Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid...

48
Page 1 Page 1 Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids H. Damanik, J. Hron, A. Ouazzi, S. Turek Institut für Angewandte Mathematik, LS III, TU Dortmund http://www.mathematik.tu-dortmund.de/lsiii Modelling, Optimization and Simulation of Complex Fluid Flow June 20 – 22, 2012 TU Darmstadt Darmstadt, Germany S. Turek | Monolithic Newton multigrid FEM

Transcript of Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid...

Page 1: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 1Page 1Page 1

Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special

emphasis on viscoelastic fluids

H. Damanik, J. Hron, A. Ouazzi, S. Turek Institut für Angewandte Mathematik, LS III, TU Dortmund

http://www.mathematik.tu-dortmund.de/lsiii

Modelling, Optimization and Simulation of Complex Fluid Flow June 20 – 22, 2012

TU DarmstadtDarmstadt, Germany

S. Turek | Monolithic Newton multigrid FEM

Page 2: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 2Page 2

Multiscale CFD Problems

Turbulence flow inside a pipe. From ProPipe

S. Turek | Monolithic Newton multigrid FEM

• Characteristics: Complex temporal behaviour and spatially disordered Broad range of spatial/temporal scales

• Inertia turbulence Re>>1 Numerical instabilities and problems

Special turbulence models required Special stabilization techniques required

Page 3: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 3Page 3

Multiscale CFD Problems

From physics.ucsd.edu

S. Turek | Monolithic Newton multigrid FEM

• Elastic turbulence Re<<1, We>>1 (less inertia, more elasticity) Numerical instabilities and problems (HWNP)

Special flow models: Oldroyd-B, Giesekus, Maxwell,… Special stabilization: EEME, EEVS, DEVSS/DG, SD, SUPG,…

Page 4: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 4Page 4

Viscoelastic Fluids• Special effects due to normal stresses• Special effects due to elongational viscosity• The drag reduction phenomenon• …

S. Turek | Monolithic Newton multigrid FEM

Page 5: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 5Page 5S. Turek | Monolithic Newton multigrid FEM

Application: Twinscrew Extruder• Viscoelastic rheological models (additionally shear & temperature

dependent) with non-isothermal conditions (cooling from outside, heat production, melting, solidification)

• Multiphase flow behaviour due to partially filled and transported granular material

• Complex time dependent geometry and meshes

Page 6: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 6Page 6S. Turek | Monolithic Newton multigrid FEM

FeatFlow Simulations with FBM

Page 7: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 7Page 7

• Generalized Navier-Stokes equations

• Viscous stress

• Elastic stress

).)((tr ,),,( 2 2uDDpss

( t u )u p , u 0,

c p ( t u ) k1

2 k2D :D,

s p .

Governing Equations

S. Turek | Monolithic Newton multigrid FEM

).(2 )(),(),( p321 uDFDFLf ppppp

D(u) 12

u (u)T ,

Page 8: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 8Page 8

Constitutive Models (I)• Viscous stress

Power Law model

Generalized Cross model

S. Turek | Monolithic Newton multigrid FEM

).)((tr ,),,( 2 2uDDpss

).1,0(,)(),,( 0

)12

(20

rp

r

s

).0,1 ,0(

)),(exp())(1()(),,(

0

3

21

01

ra

aapp rrs

Page 9: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 9Page 9

Constitutive Models (II)

• Generalized upper convective constitutive model

S. Turek | Monolithic Newton multigrid FEM

),(2 )(),(),),(,( p321 uDFDFtrLf ppppppk

.: Tppp

pp uuu

t

Oldroyd-B/UCM

Giesekus

FENE-P/-CR

White & Metzner

PTT

Pom-Pom ),,( 23 pGF

)( DD pp )),(,(1 pp trf

1 0 02 p1 0

))(,(1 pk trLf 0 01 0 0

0)),((1 ptrf ),,(2 pGF

1f 2F 3F

)(),( pp

Page 10: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 10Page 10

Constitutive Models (III)

• Exemplary model: White-Metzner

Larson:

Cross:

Carreau-Yasuda:

