Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and...

226
Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian (M.Sc.) A thesis submitted in the fulfilment of the degree of Doctor of Philosophy of Science (Ph.D.) in the Department of Ecology and Evolutionary Biology June 2007

Transcript of Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and...

Page 1: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular Systematics and Conservation Genetics of Gliding

Petaurids (Marsupialia: Petauridae)

By

Mansoureh Malekian (M.Sc.)

A thesis submitted in the fulfilment of the degree of Doctor of Philosophy of Science

(Ph.D.) in the Department of Ecology and Evolutionary Biology

June 2007

Page 2: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

II

Table of content

Table of content II

List of figures VII

List of tables X

Declaration XII

Abstract XIII

Acknowledgments XV

1 General introduction 1

1.1 Preamble 1

1.2 Introduction 1

1.3 Current taxonomy and distribution of gliding petaurids 2

1.4 Conservation status 3

1.5 Phylogeny and evolution of gliders 5

1.6 Phylogeography and population structure 6

1.7 Genetic variability and habitat fragmentation 7

1.8 Study aims 9

2 Molecular systematics of the genus Petaurus (Marsupialia: Petauridae) in

Australia and New Guinea 11

2.1 Introduction 11

2.2 Material and methods 15

2.2.1 Taxa sampling 15

Page 3: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

III

2.2.2 Genetic analyses 16

2.2.3 Choice of outgroups 16

2.2.4 DNA isolation, PCR- amplification and sequencing 17

2.2.5 Sequence analysis 18

2.2.6 Phylogenetic analyses 19

2.2.7 Molecular clock and divergence time estimates 20

2.3 Results 22

2.3.1 Sequence analyses 22

2.3.1.1 Mitochondrial regions 22

2.3.1.2 Nuclear marker 23

2.3.2 Phylogenetic analyses 24

2.3.2.1 Mitochondrial gene analyses 24

2.3.2.2 Nuclear gene analyses 25

2.3.3 Molecular clock and divergence time estimates 28

2.4 Discussion 31

2.4.1 Phylogenetic relationships 31

2.4.2 Divergence time and biogeography 35

3 Phylogeography of the sugar glider (Petaurus breviceps) in Australia 37

3.1 Introduction 37

3.2 Material and methods 39

3.2.1 Population sampling 39

3.2.2 PCR- amplification and sequence analyses 40

3.2.3 Phylogenetic analyses 40

3.2.4 Population structure 42

3.3 Results 42

3.3.1 Variation and distribution of haplotypes 42

3.3.2 Phylogenetic relationships 43

3.3.3 Population structure 44

3.3.3.1 Mitochondrial region 44

3.3.3.2 Omega-globin gene 49

Page 4: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

IV

3.4 Discussion 50

3.4.1 Phylogeography and genetic structure 50

3.4.2 Taxonomy 51

3.4.3 Implications for conservation 53

4 Nest box-use, social structure and mating system of P. breviceps 55

4.1 Introduction 55

4.2 Material and methods 57

4.2.1 Study area 57

4.2.2 Sampling methods 57

4.2.3 Comparison between small and large patches 60

4.2.4 DNA extraction and microsatellite analysis 60

4.2.5 Parentage analysis and mating system 61

4.2.5.1 Relatedness analysis 63

4.3 Results 64

4.3.1 Nest box occupancy 64

4.3.1.1 Species, Occupancy rate and pattern of use 64

4.3.1.2 Comparison between small and large patches 64

4.3.2 Parentage analyses 69

4.3.3 Mating system 74

4.3.4 Relatedness and kinship 75

4.4 Discussion 78

4.4.1 The effects of patch size on nest-box use, group size and structure 78

4.4.2 Mating system of P. breviceps 80

4.4.3 Relatedness and Kin structure of P. breviceps 81

4.4.4 Inbreeding avoidance 82

5 Genetic diversity and population structure of P. breviceps 84

5.1 Introduction 84

5.2 Materials and methods 86

Page 5: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

V

5.2.1 Study populations and molecular data 86

5.2.2 Genetic diversity 86

5.2.3 Population structure 87

5.3 Results 88

5.3.1 Genetic diversity 88

5.3.2 Population structure 90

5.4 Discussion 92

6 An extension to the known distribution of the squirrel glider (Petaurus

norfolcensis) in Australia 95

6.1 Preamble 95

6.2 Introduction 95

6.3 Material and methods 97

6.3.1 Genetic investigation 97

6.3.2 Field investigations 98

6.3.3 Morphometric assessments 98

6.4 Results 100

6.4.1 Genetic investigation 100

6.4.2 Field investigation 101

6.4.3 Morphometric assessments 103

6.5 Discussion 107

7 Concluding discussion 109

7.1 Review of aims 109

7.2 Evolutionary relationships of Petaurus species 109

7.3 Phylogeography and population differentiation within P. breviceps in

Australia. 110

Page 6: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

VI

7.4 Nest box-use social structure and mating system of P. breviceps in fragmented

habitats 111

7.5 Genetic diversity and population structure of P. breviceps 112

7.6 Limitations of the study 113

7.7 Further research 113

References 116

Appendix 1 137

Appendix 2 139

Appendix 3 159

Appendix 4 168

Appendix 5 170

Appendix 6 188

Appendix 7 195

Appendix 8 208

Page 7: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

VII

List of figures

Figure 2.1 Distribution map of the glider species in Australia and New Guinea. .......... 13

Figure 2.2 Current distribution of subspecies of P. breviceps in Australia and New

Guinea. ............................................................................................................................ 15

Figure 2.3 Phylogenetic relationships of Petaurus species in comparison with the

representatives from other genera of Petauridae, using Maximum Parsimony analyses of

ND2 sequence data.......................................................................................................... 26

Figure 2.4 Phylogeny of the genus Petaurus based on combined mitochondrial ND2 and

ND4 genes....................................................................................................................... 27

Figure 2.5 Distribution map of the mitochondrial lineages within P. breviceps in

Australia and New Guinea.............................................................................................. 29

Figure 2.6 ω-globin gene tree inferred using a partitioned mixed-model in MrBayes... 30

Figure 2.7 50% posterior probability Bayesian consensus tree using all three genes

(ND2, ND4 and ω-globin gene) with model partitioning, implemented in MRBAYES.31

Figure 2.8 The distribution of morphological subspecies and evolutionary lineages

from genetic data obtained in the present study. ............................................................ 35

Figure 3.1 Omega-globin gene tree of P. breviceps inferred using a partitioned mixed-

model in MrBayes........................................................................................................... 46

Figure 3.2 Maximum Parsimony tree of combined mtDNA (ND2 and ND4) from P.

breviceps in Australia ..................................................................................................... 47

Figure 3.3 Unrooted network of mtDNA haplotypes from P. breviceps haplotypes

inferred using statistical parsimony and associated nested clade design........................ 48

Figure 3.4 Haplotype network of ω-globin gene generated under 95% statistical limit of

parsimony........................................................................................................................ 49

Figure 3.5 Distribution of the current subspecies of P. breviceps in Australia and the

two mtDNA clades found in the current study. .............................................................. 53

Page 8: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

VIII

Figure 4.1 Location of 23 patches surveyed in this study. ............................................. 59

Figure 4.2 Seasonal use of nest boxes by P. breviceps................................................... 65

