MonteCarlo-1.pptx

download MonteCarlo-1.pptx

of 59

Transcript of MonteCarlo-1.pptx

  • 7/25/2019 MonteCarlo-1.pptx

    1/59

    Biomedical Optics II II

    Monte Carlo Modeling of

    Photon Transport

    2011/09/28

  • 7/25/2019 MonteCarlo-1.pptx

    2/59

    Radiative Transfer in LivingTissue

    2College of Engineering, Peking University II

    How to

    solve the

    problem?

    Maxwells

    equations?

    Modelingbased onscattering

    and

    absorption

    Monte Carlosimulation

    Radiativetransferequation

  • 7/25/2019 MonteCarlo-1.pptx

    3/59

    Monte Carlo

    College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    4/59

    !College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    5/59

    "College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    6/59

    The simulations treat photons as neutral particles

    rather than as a wave phenomenon.

    It is assumed that the photons are multiply

    scattered by tissues. Sometimes, phase and

    polarization are assumed to be randomized andcan be ignored.

    Monte CarloSimulations

    #College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    7/59

    Photon transport in biological tissue can benumerically simulated by the Monte Carlo method.

    The trajectory o a photon is modeled as a

    persistent random wal!, with the direction o eachstep depending on that o the previous step.

    "y contrast, the directions o all o the steps in a

    simple random wal! are independent.

    "y trac!ing a suicient number o photons, we can

    estimate physical #uantities such as diuse

    relectance.

    Introduction

    $College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    8/59

    The medium is random $se %dice& to build it

    ' system with !nown probability distributions

    (scattering and absorption)

    Monte Carlo

    8College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    9/59

    *rom +u and -oblingerIn all applications o the Monte Carlo method, a stochastic

    model is constructed in which the epected value o a

    certain random variable (or o a combination o several

    variables) is e#uivalent to the value o a physical #uantityto be determined.

    This epected value is then estimated by the average o

    multiple independent samples representing the random

    variable introduced above.*or the construction o the series o independent samples,

    random numbers ollowing the distribution o the variable

    to be estimated are used.

    Denition of Monte CarloMethod

    9College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    10/59

    The photon propagation is random and determined by tissue optical properties

    /. 0istance to net scattering event1 'pply 2dice2 with properties set by the

    mean ree3path3length (determined by the scattering and absorption

    coeicients) to set the path length beore a scattering or an absorption

    event occur.

    4. 0irection ater scattering1 'pply 2dice2 with phase unction 5 anisotropy

    o scattering to set the scattering angles.

    10College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    11/59

    Main advantage6o limitation concerning boundary conditions or

    spatial localisation o inhomogeneities in the tissue

    77 *leiblilityMain disadvantage

    Problem o getting good statistics, particularly i the

    point o interest is located ar away rom the point oentry o the light and the scattering and absorption

    coeicients are high 77 long CP$ time

    11College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    12/59

    It is important to realize that the Monte Carlo method estimatesensemble3averaged #uantities.

    'n ensemble o biological tissues is modeled or the average

    characteristics o photon transport8 the ensemble consists o all

    instances o the tissues that are microscopically dierent but

    macroscopically identical.

    9ules are deined or photon propagation rom the probability

    distributions o, or eample, the angles o scattering and the step

    sizes.

    The statistical nature re#uires trac!ing a large number o photons,

    which is computationally time3consuming.

    Multiple physical #uantities can be simultaneously estimated,

    however.

    Ensemble veraging

    12College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    13/59

    In this chapter, photons are treated as waves ateach scattering site but as classical particles

    elsewhere.

    Coherence, polarization, and nonlinearity areneglected.

    Structural anisotropy33not to be conused with

    scattering angular anisotropy33in tissuecomponents, such as muscle ibers or collagens, is

    neglected as well.