S. Turek | Monolithic Newton multigrid FEM

),()(2 )( p uDpp )(:)(2 uDuD

a1

)(

a1 )( p

p

n

1)L(1 )(

mp

p 1)k(1 )(

bn

b1

)L(1 )(

am

app

1

)k(1 )(

Page 11: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 11Page 11

• Discretizations have to handle the following challenges points Stable FEM spaces for velocity/pressure and velocity/stress

interpolation or or the new Special treatment of the convective terms: edge-oriented/interior

penalty (EO-FEM), TVD/FCT High Weissenberg number problem (HWNP): LCR

• Solvers have to deal with different sources of nonlinearity Nonlinearity: Newton method Strong coupling of equations: monolithic multigrid approach

• Complex geometries (and meshes) FBM + distance based Level Set FEM for free interfaces

S. Turek | Monolithic Newton multigrid FEM

Numerical Challenges

Q2 /Q2 / P1disc ˜ Q 1 / ˜ Q 1 / P0

˜ Q 2 / ˜ Q 2 / P1disc

Page 12: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 12Page 12

Problem Reformulation (I)Elastic stress

(1)

Replace in (1) with )( Icp

p

(2)

Conformation stress is positive definite by design !!

special discretization: TVD p

(u , p, c )

(u , p, p )

S. Turek | Monolithic Newton multigrid FEM

)(2 )(),(),(

0 ,2

p321 uDFDFLf

uDpuut

ppppp

ps

0,

0,u ,12u

4

uF

Dput

cc

cps

Page 13: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 13Page 13

Conformation Tensor Properties

2 Observations:- positive definite special discretizations like FCT/TVD- exponential behaviour approximation by polynomials???

c(t) 1We2

t exp (t s)We

F(s,t) F(s,t)T ds

Positive by design, so we can take its logarithm

S. Turek | Monolithic Newton multigrid FEM

Page 14: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 14Page 14

Exponential Behaviour

Old Formulation Vs Lcr

-5495995

1495199524952995

0,00 0,20 0,40 0,60 0,80 1,00

x

stre

ss_1

1

We= 0.5 We= 1.5

Driven Cavity:as We number changes fromWe=0.5 to We=1.5, the stress value jumps significantly

Cutline of Stress_11 component at y = 1.0

S. Turek | Monolithic Newton multigrid FEM

Page 15: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 15Page 15

Problem Reformulation (II)

S. Turek | Monolithic Newton multigrid FEM

1 cNBu

cLCR log

TLCR RR

c)log(

• Experience: Stresses grow exponentially Conformation tensor is positive by design

• Fattal and Kupferman: Take the logarithm as a new variable using the

eigenvalue decomposition

Decompose the velocity gradient inside the stretching part

Remark for PTT only DuLNBL c ,1

LCR can be applied to all upper convective models !!

Page 16: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 16Page 16

LCR Reformulation

TLCR RR

c)log(

1 cNBu

ccccc But

I1 2

LCRc exp

S. Turek | Monolithic Newton multigrid FEM

)(2 )(),(),( p321 uDFDFLf ppppp

0,4

uF cc )( Icp

p

., 2 4 uFBut LCRLCRLCRLCR

Page 17: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 17Page 17

Full Set of Equations (LCR)• Generalized Newtonian (VP)

• Non-isothermal effect (T)

• LCR equation (S)

., 2 4 uFBut LCRLCRLCRLCR

S. Turek | Monolithic Newton multigrid FEM

c p ( t u ) k1

2 k2D :D,

0, ,1)(),,(2

ueuDppuut

LCRps

uF LCR ,4 Refers to all upper convectiveconstitutive models

Page 18: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 18Page 18

Examplary Models (LCR)

S. Turek | Monolithic Newton multigrid FEM

)(14 IeF LCR

))((1 24 IeeIeF LCRLCRLCR

))((1))((144 IRfeFIeRfF LCRLCR

)(14 IeF LCR

))))(3((exp(1

))))(3((1(1

4

4

IeetrF

IeetrF

LCRLCR

LCRLCR

))1(]2)(([1 24 IeefF LCRLCR

LCR

Oldroyd-B/UCM

Giesekus

FENE-P/-CR

White-Metzner

Linear PTT

Exponential PTT

Pom-Pom

Page 19: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 19Page 19

FEM Discretization• High order for velocity-stress-pressure

Advantages: Inf-sup stable for velocity and pressure

High order: good for accuracy

Discontinuous pressure: good for solver & physics

Disadvantages: Stabilization for same spaces for stress-velocity

a single d.o.f. belongs to four elements (in 2D)

Compatibility condition between the stress and velocity spaces via EO-FEM !