Figure 4.3 The percentage of the total of nest box checks where a nest box was occupied

by at least one P. breviceps individual in five small and five large patches. ................. 66

Figure 4.4 The mean number of individual P. breviceps per nest box in small and large

patches. ........................................................................................................................... 66

Figure 4.5 Frequency histogram of the number of P. breviceps inhabiting nest boxes at

one time in small and large patches. ............................................................................... 67

Figure 4.6 The mean number of reproductively active adult male and female P.

breviceps per nesting group in small and large patches.................................................. 68

Figure 4.7 The mean number of juvenile and sub-adult male and female P. breviceps

per nesting group in small and large patches .................................................................. 68

Figure 4.8 Average coefficient of relatedness of nesting adult individuals in nest groups

........................................................................................................................................ 76

Figure 4.9 Average coefficient of relatedness for nesting individuals nesting together. 77

Figure 5.1 Log likelihood probability of data (Ln P(X/K) as a function of K for P.

breviceps samples from 16 populations.......................................................................... 92

Figure 6.1 Distribution map of P. norfolcensis in Australia prior to this study. ............ 95

Figure 6.2 Sketch map of upper south-east of South Australia. ..................................... 96

Figure 6.3 Parameters used in morphometric analysis ................................................... 99

Figure 6.4 Neighbour-Joining phylogram from 700 base pairs of ND2 sequenced from

four Australian gliding petaurid species and suspected P. norfolcensis from Bordertown

and Western Flat.. ......................................................................................................... 101

Figure 6.5 The first live suspected squirrel glider in South Australia. ......................... 102

Figure 6.6 Roadside habitat in Western Flat................................................................ 103

Page 9: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

IX

Figure 6.7 Bivariate plot of Condylobasal length (CBL) over maximum zygomatic

breadth (MZB) for P. breviceps and P. norfolcensis .................................................... 105

Figure 6.8 Relationship between the first (PCA1) and second (PCA2) components of the

Principle Component Analysis for P. breviceps and P. norfolcensis. .......................... 105

Figure 6.9 Relationship between the first (PCA1) and second (PCA2) components of the

Principle Component Analysis of both sexes of P. breviceps ...................................... 106

Page 10: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

X

List of tables

Table 1.1 Conservation status of the Australian gliding petaurids. .................................. 5

Table 2.1 Primer name, Source and nucleotide sequences used for amplification and

sequencing of ND2, ND4 and ω-globin gene ................................................................. 18

Table 2.2 Summary of nucleotide substitution models selected for data partitioning

using the Akaike Information Criterion in Modeltest version 3.9. ................................. 21

Table 2.3 Comparison of sequence statistics for all three genes used in the study. ....... 23

Table 2.4 MtDNA (combined ND2 and ND4) sequence divergence between Petaurus

species ............................................................................................................................. 23

Table 2.5 Mitochondrial DNA sequence divergence between P. breviceps clades. ...... 28

Table 2.6 The estimated age of the Most Recent Common Ancestor already defined of

P. breviceps lineages in Australia and New Guinea using the program BEAST ........... 29

Table 3.1 Summary of nucleotide substitution models selected for data partitioning

using Akaike Information Criterion in Modeltest version 3.9........................................ 41

Table 3.2 Numbers of samples, mtDNA haplotypes and diversity indices of P.

breviceps populations across Australia........................................................................... 44

Table 3.3 Pairwise sequence divergence comparisons between regions in Australia and

New Guinea .................................................................................................................... 44

Table 3.4 Pairwise FST values for the populations of P. breviceps in Australia, using an

analysis of molecular variance (AMOVA)................................................................... 445

Table 4.1 Size, ownership and location for 23 native forest patches surveyed in the

current study ................................................................................................................... 58

Table 4.2 Primer sequences, annealing temperatures and source of the nine polymorphic

microsatellite loci used in screening of P. breviceps samples. ....................................... 61

Table 4.3 Number of adult male, female and offspring P. breviceps sampled from 12

populations...................................................................................................................... 63

Page 11: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

XI

Table 4.4 Species recorded using nest boxes, and the number of patches and nest boxes

in which animal species were detected. .......................................................................... 65

Table 4.5 Frequency of the various combinations of adult sugar gliders nesting together

in nest boxes in five small patches and five large patches.............................................. 69

Table 4.6 Result of parentage assignments for juvenile and sub-adults sampled in this

study by calculation of the most likely male and female parents. .................................. 71

Table 4.7 Pairwise relatedness values for the most likely mated pairs from one small

patch, two larger patches and a continuous forest .......................................................... 78

Table 5.1 Summary statistics of genetic diversity for P. breviceps in south-eastern South

Australia.......................................................................................................................... 89

Table 5.2 Pairwise FST and probability values based on 10000 permutations between

each pair of populations sampled in this study. .............................................................. 91

Table 6.1 Pairwise distances between four Australian gliding petaurid species and

suspected P. norfolcensis from Bordertown and Western Flat..................................... 101

Table 6.2 Average and range of CBL: MZB ratio for P. breviceps and P. norfolcensis..

...................................................................................................................................... 104

Table 6.3 Average skull parameters and summary statistics for P. norfolcensis and P.

breviceps ....................................................................................................................... 106

Page 12: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

XII

Declaration

I declare that this thesis contains no material which has been accepted for the award of

any other degree or diploma in any university or other tertiary institution. To the best of

my knowledge and belief it does not contain material that previously published or

written by any other person, except where due reference has been acknowledge in this

thesis. I give consent to this copy of my thesis being available for loan and

photocopying.

Mansoureh Malekian

Date

Page 13: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

XIII

Abstract

The gliding petaurids are small sized arboreal and nocturnal marsupials restricted to

Australia and the New Guinean region. They have suffered range contractions since

European settlement, and most of the species are of conservation concern, either

nationally or at a state level. This study applied molecular approaches to investigate

several questions involving Petaurus species which may provide valuable insights for

their conservation and management of species. The objectives of this study included an

examination of phylogenetic and evolutionary relationships among Petaurus species, an

assessment of phylogeographic structure within P. breviceps and an investigation of

genetic diversity, social structure and mating system of P. breviceps in fragmented

habitats.

A broad molecular systematics study of the genus Petaurus was first undertaken. Two

mitochondrial genes (ND2 and ND4) and a nuclear gene marker (ω-globin) were

screened for sequence variation in samples obtained from across the distribution of

petaurid species, including Australia, New Guinea and its surrounding islands.

Phylogenetic analyses confirmed the monophyly of the genus Petaurus and revealed

that, with the exception of P. gracilis, the currently recognised species were associated

with divergent mtDNA clades. It also revealed considerable mtDNA diversity within

the widely distributed species P. breviceps. The existence of at least seven distinct and

divergent mtDNA lineages within P. breviceps was supported, with two lineages

located in Australia and at least five lineages in New Guinea. However, the distribution

of these evolutionary lineages did not correspond with current morphological

subspecies boundaries. Analyses of ω-globin sequence provided support for a number

of these distinct populations, suggesting the possible presence of cryptic species within

P. breviceps. Molecular analyses also suggested that squirrel gliders, P. norfolcensis,

may occur in both South Australia and the Northern Territory, extending the current

known range of the species. The presence of P. norfolcensis in SA was further verified

by examining museum skins.