    Simplications

    1College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    14/59

    0etermine the spatial interval between twosuccessive interaction events

    0etermine the scattering angle

    0etermine the survival o the photon

    Three Ma!or SamplingProcedures

    1!College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    15/59

    The mean ree path or an absorption orscattering event

    Step size (unction o :aand :s)

    The scattering angle

    0election angle, ; (unction o anisotropy,

    g)

    'zimuthal angle, The step size o the photon is calculated based on

    sampling the probability or the photonDs mean ree

    path

    > I step size too small, MC is ineicient, but i step

    size is too large, poor approimation o real photon

    travel

    > Choose step size rom probability density unction

    0College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    31/59

    &he total attenuation coefficient

    9ecall that the probability o interaction o a photon

    with a medium per unit path length is

    PGs/,s/5ds/HJLtds/

    1College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    32/59

    &he total attenuation coefficient

    The probability o interaction o a photon with a

    medium per unit path length is related to the gradient

    o transmission

    2College of Engineering, Peking University II

    /

    //

    ( )

    ( )t

    dT sds

    T s =

  • 7/25/2019 MonteCarlo-1.pptx

    33/59

    &he total attenuation coefficient

    The probability distribution unction (rom "eerDs

    law) is deined as

    College of Engineering, Peking University II

    / / /

    / / /

    ( ) ( ) ep( )

    ( ) / ( ) / ep( )

    t

    t

    P s s T s s

    P s s T s s

    > = =

    < = =

  • 7/25/2019 MonteCarlo-1.pptx

    34/59

    'inal expression

    Solving or %s& yields

    !College of Engineering, Peking University II

    ln

    t

    s

    =

  • 7/25/2019 MonteCarlo-1.pptx

    35/59

    Sampling the Step Si)e

    ( )

    ( ) ( )

    tt

    t

    t

    ss

    s

    ssP

    ln/ln=

    =

    =

    =

    or

    si$estep#ampled

    )exp(methodondistributiInverse

    )exp(

    si$estepoffunctionondistributi*umulative

    "College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    36/59

    #College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    37/59

    $College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    38/59

    8College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    39/59

    9College of Engineering, Peking University II

    li h i l

  • 7/25/2019 MonteCarlo-1.pptx

    40/59

    Sampling the Scattering ngle

    [ ]4

    4 BM4

    44

    4

    =enyey3reenstein phase unction./

    (cos ) , @,4(/ 4 cos )

    Sampled scattering angle.

    / // i @cos 4 / 4

    4 / i @

    gp

    g g

    gg gg g g

    g

    =

    +

    + = +

    =

    Sampling the )imuthal

  • 7/25/2019 MonteCarlo-1.pptx

    41/59

    Sampling the )imuthalScattering ngle

    ( )

    G@,4

    /

    4

    4

    p

    )

    =

    =

    !1College of Engineering, Peking University II

    M i h Ph P *

  • 7/25/2019 MonteCarlo-1.pptx

    42/59

    Moving the Photon Pac*et

    iz

    iy

    ix

    szz

    syy

    sxx

    +

    +

    +

    !2College of Engineering, Peking University II

    b ti

  • 7/25/2019 MonteCarlo-1.pptx

    43/59

    bsorption

    WWW

    W

    W

    t

    a

    =

    +pdate of Photon Propagation

  • 7/25/2019 MonteCarlo-1.pptx

    44/59

    +pdate of Photon PropagationDirection

    ( )

    ( )

    ( ) ( )

    ( ) ( )( ) ( )

    ( ) ( ) ( )

    eists.solutione'lternativ

    .N,N,Nin,anglesazimuthalandpolarhasalongNnpropagatiophotonringPostscatte

    .N,N,Ngettoorabout,,9otate(4)

    .,,scoordinateteintermediagettoorabout,,9otate(/)

    ,N,N,Nscoordinatelocalto,,scoordinateglobalromtransormTo

    .,anglesazimuthalandpolarhasnpropagatiophotonringPrescatte6ote

    .cossgnsinsincossinthen,/I

    .coscossin/

    ,cos/

    )sincos(sin

    ,cos

    /

    )sincos(sin

    @

    OOOO

    OOO

    @

    @@

    4

    4

    4

    zyxzk

    zyxyzyx

    zyxzzyx

    zyxzyx

    k

    ,,

    z

    '

    z

    '

    y

    '

    xz

    zz

    '

    z

    y

    z

    xzy'

    y

    x

    z

    yzx'

    x

    ===

    +=

    +

    +=

    +

    =

    !!College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    45/59

    Please go to ianan QuDs ppt /Bb.pd and /Bc.pd.