S. Turek | Monolithic Newton multigrid FEM

Q2 /Q2 / P1disc

Page 20: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 20Page 20

Variational Formulations

• Standard Navier-Stokes bilinear forms

• Non-symmetric bilinear forms due to LCR

dvDuDdvu

tvua s )(:)(21),(

dvpvpb ),(

duBuc c :),(2),(~

dvDvc LCRLCR )(:)exp(),(

S. Turek | Monolithic Newton multigrid FEM

Page 21: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 21Page 21

Variational Formulations

• Nonlinear tensor variational form due to LCR

• Non-symmetric bilinear forms due to LCR

• Source term

dxuFdx

dxut

d

LCRLCRLCR

LCRLCR

:,:)(

:)(1),(

4

),,,( pul LCR

dxuDdxuDuD

dxkdxut

e

LCRs )exp(:)()(:)(2

1),(

S. Turek | Monolithic Newton multigrid FEM

Page 22: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 22Page 22

Problem Formulation

• Set

• Find such that

Typical saddle point problem !

)(:),()()(: 20

142210 LQHLHX

EEE

DCCA

A

LCRfD

T

0~0

:~

QXpu ),~(

QXqvqvlqvpuK ),~(),~(),~(),,~(

0

~

TBBAK

),,(:~ LCRuu

S. Turek | Monolithic Newton multigrid FEM

Page 23: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 23Page 23

Compatibility Conditions

• Compatibility condition (for classical approach)

What about LCR ?

)(sup 2

0,01,1)(

210

Lqqu

dxqu

Hu

21

0,12,0)(

)(:

sup42

Huudxu

L

S. Turek | Monolithic Newton multigrid FEM

Page 24: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 24Page 24

Compatibility Conditions for LCR

• The non-symmetric bilinear forms due to LCR

such that is positive definite

210,1,02

,1,02

)(,

)exp(

)(:)exp(),(

HvTv

v

dvDvc

PD

210

42,1,02 )(,)(

:),(2),(~

HvLv

duBuc c

42 )( LPDT

S. Turek | Monolithic Newton multigrid FEM

Page 25: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 25Page 25

• Edge-oriented stabilization for

Equal order finite element interpolation for velocity and stress

Convective dominated problem

with , and),,(~ vv),,(~ uu

Efficient Newton-type and multigrid solvers can be easily applied !

[ ˜ u ][ ˜ v ] [ ˜ u i ][ ˜ v i ]i

EO-FEM

S. Turek | Monolithic Newton multigrid FEM

dsvuhhvuJEedge E

EuEpuu ]~][~[,max~,~ 2~~

Page 26: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 26Page 26

Higher Order Nonconforming FEM

• Larger FE space which allows high orderapproximation

• d.o.f.s belong to at most two elements which isgood for parallelisation

• Coupling of different polynomial orders

Mortar condition: test space ≈ order at slave side

No hanging nodes

S. Turek | Monolithic Newton multigrid FEM

Page 27: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 27Page 27

Nonlinear Solver• Damped Newton results in the solution of the form

• Inexact Newton: Jacobian is approximated using finite differences

S. Turek | Monolithic Newton multigrid FEM

),,,(,0)( puxxR LCR

)()(1

1 ll

lll xRxxRxx

2)()()( ijij

ij

l exRexRxxR

Page 28: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 28Page 28

Jacobian Matrix • The Jacobian matrix takes the form

• Generalized non-isothermal non-Newtonian problem

S. Turek | Monolithic Newton multigrid FEM

0

~)(B

BAxxRJ

Tn

A Au

˜ C T ˜ H T

C A 0H 0 A

Typical saddle point problem !