Population structure and current pattern of gene flow within P. breviceps in Australia

was examined further to elucidate phylogeographic structure within the species, and

explore potential causes of geographic variation. Evidence for significant

phylogeographic structuring across the range of the species in Australia was provided

Page 14: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

XIV

from population genetic (AMOVA) and phylogenetic analyses of both mitochondrial

DNA and the ω-globin gene. In particular, there was evidence for the existence of two

divergent clades that were distributed over distinct geographical regions. Divergence

dates calculated for the two major mtDNA clades suggested that environment and

climate changes which occurred during the Pliocene may have facilitated this

diversification.

Habitat fragmentation is generally considered to be a major factor threatening the

viability of forest dependent species such as gliders. Effects of habitat fragmentation

were therefore investigated in P. breviceps in the highly disturbed landscape of south-

eastern South Australia. Genetic mating system and social structure of the species in

these fragmented habitats was explored in 13 populations, using nine polymorphic

microsatellite loci. Social groups consisted of two to seven gliders, and these were often

close relatives, including parents with their offspring. Parentage analyses provided some

evidence for a polygamous mating system, with a number of males found to have

fathered offspring from multiple female partners. Some direct evidence of inbreeding

was also found within a small isolated patch. Genetic diversity within P. breviceps

populations was moderate compared to the range reported in other marsupial species.

Population structure analyses indicated that gene flow between some patches was

restricted. Small patches surrounded by a matrix of pine were more likely to show

inbreeding and potentially suffer from inbreeding depression, although further data are

required to verify this result. Overall, results suggest that, although the species is still

present in these small and isolated patches, it may face threats from a lack of dispersal

and inbreeding. Maintaining the size of patches and establishing corridors between

isolated populations needs to be considered in conservation and management of species

in these fragmented habitats.

Page 15: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

XV

Acknowledgments

This thesis and the work that it represents is not representative of my own effort alone, I

need to acknowledge a multitude of people who have helped me through this journey.

First and foremost, I would like to thank my supervisors Dr Susan Carthew from the

University of Adelaide and Dr Steve Cooper from the South Australian Museum for

their ideas, supports, critical discussions and encouragement throughout the project.

Without their continued intellectual encouragements and tireless editing skills this thesis

would not be in the form it is in.

I am also grateful to those people who assisted me in the field in trapping, erecting nest

boxes and collecting samples in the south-east of SA: Key Richardson, Michelle Le

Duff, Darryl Funnell, Meredeth Brown, Benjamin Parkhurst, Josh Griffiths, and all

volunteers who got to haul the ladder around the bush. I wish to thank Troy Horn from

Forestry SA for his assistance with sampling nest boxes in Deadmans Swamp forest and

providing me with digital maps of Native Forest Reserves in the south east. I also thank

Justin Cook (Department of Sustainability and Environment, Victoria), Mark Bachman

(Department for Environment and Heritage, South Australia) and private land-holders in

south-eastern South Australia including Mr. and Mrs. Hill, the Paltridge family, the

Peucker family, Mr. Bourne, Mr. Yeates and Mr. Mulligan who allowed access to their

properties for this study.

I would like to express my gratitude to the following people and museum curators for

providing the samples and specimens used in this study: Dennis O'Meally, Karen Gray

and Sandy Ingleby (Australian Museum), David Stemmer and Cath Kemper (South

Australian Museum), Claire Stevenson (Western Australian Museum), Gavin Dally

(Museum & Art Gallery of the Northern Territory), Rory O'Brien (Museum Victoria),

Heather Janetzki (Queensland Museum), Dan Harley, Trish Kendal, Andrea Taylor,

Rodney van der Ree and Alexandra Pavlov. I also thank Kathy Saint, Leanne Wheaton

and Terry Bertozzi, for their laboratory assistance and Mike Gardner for his help with

microsatellite analysis.

This research has been supported and funded by various organizations, including the

Wildlife Conservation Fund in South Australia, ANZ Holsworth Wildlife Research

Page 16: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

XVI

Fund, Mark Mitchell Foundation, Hancock Victorian Timber Plantations, The

University of Adelaide and South Australian Museum

I was fortunate to be a part of the Department of Ecology and Evolutionary Biology in

the School of Earth and Environmental Sciences and the Evolutionary Biology Unit,

where I met friendly and helpful people, both their staff and the students. I would like to

thank Sue’s postgraduate students, both past and present, for their friendship and

assistance in many ways over the years. All member of EBU contributed to my study

through discussion groups and through friendship while sharing labs and office space.

Finally, I owe a special debt of gratitude to Reza for his support and help in the field

and at home. I can not express how much your love and support meant to me and gave

me strength to complete this study.

Page 17: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

General introduction

1

1 General introduction

1.1 Preamble

In this section, I provide background information on my research on gliding petaurids

and the theoretical background of the project. The present study has used molecular

techniques to address a varied range of questions involving Petaurus species. The thesis

consists of five data chapters, starting with a broad molecular phylogenetic study of the

genus Petaurus (Chapter two), and followed by a phylogeographic analysis of P.

breviceps in Australia (Chapter three). Chapter four investigates the social structure and

mating system of P. breviceps in fragmented habitats of south-eastern South Australia.

Fine-scale analyses of population structure are used in Chapter five to assess the level of

genetic variation within populations of P. breviceps in south-eastern South Australia

and to investigate the effect of habitat fragmentation on the species. The last data

chapter covers the genetic re-discovery of the squirrel glider (P. norfolcensis) in South

Australia and the consequent field and morphometric investigations for this presumably

extinct species in the state. The thesis closes with a concluding discussion. There is

some overlap between chapters in samples used, laboratory procedures and sequences

produced. In order to maintain the integrity of each chapter, samples used in each

chapter and sequences (in sequence alignment) are produced in Appendices with

reference made to the associated chapter as necessary.

1.2 Introduction

The conservation of biodiversity ("variation of life at all levels of biological

organization", Gaston and Spicer 2004) has become a widely recognized concern for

the global community. Human populations are growing rapidly and resources are being

consumed at exceedingly rapid rates, resulting in widespread degradation of ecosystems

and loss of biodiversity (Burgman and Lindenmayer 1998; Primack 2006). Proper

functioning of ecosystems depends upon an intricate web of biotic and abiotic

interactions which provide the life support system for all living creatures. If this web is

greatly damaged, the processes that we depend on for sustainable coexistence may no

longer function properly (Hunter 1996; Primack 2006).

Although the extinction of species is a natural phenomenon, human activities like

habitat degradation and fragmentation have accelerated extinction rates. The rate of

Page 18: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

General introduction

2

extinction occurring in today’s world is thought to be around 100 to 1000 times greater

than natural background (IUCN 2006). In the latest version of the International Union

for Conservation of Nature and Natural Resources (IUCN) red list, 23 percent of

vertebrates, 53 percent of invertebrates and 70 percent of plants that have been

evaluated are designated as endangered or threatened. In Australia, 639 species are

currently considered critically endangered, endangered or vulnerable, including 64

mammals (IUCN 2006). The number of mammalian extinctions within Australia in the

last 200 years is the highest of anywhere in the world (Maxwell et al. 1996).

Given the limited financial resources available to conserve the many species that are

threatened, much debate has been focused on what we can afford to conserve and what

species or populations should be considered for conservation (e.g. Vane-Wright et al.