    !"College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    46/59

    int main ()

    Ralbedo J mus (mus 5 mua)8

    rs J (n3/.@)O(n3/.@)(n5/.@)(n5/.@)8 O specular relection O

    critangle J s#rt(/.@3/.@nn)8 O cos o critical angle O

    binspermp J /emicronsperbin(mua5mus)8

    or (i J /8 i KJ photons8 i55)R

    launch ()8

    while (weight 7 @) R

    move ()8

    absorb ()8

    scatter ()8U

    U

    printresults()8

    return @8

    U

    Monte Carlo Program

    !#College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    47/59

    void launch() O Start the photon O

    R J @.@8 y J @.@8 z J @.@8

    u J @.@8 v J @.@8 w J /.@8

    weight J /.@ 3 rs8

    U

    void bounce () O Interact with top surace O

    R

    double t, temp, temp/,r8

    w J 3w8

    z J 3z8

    i (w KJ critangle) return8 O total internal relection O

    t J s#rt(/.@3nOnO(/.@3wOw))8 O cos o eit angle Otemp/ J (w 3 nOt)(w 5 nOt)8

    temp J (t 3 nOw)(t 5 nOw)8

    r J (temp/Otemp/5tempOtemp)4.@8 O *resnel relection O

    rd 5J (/.@3r) O weight8

    weight 3J (/.@3r) O weight8

    U

    Monte Carlo Program

    !$College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    48/59

    void move() O move to net scattering or absorption event O

    Rdouble d J 3log((rand()5/.@)(9'60M'V5/.@))8

    5J d O u8

    y 5J d O v8

    z 5J d O w8

    i ( zKJ@ ) bounce()8

    U

    void absorb () O 'bsorb light in the medium O

    R

    int binJzObinspermp8

    i (bin 7J "I6S) bin J "I6S3/8

    heatGbinH 5J (/.@3albedo)Oweight8weight OJ albedo8

    i (weight K @.@@/)R O 9oulette O

    bit 3J weight8

    i (rand() 7 @./O9'60M'V) weight J @8 else weight J @./8

    bit 5J weight8

    U

    U

    Monte Carlo Program

    !8College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    49/59

    void scatter() O Scatter photon and establish new direction O

    Rdouble /, 4, B, t, mu8

    or(88) R Onew directionO

    /J4.@Orand()9'60M'V 3 /.@8

    4J4.@Orand()9'60M'V 3 /.@8

    i ((BJ/O/54O4)KJ/) brea!8

    U

    i (gJJ@) R O isotropic O

    u J 4.@ O B 3/.@8

    v J / O s#rt((/3uOu)B)8

    w J 4 O s#rt((/3uOu)B)8

    return8

    U

    Monte Carlo Program

    !9College of Engineering, Peking University II

  • 7/25/2019 MonteCarlo-1.pptx

    50/59

    mu J (/3gOg)(/3g54.@OgOrand()9'60M'V)8mu J (/ 5 gOg3muOmu)4.@g8

    i ( abs(w) K @.W ) R

    t J mu O u 5 s#rt((/3muOmu)(/3wOw)B) O (/OuOw34Ov)8

    v J mu O v 5 s#rt((/3muOmu)(/3wOw)B) O (/OvOw54Ou)8

    w J mu O w 3 s#rt((/3muOmu)O(/3wOw)B) O /8

    U else R

    t J mu O u 5 s#rt((/3muOmu)(/3vOv)B) O (/OuOv 5 4Ow)8

    w J mu O w 5 s#rt((/3muOmu)(/3vOv)B) O (/OvOw 3 4Ou)8

    v J mu O v 3 s#rt((/3muOmu)O(/3vOv)B) O /8

    U

    u J t8

    U

    Monte Carlo Program

    "0College of Engineering, Peking University II

    l

  • 7/25/2019 MonteCarlo-1.pptx

    51/59

    void printresults() O Print the results O

    Rint i8

    print(2XsYnXsYnYnScattering J X?.BcmYn'bsorption J X?.BcmYn2,t/,t4,mus,mua)8

    print(2'nisotropy J X?.BYn9er Inde J X?.BYnPhotons J X?ld2,g,n,photons)8

    print(2YnYnSpecular 9el J X/@.ZYn"ac!scattered 9el J X/@.Z2,rs,rd(bit5photons))8

    print(2YnYn 0epth =eatYnGmicronsH GAcm[BHYn2)8

    or (iJ@8iK"I6S3/8i55)R

    print(2X\.@ X/4.ZYn2,iOmicronsperbin, heatGiHmicronsperbinO/e(bit5photons))8