Page 29: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 29Page 29

Linear Solver

• Monolithic multigrid solver

Standard geometric multigrid approach

Full restrictions and prolongations

Local MPSC via Vanka-like smoother

Fully implicit Monolithic FEM-Multigrid Solver !

S. Turek | Monolithic Newton multigrid FEM

Q2 , P1disc

TTT

llp

llu

Tl

l

l

l

l

hpuRpuR

Jpu

pu

),~(),~(~~

11

1

Page 30: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 30Page 30

Linear Solver

Vanka-like Smoother!

S. Turek | Monolithic Newton multigrid FEM

Page 31: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 31Page 31

Linear Solver

Vanka-like Smoother!

S. Turek | Monolithic Newton multigrid FEM

Page 32: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 32Page 32S. Turek | Monolithic Newton multigrid FEM

Flow around Cylinder Benchmark

Local refinement via hanging nodes

Coarse grid and mesh information

Level NEL DOFR3a1 656 15823R3a2 944 22457R3a3 1520 35715R3a4 2672 62221R3a5 4976 115223

Page 33: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 33Page 33S. Turek | Monolithic Newton multigrid FEM

Flow around Cylinder Benchmark• Planar flow around cylinder (Oldroyd-B)

Page 34: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 34Page 34S. Turek | Monolithic Newton multigrid FEM

Flow around Cylinder Benchmark

Efficient continuation for increasing We numbers

We Drag NL We Drag NL We Drag NL0.1 130.366 8 0.8 117.347 4 1.5 125.665 40.3 123.194 4 1.0 118.574 6 1.7 129.494 40.5 118.828 4 1.2 120.919 5 1.9 133.754 40.6 117.779 4 1.3 122.350 4 2.0 136.039 50.7 117.321 4 1.4 123.936 4 2.1 138.438 5

We Drag Peak2 NL We Drag Peak2 NL5 96.943 924.45 14 60 85.859 12010.57 420 89.905 4204.51 12 70 85.365 13773.61 430 88.304 6318.79 5 80 84.937 15502.45 440 87.256 8311.32 5 90 84.585 17207.87 450 86.476 10199.1 4 100 84.287 18897.95 4

• Oldroyd-B

• Giesekus

Page 35: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 35Page 35S. Turek | Monolithic Newton multigrid FEM

Flow around Cylinder Benchmark• Direct steady vs. non-steady approach for Giesekus

Page 36: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 36Page 36S. Turek | Monolithic Newton multigrid FEM

Flow around Cylinder Benchmark• Axial stress w.r.t. X-curved: Oldroyd-B vs. Giesekus

Lack of pointwise mesh convergence due to model

Page 37: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 37Page 37S. Turek | Monolithic Newton multigrid FEM

Level n.o.f. u n.o.f p n.o.f. T n.o.f S VP VPT VSP0 1144 390 572 1716 1534 2106 32501 4368 1560 2184 6552 5928 8112 124892 17056 6240 8528 25584 23296 31824 488803 67392 24960 33696 101088 92352 126048 1934494 267904 99840 133952 401856 367744 501696 7696005 1068288 399360 534144 1602432 1467648 2001792 3070080

• Coarse grid and mesh information

• n.o.f. for different problems

Level NEL NMT NMP1 520 572 10922 2080 2184 42643 8320 8528 168484 33280 33696 669765 133120 133952 267072

Next Problem

Page 38: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 38Page 38

Navier-Stokes Re=20

S. Turek | Monolithic Newton multigrid FEM

Level Drag Lift N/L Drag Lift N/L1 3.112646 2.965870e-2 1/6 5.540999 9.447473e-3 5/22 3.134342 3.005275e-2 1/7 5.566928 1.046885e-2 5/23 3.140327 3.015909e-2 1/7 5.576088 1.056787e-2 5/24 3.141893 3.018665e-2 1/7 5.578652 1.060398e-2 5/25 3.142292 3.019366e-2 1/7 5.579313 1.061503e-2 5/2

Newtonian Problem (VP)

Stokes

Level independent solver !