1991; Crozier 1997). Developments in the field of molecular genetics provide us with

unprecedented opportunities to explore questions regarding taxonomy, evolution and

population genetics of species which can lead to better conservation and management of

species. Assessments of historic evolutionary relationships among species through

phylogenetic reconstructions may provide a means of determining unique evolutionary

groups and, thereby, help to define important lineages for conservation (Purvis et al.

2005). Examining genetic variability within a species and the geographic distribution of

lineages can help in the prioritization of areas of high value for conservation and

provide guidelines on how to manage these populations (e.g. defining evolutionarily

significant units (ESUs) and management units (MSUs) (Moritz 1994b). Consideration

of genetic factors such as the level of genetic diversity within isolated populations of a

species (e.g. due to habitat fragmentation) and its potential relevance to population

viability, can help conservationists better manage species (e.g. through designing

corridors between isolated populations). The following series of chapters investigates

inter and intra-specific genetic variability within Petaurus species and explores

potential genetic contributions to the conservation and management of the species.

1.3 Current taxonomy and distribution of gliding petaurids

Gliding petaurids or wrist-winged gliders are members of the family Petauridae, along

with the Leadbeater’s possum (Gymnobelideus leadbeateri) and four species of striped

possums (Dactylopsila)(Groves 2005).

Page 19: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

General introduction

3

The species are small (100-700g) arboreal and nocturnal marsupials, distributed in

Australia, New Guinea and many adjacent islands. All gliding petaurids have obvious

facial markings and a well-defined dorsal stripe. Members of the genus possess a

gliding membrane running from the lateral side of the wrist to the ankle which

facilitates searching for valuable and scarce sources of food in forests. The wrist-winged

gliders are omnivorous, specializing on sap, pollen and nectar, but taking a wide variety

of supplemental foods such as fruits and insects (reviewed in Goldingay 2004). Glider

species inhabit areas ranging from tropical forests to open forests and woodlands.

In the literature, the number of species in the genus Petaurus varies from five to seven.

However, only five species have a relatively stable taxonomy and are recognized by

most researchers. These are the yellow-bellied glider P. australis, Shaw 1791; the

squirrel glider P. norfolcensis, (Kerr 1792); the mahogany glider P. gracilis, (de Vis

1883); the northern glider P. abidi, Ziegler 1981; and the sugar glider P. breviceps,

Waterhouse 1839. The taxonomic status of two other species remains uncertain because

of inadequate material. The biak glider (P. biacensis, Ulmer 1940), a common gliding

possum in Biak and Supiori Islands in New Guinea, is also known as a subspecies of P.

breviceps (P. b. biacensis) (Flannery 1994). The D΄Entrecasteaux glider (Petaurus sp)

is an undescribed species inhabiting the D΄Entrecasteaux island group in south-eastern

New Guinea (Flannery 1994).

Three of these gliding marsupials (the yellow-bellied glider, the squirrel glider and the

mahogany glider) are endemic to Australia and occur throughout eucalypt forests and

woodlands along the east coast. The New Guinean endemic species are the northern

glider, the biak glider and the undescribed species (Flannery 1994). The sugar glider is

the only Petaurus species which occurs in both regions.

1.4 Conservation status

Of the seven species of gliders mentioned above, there is very 1ittle known about the

conservation status of the New Guinean species. P. abidi has a very restricted

distribution in Papua New Guinean North Coast Ranges and is thought to be vulnerable,

while P. biacensis is thought to be common (Flannery 1994; IUCN 2006). The

Australian species are mostly of conservation concern and are given varying degrees of

protection (Table 1.1). Various governmental departments and branches responsible for

the listing of species for conservation often have different levels of protection for these

Page 20: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

General introduction

4

species or different terms for the same level of protection. This variety and degree of

protection often complicates the conservation status of a species. Moreover, lists are

continually being reviewed and the status of a species is subject to change. Although all

Australian species have declined and are protected on a state basis, only two of the four

Australian species (P. australis north Queensland subspecies and P. gracilis) have been

given Federal protection (Table 1.1).

Gliders are important components of forest and woodland ecosystems. Several species

are recognized as having keystone roles in forest ecosystems, in that they pollinate a

number of native plants (Quin et al. 1996a; Carthew and Goldingay 1997) and help to

control insect pests (Smith 1982). Glider species are reliant upon forest and woodland

cover and the elements contained within them, such as hollow bearing trees and

foraging substrates. The dominant processes that threaten the species include habitat

loss, fragmentation and habitat modification. Aside from human impacts on the viability

of these species, unresolved taxonomic issues within the genus also hinder the effective

management of the group. For example, P. gracilis suffered greatly from taxonomic

oblivion and became lost to science for over half a century (Van Dyck 1993). Resolving

taxonomic uncertainties and defining geographical distributions of species and

populations are prerequisites for adequate conservation and management plans (Moritz

1994b; Avise 2000).

Page 21: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

General introduction

5

Table 1.1 Conservation status of the Australian gliding petaurids. State legislations used

are as follow: 1

NT = Territory Parks and Wildlife Conservation Amendment Act 2000, 2QLD = Queensland Nature Conservation Act 1992,

3 NSW = the New South Wales

Threatened Species Conservation Act 1995, 4VIC = Victorian Department of Sustainability

and Environment, Flora and Fauna Guarantee Act 1988, 5SA = South Australian National

Parks and Wildlife Act 1972, 6TAS = Tasmanian Threatened Species Protection Act 1995,

7FED = The Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act).

8IUCN = World Conservation Union, Red List 2006.

9na = not applicable; the species

never existed in the State or Territory.

P. australis P. gracilis P. norfolcensis P. breviceps

NT1 na

9 na na Not threatened

QLD2

Vulnerable (in Wet

Tropics) Endangered Common Common

NSW3 Vulnerable na

Vulnerable/

Endangered Common

VIC4 Not threatened na Endangered Common

SA5 Endangered na Endangered Rare

TAS6 na na na Common

FED7 Vulnerable Endangered Not listed Not listed

IUCN8

Low risk, Near

Threatened Endangered

Low risk, Near

Threatened

Low risk, Least

Concern

1.5 Phylogeny and evolution of gliders

Although there have been a number of studies at higher taxonomic levels (such as

Family (Edwards and Westerman 1992; Osborne and Christidis 2001) and Order

(Osborne et al. 2002; Kavanagh et al. 2004)), which included representatives of

Petaurus species, no comprehensive molecular systematics of the genus has been

reported. The only biochemical study of the genus (Colgan and Flannery 1992) did not

include all the members. That study focused on New Guinean species and did not

provide evolutionary relationships of species in both regions. This means that

monophyly of the genus and phylogenetic relationships of the species have not been

fully established, and the taxonomic status of many named forms within the genus

remains uncertain. Attempts to describe and classify species and subspecies in the genus

have been based primarily on morphological characters (e.g. Ziegler 1981; Van Dyck

1993), though there is no morphological cladistic analysis of relationships within the

genus. It is, therefore, appropriate to start the present study from a broad perspective of

Petaurus phylogeny which ideally includes all the members of the genus, including all

Page 22: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

General introduction

6

known species, subspecies and most geographically isolated populations in Australia,

New Guinea and its surrounding islands.