    U

    print(2 etra X/4.ZYn2,heatG"I6S3/H(bit5photons))8

    U

    Monte Carlo Program

    "1College of Engineering, Peking University II

    M C l P

  • 7/25/2019 MonteCarlo-1.pptx

    52/59

    char t/G?@H J 2Small Monte Carlo by Scott Prahl (httpomlc.ogi.edu)28

    char t4G?@H J 2/ Acm[4 $niorm Illumination o Semi3Ininite Medium28

    ]include Kstdio.h7

    ]include Kstdlib.h7

    ]include Kmath.h7

    ]deine "I6S /@/

    double mua J Z8 O 'bsorption Coeicient in /cm O

    double mus J WZ8 O Scattering Coeicient in /cm O

    double g J @.4Z8 O Scattering 'nisotropy 3/KJgKJ/ O

    double n J /.Z8 O Inde o reraction o medium O

    double micronsperbin J 4@8O Thic!ness o one bin layer O

    long i, photons J /@@@@@8

    double ,y,z,u,v,w,weight8double rs, rd, bit, albedo, critangle, binspermp, heatG"I6SH8

    Monte Carlo Program

    "2College of Engineering, Peking University II

    3

  • 7/25/2019 MonteCarlo-1.pptx

    53/59

    Monte Carlo can simulate photon transport inbiological tissue

    Three steps move, absorb, scatter

    Aeight deines its alive or dead

    The trajectory o a photon is modeled as a

    persistent random wal!. The directions are

    independent.

    3ummar(

    "College of Engineering, Peking University II

    4 t& di

  • 7/25/2019 MonteCarlo-1.pptx

    54/59

    httpomlc.ogi.educlassroomeceZB4classinde.html

    Tinymc.c, Smallmc.c, mcB4/.c

    httpomlc.ogi.edusotwaremc

    MCM+ download

    httplabs.seas.wustl.edubmeAangmc.html

    4urt&er readings

    "!College of Engineering, Peking University II

    # *

    http://omlc.ogi.edu/classroom/ece532/class4/index.htmlhttp://omlc.ogi.edu/classroom/ece532/class4/index.htmlhttp://labs.seas.wustl.edu/bme/Wang/mc.htmlhttp://labs.seas.wustl.edu/bme/Wang/mc.htmlhttp://labs.seas.wustl.edu/bme/Wang/mc.htmlhttp://omlc.ogi.edu/classroom/ece532/class4/index.htmlhttp://omlc.ogi.edu/classroom/ece532/class4/index.html
  • 7/25/2019 MonteCarlo-1.pptx

    55/59

    /. Plot the =enyey reenstein *unction with dierent g.

    4. Arite a program (in C or M'T+'") to describe a simple

    random wal! in 3y plane. The direction is uniormly

    random in B\@ degrees, and the wal!ing step size ollows

    the same way o a photon transportation in a mediumwith LJ/@@ cm. Plot your result and hand in your

    program. (up to 4@ steps)

    B. 9ewrite the tinymc.c program to Matlab.

    #ome,or*

    ""College of Engineering, Peking University II

    E-periment. Monte Carlo

  • 7/25/2019 MonteCarlo-1.pptx

    56/59

    pSimulation

    "#College of Engineering, Peking University Biomedical Optics II

    Fiber

    5= 633 nm

    E-periment. Monte Carlo

  • 7/25/2019 MonteCarlo-1.pptx

    57/59

    pSimulation

    "$College of Engineering, Peking University Biomedical Optics II

    Fiber

    5= 633 nm

    E-periment. Monte Carlo

  • 7/25/2019 MonteCarlo-1.pptx

    58/59

    pSimulation

    "8College of Engineering, Peking University Biomedical Optics II

    Fiber

    5= 633 nm

    E i t t

  • 7/25/2019 MonteCarlo-1.pptx

    59/59

    $sing g J @.W, and the measured scattering coeicient aswell as other parameters, apply Monte Carlo simulation

    (net eperiment), then compare your simulated result

    with your measured data.

    E-periment report