 2)

SiO

2 Al2

O3

HfO

2

ZrO

2T

a2O

5

TiO

2

Alte

rnat

ive

Gat

e D

iele

ctric

s to

Red

uce

Gat

e Le

akag

e

31

Ben

efit

s•

No

leak

age

path

thro

ugh

subs

trat

e•

Low

est j

unct

ion

capa

cita

nce

•Le

ss v

olta

ge r

equi

red

to tu

rn o

n tr

ansi

stor

•N

o flo

atin

g bo

dy e

ffect

So

urc

eD

rain

Gat

e

Oxi

de

Neg

ativ

e•

Hig

h re

sist

ance

in S

ourc

e/D

rain

s

I Off

32

Ult

ra T

hin

SO

I plu

sE

pit

axy

Gro

wn

So

urc

e D

rain

•D

ecre

ases

res

ista

nce

•H

ighe

r dr

ive

curr

ent

•N

o in

crea

se in

junc

tion

capa

cita

nce

Oxi

de

Gat

e

Rex

tR

ext

Ori

gin

al

S/D

th

ickn

ess

New

S/D

th

ickn

ess

33

•T

ran

sist

or

Cu

rren

t cr

eate

s ch

arg

e b

elo

w

chan

nel

•C

har

ge

colle

cts

cau

sin

g v

olt

age

on

si

lico

n b

od

y to

ris

e o

r ‘f

loat

’•

Tra

nsi

sto

r V

t d

epen

ds

on

pre

vio

us

stat

e

So

urc

eD

rain

Gat

e

Oxi

de

+ +

+ +

+ +

+ +

+ +

38

Page 6: Moore’s Law Continues - Duke University

•S

ilico

n c

han

nel

is f

ully

dep

lete

d d

uri

ng

o

per

atio

n o

f D

ST

tra

nsi

sto

rs−

No

ch

ance

fo

r ch

arg

e b

uild

up

•N

o d

esig

n c

han

ges

req

uir

ed f

or

DS

T!

Oxi

de

Sour

ceD

rain

39

1.8V

1.5V

1.3V

1.1V

0.85

V 0.7V

0.6V

2.5V

DST

BU

LK

CM

OS

41

Bul

kP

D S

OI

DS

T

Si o

n O

xide

Lay

erN

A~1

00nm

<30

nm

Rai

sed

sour

ce-d

rain

No

No

Yes

•Ju

nctio

n ca

paci

tanc

eLo

wLo

wer

� ���Lo

wes

t

•O

ff st

ate

leak

age

Low

Low

er� ���

Low

est

•S

oft e

rror

rat

eLo

wLo

wer

� ���Lo

wes

t

•U

ndes

ired

float

ing

body

No

Yes

� ���N

o

•O

pera

ting

volta

ge1.

0x1.

0x� ���

0.8x

•G

ate

dela

y1.

0x0.

9x� ���

0.7x

42

•E

limin

ates

su

bsu

rfac

e le

akag

e•

So

lves

hig

h r

esis

tan

ce•

Min

imiz

es g

ate

leak

age

•E

limin

ates

flo

atin

g b

od

y ef

fect

•M

inim

izes

so

ft e

rro

r ra

tes

•50

% lo

wer

jun

ctio

n c

apac

itan

ce t

hat

PD

SO

I

Rai

sed

S/D

Fully

Dep

lete

d C

hann

el

Hig

h K

gat

e

43

Page 7: Moore’s Law Continues - Duke University

We

hav

e d

efin

ed a

new

tra

nsi

sto

r ar

chit

ectu

re•

Ter

aher

tz o

pera

tion

•Lo

w p

ower

con

sum

ptio

n•

Sca

labl

e be

yond

65n

m te

chno

logy

nod

e

All

of

the

key

elem

ents

hav

e b

een

dem

on

stra

ted

•N

ew tr

ansi

stor

str

uctu

re-

DS

T w

ith r

aise

d so

urce

dra

in

•H

igh

k g

ate

diel

ectr

ic•

30nm

, 20n

m, &

15n

m C

MO

S g

ate

leng

th•

Ter

aher

tz o

pera

tion

at 0

.75V

44

•In

tel’s

mo

st a

dva

nce

d d

evel

op

men

t a

nd

m

anu

fact

uri

ng

cap

abili

ty is

on

300

mm

waf

ers

–A

dvan

ced

lith

ogra

phy

–H

igh

K d

iele

ctric

s–

Rai

sed

sour

ce-d

rain

s–

Dep

lete

d S

ubst

rate

Tra

nsis

tors

•W

e be

lieve

that

Ter

aHer

tz tr

ansi

stor

arc

hite

ctur

e w

ill

beco

me

the

clea

r ch

oice

for

the

seco

nd h

alf o

f the

dec

ade.

45