The genus is also of interest because its distribution spans the Australia-New Guinean

region, an important region in the biogeographic history of Australia. Phylogenetic

studies of widespread species such as Petaurus breviceps may be useful for testing

hypotheses about the evolutionary history of the region. For example, it had been

suggested that the genus evolved in Australia during the Pliocene (5.3 to 1.8 million

years ago) following range contraction of forests which led to the establishment of open

forests (Archer 1984). The ability to glide is an advantage in open forests, and these

forests were not widespread before this time.

1.6 Phylogeography and population structure

Phylogeography is the study of the processes controlling the geographic distributions of

genetic lineages, and it is done by constructing the genealogies of populations and genes

(Avise 2000). Past events such as population expansion, population bottlenecks,

vicariance and migration can be inferred from such studies. Identifying patterns of

geographic variation within species and relating this variation to potential selective

forces can help to understand the relative contribution of factors involved in

evolutionary diversification and speciation (Simons 2002) and can also direct

conservation priorities (Moritz et al. 2000; Arbogast and Kenagy 2001).

Forests cover only a small proportion of the Australian landscape. The present-day

forests of the eastern seaboard of Australia are fragmented remnants of the tropical

forests that once had a widespread and continuous distribution across Australia, but

declined as a result of increasing aridity across the Australian continent through the

mid-late Tertiary and Quaternary (the past six million years)(Kershaw 1981; Hope

1994). The aridity resulted in a series of disjunct, coastal forest patches scattered from

tropical rain forest in Queensland to open eucalypt forests and woodlands in South

Australia. The eastern seaboard of Australia is one of the most biologically diverse parts

of the continent, supporting a high proportion of terrestrial vertebrate species (Blakers et

al. 1984; Strahan 1995a; Cogger 2000). As the past climatic/ environmental events

affected the distribution of major vegetation types, the fauna throughout the region may

have also been affected. Phylogeographic studies of species distributed in these forests

can help in understanding the effect of past climatic events on different species. The

Page 23: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

General introduction

7

pattern of geographic distribution of species and the potential effect of past history of

the region on the current distribution of species has been documented, particularly in the

Wet Tropics (e.g. Schneider et al. 1998; Pope et al. 2000). However, it is not well

known how the open forest species have been affected by past climatic events.

Phylogeographic analysis of yellow-bellied gliders in Australia suggests that a historical

barrier known as the Burdekin gap (an area of hot and dry lowland in central

Queensland) acted as a potential barrier to gene flow and facilitated the divergence

between southern and northern populations of the species (Brown et al. 2006). However

more research is required to examine the relative importance of such barriers to broadly

distributed species in these forests and to assess if other barriers to gene flow might

have existed through the region. P. breviceps has been chosen here as a candidate

species to examine phylogeography and divergence along the east coast of Australia,

because its distribution mirrors the distribution of forests along the east coast and it is

well adapted to different types of forests, from tropical forest to open forests and

woodlands of Australia. The sugar glider shows considerable variation in external

morphology such as body size and coat colour over its geographic range. This variation

has led to the recognition of three subspecies in Australia (Suckling 1983b). Species

clearly require management as separate units. However, subspecies or populations

within a species may be on the path of speciation. They may show significant adaptive

differentiation to different habitats, or significant genetic differentiation and should

potentially be considered as separate evolutionarily significant units (ESUs) (Moritz

1994b) for conservation purposes. Genetic study can make an important contribution in

delineating groups for conservation. Where the genetic resources of a species have been

adequately documented, a number of management strategies can be implemented to

maintain genetic diversity.

1.7 Genetic variability and habitat fragmentation

Genetic variability has long been recognized as a key component of populations. It

provides the raw material for evolutionary change and is, therefore, crucial to the long-

term viability of populations, and in particular, small and isolated populations (Reed

and Frankham 2003). The loss of genetic variation due to drift, inbreeding or other

factors can reduce both individual fitness and the ability of species to adapt themselves

to environmental changes (Lacy 1997; Theodorou and Couvet 2006). Alternatively,

relatively high level of genetic diversity may increase qualities associated with fitness

Page 24: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

General introduction

8

(Lacy 1997). Small and isolated populations generally face appreciable risk from

environmental variation, demographic stochasticity and reduced genetic variation. Each

process or the interaction of all three can reduce population viability and persistence

over time (Frankham 2005).

Human activities such as land clearing for agriculture, softwood production and

urbanisation have reduced the amount of native habitats available for the flora and

fauna. The remaining habitat patches are often small and isolated from each other by

less suitable landscape elements. Isolated populations within these fragments may lose

genetic variability and face extinction due to the lack of gene flow and the

consequences of inbreeding (reviewed by Reed 2004). Loss of genetic diversity in small

populations has been documented in a number of marsupial species such as the northern

hairy-nosed wombat (Taylor et al. 1994), the black-footed rock wallaby (Eldridge et al.

1999) and the Tasmanian devil (Jones et al. 2004).

Although habitat fragmentation is becoming increasingly common, the effect of habitat

spatial structure on population dynamics remains undetermined for many species,

including many of the arboreal marsupial species. Arboreal marsupials are recognised

as a group of mammals that are potentially vulnerable to habitat disturbance and

fragmentation (Bennett 1987; Bennett et al. 1991; Laurance and Vasconcelos 2004).

Most studies on the effect of fragmentation on arboreal marsupials have focused on the

presence and absence and relative abundance of the species, and much less attention has

been given to the genetic consequences of the fragmentation. Less well known are the

effects of fragmentation on within-population processes. For example, a reduction of

habitat size may impact a range of behaviours at the individual and social group levels.

Habitat fragmentation is thought to affect social structure and mating system of a

species because of reduced social neighbourhood sizes and restricted dispersal (Cale

2003; Stow and Sunnucks 2004). Natural animal populations generally avoid inbreeding

through several mechanisms, including dispersal of individuals from their natal

population, extra-pair copulation, or recognition and avoidance of kin as mates

(reviewed by Pusey and Wolf 1996). Changes resulting from habitat fragmentation

could lead to a disruption of inbreeding avoidance mechanisms and increased matings

between closely related individuals. Such effects of fragmentation have been studied in

several species of mammals including some marsupials. For instance, Banks et al.

Page 25: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

General introduction

9

(2005) found evidence of increased relatedness among potential mates and a reduction

in the degree of multiple paternity in Antechinus agilis in fragmented habitats.

The effects of habitat fragmentation on population dynamics depends upon the nature of

the fragmentation and the life history characteristics of the species concerned.

Ecological traits of species such as body size, trophic level, life history strategy, habitat

requirement and type of locomotion are important in predicting their response to habitat

modification and fragmentation (reviewed by Ewers and Didham 2006). Petaurus

species which vary in ecological traits such as body size and habitat requirements, may

respond differently to habitat fragmentation. For instance the Tumut Fragmentation

Experiment (Lindenmayer et al. 1999a) showed that P. australis and P. norfolcensis

were absent in remnants, but P. breviceps was present in both remnant and continuous

forests. The large home range requirement of P. australis and the low density of P.

norfolcensis could be the reasons for their absence from small and fragmented patches.

P. breviceps is known to have the ability to thrive in small patches of forests, in pasture

and road side vegetation where the larger gliders may be absent (Suckling 1982).

However little is known how the species survives in small habitats. There is also limited

knowledge about the important life history components of the species, such as social

structure and mating system and how these are potentially influenced by the effects of

fragmentation.