Page 39: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 39Page 39S. Turek | Monolithic Newton multigrid FEM

Power Law Problem (VP)

Level Drag Lift N/L

2 3.26420 -0.01339 4/23 3.27728 -0.01341 3/24 3.27956 -0.01338 2/25 3.28007 -0.01337 2/2

Level Drag Lift N/L

2 13.74280 0.35070 3/23 13.77355 0.34963 3/24 13.78220 0.35062 3/15 13.78445 0.35112 2/2

Level Drag Lift N/L

2 3.26433 -0.01342 4/23 3.27739 -0.01342 3/24 3.27968 -0.01339 2/25 3.28019 -0.01338 2/2

Level Drag Lift N/L

2 13.73800 0.35052 3/23 13.76875 0.34941 3/24 13.77740 0.35040 3/15 13.77970 0.35091 2/2

102 , r 1.5

104 , r 1.5

102 , r 3

104 , r 3

Level and parameter independent solver !

).1,0(,)(),,( 0

)12

(20

rp

r

s

Page 40: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 40Page 40S. Turek | Monolithic Newton multigrid FEM

Level Drag Lift N/L

2 6.31313 0.02478 3/13 6.32337 0.02504 3/24 6.32619 0.02509 3/25 6.32691 0.02510 2/2

Level Drag Lift N/L

2 534.29750 6.53247 3/23 535.48500 6.55813 3/34 535.77950 6.56464 3/35 535.84800 6.56621 2/2

Level Drag Lift N/L

2 33.22763 0.81901 2/23 33.29026 0.82140 2/24 33.30657 0.82201 2/25 33.31069 0.82217 2/2

Level Drag Lift N/L

2 15.16395 0.13886 4/33 15.18516 0.13963 4/34 15.19108 0.13978 4/35 15.19262 0.13982 3/3

r 1, r1 1, 0,0 102 r 0, r1 1, 0.1,0 101

r 1, r1 1, 0.1,0 101r 0 r1 1, 0.1,0 102

Cross Model Problem (VP)

103 , a1 a2 0,

Level and model independent solver !

)),(exp())(1()(),,(

3

21

01

aaapp rrs

Page 41: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 41Page 41S. Turek | Monolithic Newton multigrid FEM

Level Drag Lift N/L

2 74.29465 1.31636 2/23 74.43290 1.32009 2/24 74.46910 1.32105 2/25 74.47830 1.32129 2/2

Level Drag Lift N/L

2 5579.355 54.79350 3/23 5589.415 54.96815 3/34 5592.050 55.01415 3/35 5592.725 55.02585 3/2

Level Drag Lift N/L

2 53.78930 1.05488 2/23 53.88590 1.05770 3/24 53.91125 1.05844 2/25 53.91770 1.05863 2/2

Level Drag Lift N/L

2 6005.265 59.75125 3/23 6016.220 59.94455 3/24 6019.075 59.99535 3/25 6019.795 60.00820 3/2

r 0, r1 1, 0,0 102 , a2 0.

Cross Model problem (VTP)

103 , a1 0, a3 1, k1 k2 102 ,

r 0.1, r1 1, 0,0 101 , a2 0.

r 0.1, r1 1, 0,0 102 , a2 1. r 0.1, r1 1, 103 ,0 101 , a2 1.

Non heated cylinder

Level and model independent solver !

)),(exp())(1()(),,(

3

21

01

aaapp rrs

Page 42: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 42Page 42S. Turek | Monolithic Newton multigrid FEM

Cross Model Problem (VTP)

103 , r 0.1, r1 1, 103 , a1 0, a2 1, a3 1,

Level Drag Lift N/L

2 45.26969 0.90303 3/23 45.35251 0.90563 3/24 45.37431 0.90632 2/25 45.37988 0.90649 2/2

Level Drag Lift N/L

2 512.7765 5.37640 3/23 513.7120 5.39301 3/34 513.9585 5.39743 3/35 514.0215 5.39856 3/2

Level Drag Lift N/L

2 464.07865 4.90752 2/23 464.93045 4.92313 3/24 465.15470 4.92724 2/25 465.21195 4.92828 2/2

Level Drag Lift N/L

2 5528.860 53.11685 3/23 5539.025 53.28790 3/24 5541.690 53.33335 3/25 5542.365 53.34490 3/2

0 102 , k1 k2 102 . 0 101 , k1 k2 103.

