MooreDNAreplication

35
DNA Replication By: Amanda Moore

Transcript of MooreDNAreplication

Page 1: MooreDNAreplication

DNA Replication

By: Amanda Moore

Page 2: MooreDNAreplication

DNA helicase unravels DNA

DNA helicase

Page 3: MooreDNAreplication

DNA helicase

DNA helicase unravels DNA

Page 4: MooreDNAreplication

DNA helicase

DNA helicase unravels DNA

Page 5: MooreDNAreplication

DNA helicase

DNA helicase unravels DNA

Page 6: MooreDNAreplication

DNA helicase

DNA helicase unravels DNA

Page 7: MooreDNAreplication

DNA helicase

DNA helicase unravels DNA

Page 8: MooreDNAreplication

DNA helicase

DNA helicase unravels DNA

Page 9: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’

3’

3’

5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA helicase breaks the bonds between the two base pairs and they split apart.

Page 10: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’ 3’

3’5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA helicase breaks the bonds between the two base pairs and they split apart.

Page 11: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’ 3’

3’ 5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA helicase breaks the bonds between the two base pairs and they split apart.

Page 12: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’ 3’

3’ 5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA helicase breaks the bonds between the two base pairs and they split apart.

Page 13: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’ 3’

3’ 5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA helicase breaks the bonds between the two base pairs and they split apart.

Page 14: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’3’

3’ 5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA helicase breaks the bonds between the two base pairs and they split apart.

Page 15: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’ 3’

3’ 5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA helicase breaks the bonds between the two base pairs and they split apart.

Page 16: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’ 3’

5’3’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA helicase breaks the bonds between the two base pairs and they split apart.

Page 17: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’ 3’

3’ 5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA helicase breaks the bonds between the two base pairs and they split apart.

Page 18: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’ 3’

5’3’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA helicase breaks the bonds between the two base pairs and they split apart.

Page 19: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’

3’

3’

5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’.

Page 20: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’

3’

3’

5’G

5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’.

Page 21: MooreDNAreplication

A T

C G

G C

T A

G C

A T

C G

A T

C G

5’

3’

3’

5’G

T

5’

PhosphateSugar

Nucleotide

Thymine

Cytosine

Adenine

GuanineDNA helicase

DNA polymerase 3

RNA primer

DNA polymerase 1

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’.

Page 22: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

5’

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs.

Page 23: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

T

C

5’

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs. The fragment made off of the RNA primer is an Okazaki fragment.

Page 24: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

T

C

A

C

5’

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs. The fragment made off of the RNA primer is an Okazaki fragment.

Page 25: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

T

C

A

C

A

C5’ 3’

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs. The fragment made off of the RNA primer is an Okazaki fragment. DNA polymerase 1 changes the RNA primer into DNA.

Page 26: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

T

C

A

C

A

C

T

C

5’ 3’

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs. The fragment made off of the RNA primer is an Okazaki fragment. DNA polymerase 1 changes the RNA primer into DNA.

Page 27: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

T

C

A

C

A

C

T

C

G

G

5’ 3’

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs. The fragment made off of the RNA primer is an Okazaki fragment. DNA polymerase 1 changes the RNA primer into DNA.

Page 28: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

T

C

A

C

A

C

T

C

G

G

T3’

5’ 3’

A DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs. The fragment made off of the RNA primer is an Okazaki fragment. DNA polymerase 1 changes the RNA primer into DNA.

Page 29: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

T

C

A

C

A

C

T

C

G

G

T3’

5’ 3’

A

A5’

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs. The fragment made off of the RNA primer is an Okazaki fragment. DNA polymerase 1 changes the RNA primer into DNA.

Page 30: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

T

C

A

C

A

C

T

C

G

G

T3’

5’ 3’

A

A5’

C

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs. The fragment made off of the RNA primer is an Okazaki fragment. DNA polymerase 1 changes the RNA primer into DNA.

Page 31: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

T

C

A

C

A

C

T

C

G

G

T3’

5’ 3’

A

A5’

C

G

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs. The fragment made off of the RNA primer is an Okazaki fragment. DNA polymerase 1 changes the RNA primer into DNA.

Page 32: MooreDNAreplication

PhosphateSugar

Nucleotide

A T

C G

Thymine

Cytosine

Adenine

GuanineG C

T A

G C

A T

C G

A T

C G

DNA helicase

5’

3’

3’

5’

DNA polymerase 3

G

T

G

RNA primer

DNA polymerase 1

T

C

A

C

A

C

T

C

G

G

T3’

5’ 3’

A

A5’

C

G

DNA polymerase 3 starts on the leading strand and synthesizes a new base pair for the existing strand. DNA polymerase 3 synthesizes 3’ to 5’. On the lagging strand, DNA polymerase 3 needs a RNA primer, made by DNA primase, for it to synthesize more base pairs. Then DNA polymerase makes more base pairs. The fragment made off of the RNA primer is an Okazaki fragment. DNA polymerase 1 changes the RNA primer into DNA. DNA ligase makes phosodiester bonds between the Okasaki fragments and the RNA primers that are now DNA.

Page 33: MooreDNAreplication

The Reason Why DNA Replicates

DNA replicates for inheritance. DNA replicates in Interphase by making a copy of itself before the cell splits. It can be made into a new cell or a new organism. This process occurs in the nucleus of the cell in eukaryotes and in the cytoplasm of prokaryotes.

Page 34: MooreDNAreplication

Genetic Mutations

Telomeres make chromosomes longer at the ends and they can make genetic mutations better by fixing them. Telomerase makes telomere make the chromosome longer so the genetic mutation can be gone faster. The difference between normal cells and cancer cells is that cancer cell can grow forever and never die but normal cells will. Transplanted cells are changed by putting different genes in them and they probably won’t develop into cancer.

Page 35: MooreDNAreplication

Genetic Mutations cont.

Cloning is when a scientist takes a cells nucleus from an organism and uses that nucleus to make the same organism entirely, only younger. During the process of aging, cells lose their telomerase.