1.8 Study aims

The overall aim of this study was to use molecular data to increase our knowledge about

the conservation and management of these gliding marsupials. I aimed to do this by

assessing the evolutionary relationships of the members of the genus through

phylogenetic reconstructions and examining genetic variability between and within the

species. I also aimed to assess the level of genetic variability and differentiation among

and within populations of P. breviceps, and investigate the effects of habitat

fragmentation on genetic structure and mating system of the species.

Specifically, this study aimed to

• Provide a phylogenetic reconstruction using a combination of highly

variable mtDNA and nuclear marker sequence datasets as a means of

determining historical relationships among the Petaurus species,

Page 26: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

General introduction

10

• Examine the phylogeographic structure of P. breviceps and explore the

effects of past historical events on the structure of this forest dependent

species,

• Examine the level of population subdivision, heterozygosity and allelic

diversity within and among populations of the sugar glider using nuclear

microsatellites, and explore the effects of fragmentation on genetic

variability and long-term survival of the species in fragmented habitats of

south-eastern South Australia

• Investigate the social structure and genetic mating system of P. breviceps

in the fragmented fragments habitats of South Australia

• Use the results of molecular analyses to guide management for the long-

term conservation of sugar gliders.

Page 27: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

11

2 Molecular systematics of the genus Petaurus (Marsupialia:

Petauridae) in Australia and New Guinea

2.1 Introduction

The glider genus Petaurus (Marsupialia: Petauridae) comprises a group of diverse and

widely distributed arboreal and nocturnal marsupial species. The genus, as currently

recognised, consists of seven species including five known, one uncertain and one

undescribed species. Three species of these gliding marsupials are endemic to Australia,

three species are endemic to New Guinea and one species occurs in both regions

(Flannery 1990; Flannery 1994). Species are distributed along the east coast of

Australia, Tasmania, New Guinea and many smaller islands in Australasia. Australian

species are the yellow-bellied glider P. australis; the squirrel glider P. norfolcensis; and

the mahogany glider P. gracilis (Strahan 1995b) (Fig. 2.1: a-c). The New Guinean

species are the northern glider P. abidi; Biak glider P. biacensis; and an undescribed

species Petaurus sp. (Flannery 1994) (Fig. 2.1: e). The sugar glider, P. breviceps is the

only species that occurs in both Australia and New Guinea (Fig. 2.1: d). Over this

geographical range, the species has adapted to a variety of habitats including sparse

eucalypt woodlands, sclerophyll forests and tropical rainforest in Australia (Strahan

1995b; Goldingay 2000) and savannah woodlands and even in montane rainforests in

New Guinea (Flannery 1994).

The relationships of possum and gliders have been the subject of numerous molecular

studies over the past couple of decades (Kirsch 1977; Baverstock et al. 1990; Colgan

and Flannery 1992; Edwards and Westerman 1995; Kirsch et al. 1997; Osborne and

Christidis 2001; Kavanagh et al. 2004). However, the phylogenetic relationships and

monophyly of species within the genus Petaurus has not been rigorously examined, and

no published molecular study has yet been undertaken to include all known Petaurus

species. Phylogenetic studies using molecular data, such as microcomplement fixation

of albumin (Baverstock et al. 1990), DNA-DNA hybridisation (Edwards and

Westerman 1992) and DNA sequencing (Osborne and Christidis 2001) suggested the

genus is monophyletic; however, this conclusion was based on limited samples of two

of the currently known species. Attempts to describe and classify species and subspecies

in the genus have been primarily on the basis of morphological characters

Page 28: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

12

(e.g. Ziegler 1981; Van Dyck 1993). However there is no published morphological

cladistic analysis for the genus.

The taxonomic status of many named forms within the genus has remained

controversial. Five species are recognized by most workers and of these, only two have

had relatively stable taxonomic histories; P. abidi from the North Coast Ranges of New

Guinea (Flannery 1994) and P. australis with the nominate subspecies in south-eastern

Australia and P. a. reginae (Thomas 1923) in north-eastern Australia. Recently,

however, a molecular sequencing study suggested the subspecies classification of P. a.

reginae from southern Queensland should be discontinued, and the north Queensland

population should be recognized as a distinct Evolutionarily Significant Unit (ESU)

(Brown et al. 2006). Taxonomy within P. norfolcensis also has been subject to

substantial debate. Tate (1945) recognized two subspecies; P. n. norfolcensis from

south-eastern Australia and P. n. gracilis from northern Australia. However, Van Dyck

(1990) provided additional morphological evidence for the distinction of gracilis from

norfolcensis and raised the status of gracilis to species. Although allozyme data were

limited, Colgan and Flannery (1992) also supported the distinctiveness of P. gracilis

from P. norfolcensis. Taxonomy within the widespread P. breviceps is also uncertain.

The species currently consists of seven subspecies, with three subspecies in Australia

and four subspecies in New Guinea (Figure 2.2). The designation of these subspecies is

based on small variations in external morphology such as colour and body size

(Suckling 1983b). Among these subspecies, P. b. biacensis, a common gliding possum

in Biak and Supiori Islands in New Guinea, has also been considered as a distinct

species (P. biacensis) (Ulmer 1940) and P. kohlsi, a synonym (Troughton 1945). The

only molecular study to include representatives from most of these New Guinean

subspecies found evidence of cryptic diversity within P. breviceps (Colgan and

Flannery 1992). The allozyme data also suggested that a population of Petaurus sp,

from the D΄Entrecasteaux island group in south-eastern New Guinea, may be a

subspecies of P. breviceps. Given the morphological and allozyme variability within the

genus and the presence of many isolated populations which have never been fully

studied, additional molecular analyses are warranted to test for the presence of cryptic

species and resolve phylogenetic relationships.

Page 29: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

13

Figure 2.1 Distribution map of the glider species in Australia and New Guinea; a, P.

australis; b, P. norfolcensis; c, P. gracilis; d, P. breviceps and e, New Guinean endemic

species including P. abidi, P. biacensis and Petaurus sp.

Page 30: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

14

All seven species of Petaurus possess a gliding membrane. Although widely distributed

in Australasia, it has been suggested that the group evolved within Australia, because

gliding membranes are an adaptation of living in forest with an incomplete canopy such

as eucalypt forest, but are of limited use in tropical rainforests (Flannery 1994). Archer

(1984) argued that Petaurus, with the ability to glide, did not radiate prior to the

Pliocene because open forests were not widespread before this time. The earliest fossils

of Petaurus in Australia are from the Pliocene Hamilton Local fauna (Flannery et al.

1992) dated at 4.46 ± 0.1 million years (Rich 1991). Molecular dating using DNA-DNA

hybridization dates (Edwards and Westerman 1995) and the NADH dehydrogenase

subunit 2 (ND2) gene sequence data (Osborne and Christadis 2001) also supported a

Pliocene radiation for the genus in Australia. No Petaurus specimen from New Guinea

was present in these studies, therefore, the divergence of New Guinean populations is

not known. Petaurus fossils recovered from deposits at Nombe in New Guinea, were

dated from the Pliocene to mid Holocene (Flannery 1990). Miocene and early Pliocene

divergence times estimated for several New Guinean and Australian groups such as

Dasyuridae (Krajewski et al. 2000), Dasyuridae, Pseudocheiridae and Macropodidae

(Kirsch and Springer 1993) and Phalangeridae (Osborne and Christidis 2002), suggest

other intermediate activities such as extensive tectonic activities and climatic changes

may have affected the diversification of species in the region. Widely distributed

species, such as gliders, can be useful for testing hypotheses about the evolutionary

history of the region.