0 101 , k1 k2 102 . 0 1.0, k1 k2 103.

Heated cylinder

Level and model independent solver !

)),(exp())(1()(),,(

3

21

01

aaapp rrs

Page 43: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 43Page 43S. Turek | Monolithic Newton multigrid FEM

Viscoelastic Fluids (VSP)

Level Drag Lift N/L

2 5.57150 0.01031 2/23 5.58032 0.01047 3/24 5.58285 0.01051 2/25 5.58351 0.01052 2/2

Level Drag Lift N/L

2 5.56474 0.01053 2/23 5.57511 0.01064 2/24 5.57936 0.01062 2/25 5.58131 0.01059 2/2

Level Drag Lift N/L

2 20.8412 0.32761 7/73 17.7123 0.22910 6/84 15.0096 0.14311 6/95 12.58895 0.07002 6/9

Level Drag Lift N/L

2 5.03961 -0.00172 4/23 4.93834 -0.00210 4/34 4.84483 -0.00252 3/35 4.77541 -0.00276 3/4

We 0.002 We 0.002

We 1.0 We 1.0

Level independent solver !

Oldroyd-B Giesekus

Oldroyd-B Giesekus

Page 44: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 44Page 44S. Turek | Monolithic Newton multigrid FEM

Viscoelastic Fluids (VSP)

Lower We vs. higher We !

We=0.1 We=1

Page 45: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 45Page 45S. Turek | Monolithic Newton multigrid FEM

Viscoelastic Fluids (VSP)

Lower We vs higher We !

We 0.1 0.2 0.3 0.4 0.5 0.6 … 1.0Oldroyd-B 5 [130.06] 4 [130.06] 4 [130.06] 5 [120.40] 5 [118.67] 5 [117.66] … 7 [119.33]

Giesekus 4 [129.37] 4 [124.41] 4 [119.86] 3 [116.31] 3 [113.67] 3 [111.71] … 3 [107.29]

Fene-P 4 [128.91] 4 [124.62] 4 [120.70] 3 [117.67] 3 [115.51] 4 [114.02] … 3 [111.84]

Fene-CR 4 [130.15] 4 [126.72] 4 [123.68] 3 [121.51] 3 [120.14] 3 [119.42] … 3 [120.13]

Pom-pom 3 [137.17] 4 [127.23] 4 [119.78] 4 [114.51] 4 [110.66] 5 [107.76] … 3 [101.00]

Page 46: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 46Page 46S. Turek | Monolithic Newton multigrid FEM

Outlook: Multiphase Flow• Distanced based FEM Level Set formulation

• Test cases

surfaceCSF nFut

,10,

Test case1. Viscoelastic 10 0.1 10 1 9.8 0.2452. Newtonian 10 0.1 10 1 9.8 0.2453. Viscoelastic 10 0.1 2 1 9.8 0.2454. Newtonian 10 0.1 2 1 9.8 0.245

1 2 1 2 g 10

100

0

Page 47: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 47Page 47S. Turek | Monolithic Newton multigrid FEM

Preliminary Results

Typical cusp formation

• Rising bubble surrounded by viscoelastic fluids

Page 48: Monolithic Newton-Multigrid FEM techniques for nonlinear ...€¦Page 1 Monolithic Newton-Multigrid FEM techniques for nonlinear problems with special emphasis on viscoelastic fluids

Page 48Page 48

Summary

Robust numerical and algorithmic tools are available using Monolithic Finite Element Method (M-FEM)

Classical and Log Conformation Reformulation (LCR)

Edge Oriented stabilization (EO-FEM)

Fast Newton-Multigrid Solver with local MPSC smoother

for the simulation of nonlinear flow with viscoelastic behaviour

Advantages No CFL-condition restriction due to the fully implicit coupling

Positivity preserving

Higher order and local adaptivity

S. Turek | Monolithic Newton multigrid FEM