The current study used a combination of mitochondrial DNA and a nuclear marker to

investigate phylogenetic relationships and the evolution of Petaurus species in Australia

and New Guinea. In particular the study aimed to (i) test the monophyly of the genus

Petaurus, (ii) elucidate systematic relationships within Petaurus at the species and

subspecies levels, and (iii) test hypotheses about the evolutionary history of the region

and the evolution of the group.

Page 31: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

NOTE: This figure is included on page 102 in the print copy of the thesis held in the University of Adelaide Library.

Figure 2.2 Current distribution of subspecies of P. breviceps in Australia and New Guinea. Each number represents one subspecies: 1, P. b. breviceps; 2, P. b. longicaudatus; 3, P. b. ariel; 4, P. b. flavidus; 5, P. b. papuanus; 6, P. b. tafa; 7, P. b. biacensis. The map has been modified from Smith (1973). 2.2 Material and methods 2.2.1 Taxa sampling Samples were obtained from representatives of all known species, subspecies and

most geographically isolated populations of Petaurus species in Australia, New

Guinea and its surrounding islands, with the exception of P. biacensis (Appendix 1).

Most of the tissue samples used were either frozen or ethanol preserved museum

specimens obtained from museum collections within Australia. Live trapping was also

conducted on targeted populations of P. australis and P. breviceps (see Chapter three

for details of sampling techniques). Samples were limited in some areas due to the

difficulty of trapping gliders in tall eucalypt forests, the nocturnal nature of the

species and low population densities. Furthermore, specimens suitable for DNA

analysis were poorly represented in museum collections within Australia.

15

Page 32: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

16

2.2.2 Genetic analyses

Osborne and Christidis (2001) used the ND2 gene on representative members of the

family Petauridae, which provides a background of data to assess species boundaries

using phylogenetic methods. Other mitochondrial genes have also been used in the

study of phylogeny and population structure of glider species (such as the NADH

dehydrogenase subunit 4 (ND4) gene; Brown et al. 2006). Here, to enhance the

resolving power of mtDNA and also to provide comparative data with the other studies,

both ND2 and ND4 gene fragments were sequenced. In addition, to further improve the

resolution and to assess the congruence among independent lineages one nuclear

marker, the ω-globin gene was included. The ω-globin gene is a member of the β-globin

gene family of marsupials, but resides on a different chromosome from other β-like

globin genes, and has, therefore, not been affected by recent gene conversion events that

can obscure phylogenetic relationships (Wheeler et al. 2004; Cooper et al. 2005;

Cooper et al. 2006). The selected fragment of the ω-globin gene was primarily the

second intron of the gene, amplified by primers that annealed to conserved regions of

the second and third exons of the gene. Selective constraints on introns are relaxed

relative to exons of protein coding genes, resulting in relatively high variability (e.g.

Palumbi and Baker 1994). Introns are being used increasingly to supplement sequence

data from mtDNA in phylogenetic analyses (Moore 1995; Friesen et al. 1997; Moore

1997; Giannasi et al. 2001; Pacheco et al. 2002; Prychitko and Moore 2003) and might

be especially useful for testing phylogenetic hypotheses derived from mtDNA analyses.

2.2.3 Choice of outgroups

Outgroup sequences used for rooting phylogenetic trees must be ancestral to all other

taxa in the tree while at the same time being as closely related as possible to the

ingroups. Petaurus species are members of the family Petauridae, along with the

Leadbeater’s possum (Gymnobelideus leadbeateri) and four species of striped possums

(Dactylopsila)(Groves 2005). Support for monophyly of Petaurus and Gymnobelideus

to the exclusion of other groups came from serological data (Kirsch and Calaby 1976),

morphological (Alpin and Archer 1987) and chromosomal (McKay 1984) characters.

Phylogenetic analyses of the ND2 gene (Osborne and Christidis 2001) showed that

Gymnobelideus was more closely related to Dactylopsila- Dactylonax than to Petaurus.

These associations, however, lacked strong support. Although the closest family to

Page 33: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

17

Petauridae is Pseudocheiridae (Groves 2005), evidence for the sister relationship of

Pseudocheiridae to Petauridae is not strong (Osborne and Christidis 2001). Due to these

uncertainties in the phylogenetic relationships of these families, a single ND2 sequence

of Trichosurus vulpecula from the family Phalangeridae, (GenBank accession number;

AF300999) was used as an outgroup to test the monophyly of Petaurus. The outgroup

status of this species was supported by molecular phylogenetic analyses of

Diprotodontia (Osborne et al. 2002; Kavanagh et al. 2004). Sequences of representative

species of other genera in the family Petauridae and Pseudocheiridae (GenBank

accession numbers; AF300992- AF300998) were also included in the analysis. Base on

this broad phygeny, other outgroups were selected to examine phylogenetic

relationships of more closely related species or inter-specific diversity of a specific

species. ω-globin sequence data was also obtained from one specimen of Petauroides

volans from New South Wales sourced from the Australian Biological Tissue Collection

(ABTC) at the South Australian Museum (see Appendix 1 for details) and used as an

outgroup in phylogenetic analyses of Petaurus species.

2.2.4 DNA isolation, PCR- amplification and sequencing

Genomic DNA was extracted from frozen tissues or 70% ethanol preserved samples,

using the Gentra DNA Extraction Kit following the manufacture’s procedures.

A 700 bp fragment of the ND2 gene was amplified using mmND2.1 and mrND2c

primers as described in Osborne and Christidis (2001). PCR amplification of about 900

bp of ND4 and 700bp of the ω-globin gene was carried out using the primer

combinations given in Table 2.1. PCR-amplification protocols for these markers were

originally presented in Arevalo et al. (1994) and Wheeler et al. (2001). However, they

were optimized for the current species as follows. PCR-amplifications were carried out

in a final volume of 25 µl with approximately 100 ng genomic DNA, 1x PCR buffer

(Applied Biosystems) 0.20 mM dNTPs, 2.5mM MgCl2, 2 pmol of the corresponding

primers (Table 2.1) and 0.1U AmpliTaq Gold (Applied Biosystems). Thermocycling

was performed in a Corbett research thermocycler using an initial denaturation cycle of

95 °C for 9 min, 35 cycles of denaturation at 94°C for 45 s, annealing at 56°C (ND2)

and 60°C (ω-globin gene) for 45 s; extension at 72°C, 45 s, followed by a final

extension at 72°C for 10 min. PCR products were purified using Ultraclean PCR

cleanup columns (MoBio Labs) and sequenced on an automated DNA sequencer (ABI-

Page 34: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

18

3700, Applied Biosystems) using the BigDye Terminator Cycle Sequencing Kit version

3.1 (Applied Biosystems) following the manufacture’s procedures.

Table 2.1 Primer name, Source and nucleotide sequences used for amplification and

sequencing of the ND2, ND4 and the ωωωω-globin gene

Gene Primer

Name Source Sequence (5′ to 3′)

ND2 mmND2.1

mrND2c

Osborne and

Christadis

(2001)

GCACCATTCCACTTYTGAGT

GATTTGCGTTCGAATGTAGCAAG

ND4 mt10812H

mt11769L

Arevalo et al.

(1994)

TGACTACCAAAAGCTCATGTAGAAGC

TTTTACTTGGATTTGCACCA

ωωωω-globin gene G314

G424

(Wheeler et al.

2001)

GGAATCATGGCAAGAAGGTG

CCGGAGGTGTTYAGTGGTATTTTC

2.2.5 Sequence analysis

Raw sequences were edited using BioEdit (version 7.0.5.2), aligned using Clustal X

version 1.83 (Thomson et al 1997) and checked visually. Before phylogenetic analyses

were conducted, factors that are known to affect such analyses such as nucleotide

composition and transition and transversion ratios were considered using MEGA

(Molecular Evolutionary Genetic Analyses) (Kumar et al. 2004). DnaSP version 4.1

(Rozas et al. 2003) was used to determine the number of haplotypes, nucleotide

diversity, and the number of polymorphic and parsimony informative sites. The

program PHASE version 2.1 (Stephens et al. 2001) also was used on the ω-globin gene

dataset to resolve sequence ambiguities at the heterozygous sites. PHASE implements a

Bayesian statistical method to reconstruct haplotypes from genotyping data. Single

nucleotide polymorphisms (SNPs) of all individuals at polymorphic sites were obtained

and the program was run with the default values. The hypothesis that all mutations are

selectively neutral (Kimura 1983) was tested using Tajima’s test as implemented in

DnaSP version 4.1 (Rozas et al. 2003) based on the total number of mutations and

including gaps. Intra-specific sequence divergence among haplotypes was estimated

using the HKY-85 (Hasegawa et al. 1985) model which was selected by Modeltest (see

below for details) and implemented in PAUP* (Swofford 2002).

Page 35: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

19

2.2.6 Phylogenetic analyses

The phylogenetic methods used to analyse both mtDNA and the nuclear marker data

sets were implemented in PAUP*, version 4.0 b10 (Swofford 2002) and MrBayes,

version 3.1 (Huelsenbeck and Ronquist 2005).

Different reconstruction methods were used to derive phylogenies as this allows the

consistency of phylogenetic estimations to be evaluated. Maximum parsimony (MP)

analyses were conducted on all three genes separately and on the combined ND2 and

ND4 sequence data, using the heuristic search algorithm with tree-bisection-

reconnection (TBR) branch swapping, stepwise addition starting tree, and random

addition sequence with 100 replicates. Character-state optimization for MP trees used

the DELTRAN option, as there is a bug in PAUP* version 4.0b10 in the default

ACCTRAN option that leads to erroneous branch lengths in output trees. Each base was

treated as an unordered character with equal weight. Gaps were treated as missing data

in mtDNA and as fifth base in the nuclear marker. Consensus trees (50% majority rule)

were compared if more than one equally parsimonious tree was found. The reliability of

MP trees was tested by the bootstrap approach (Felsenstein 1985) with 1000

pseudoreplicates.

Modeltest version 3.9 (Posada and Crandall 1998) was used to determine the best fit

model of nucleotide substitution for all three genes. Within these genes, five data

partitions were identified including four coding regions (mitochondrial: ND2, ND4 and

nuclear: Exon 2 and Exon 3) and a single non-coding partition (Intron 2). The PAUP*

block provided with Modeltest was used to compare different models of DNA

substitutions. The best model was chosen under the Akaike Information Criterion

(AIC). AIC was preferred over the traditional model selection using hLRT because it

has several advantages. Among the pitfalls of hLRT are the (1) need for an arbitrary

choice between sequential addition/removal of parameters, (2) election of parameter

addition/removal order, and (3) inability to address model selection uncertainty

(Sanderson and Kim 2000; Pol 2004; Posada and Buckley 2004). The AIC, as well as

some Bayesian approaches (e.g. Bayes factors), avoid these problems because they (1)

compare multiple nested and non-nested models simultaneously, (2) account for model

selection uncertainty, and (3) permit model-averaged inference (Pol 2004; Posada and

Buckley 2004) Parameters such as base frequencies, the shape parameter of the gamma

Page 36: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

20

distribution of rates among sites (Yang et al. 1994; Yang 1996) and the proportion of

invariable sites (I) were estimated in conjunction with the models. The chosen models

were subsequently used in pairwise distance and Bayesian phylogenetic analyses.

The Bayesian phylogenetic analyses were carried out separately on ω-globin, a

combined ND2 and ND4 dataset, and a combined dataset of all three genes, using a

partitioned mixed-model in MrBayes (Huelsenbeck and Ronquist 2005). The optimal

models of sequence evolution determined for each data partition (Table 2.2) were used

with the APPLYTO command and appropriate model parameter values estimated for

each data partition using the UNLINK command. A binary model was used to identify

the presence (1) and absence (0) of indels in the nuclear marker. The program was run

for four chains simultaneously in each analysis and the analysis was repeated three

separate times. Each MRBAYES search was run with 1.5 million generations. After this

number of generations the standard deviation of split frequencies had reduced to less

than 1%, confirming that a good sample of the posterior distribution had been obtained.

The likelihood values converged to relatively stationary values after about 5,000

generations. A burn-in of 100 trees (equivalent to 10,000 generations) was chosen with

a > 50% posterior probability consensus tree constructed from the remaining 14,901

trees.

2.2.7 Molecular clock and divergence time estimates

A substitution rate of 1% per million years for protein-coding mitochondrial DNA was

originally derived from studies of various metazoan groups (Brown et al. 1979) and has

been supported by a number of comparable estimates from subsequent studies (e.g.

Randi 1996; Fleischer et al. 1998). This rate has been used for estimating divergence

times for mammalian species including some marsupials (e.g. Krajewski et al. 1997).

Evolutionary rates and divergence times were estimated using a Bayesian interface in

BEAST, version 1.4 (Drummond and Rambaut 2006). Unlike many other methods of

molecular dating (reviewed in Rutschmann 2006) BEAST is able to directly calculate

ultrametric phylogenies based only on sequence data and model parameters, a procedure

that also allows incorporation of branch length errors and topological uncertainties

(Drummond et al. 2006).

Page 37: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

21

Table 2.2 Summary of nucleotide substitution models selected for data partitioning using

the Akaike Information Criterion in Modeltest version 3.9.

Data Partition DNA substitution

model

No. substitution

types Invariant sites

Substitution

rates

Mitochondrial

genes

ND2 HKY 2 Yes Gamma

distributed

ND4 HKY 2 Yes Gamma

distributed

Nuclear marker

Exon2 K81 6 No Equal

Exon3 K81 6 No Equal

Intron2 HKY 2 Yes Equal

A NEXUS file containing sequence data of ND2 and ND4 was used in BEAUti (a

program provided with BEAST) to generate an XML input file to run BEAST. To

investigate the behaviour of rates throughout the tree, Bayesian inference was

performed under a relaxed clock model with branch-specific rates following a

lognormal distribution. Posterior estimates were obtained by sampling every 1000

MCMC steps from a total of 5,000,000 steps. The coefficient of variation of rates and

the rate of covariance were obtained to investigate the departure from a molecular clock

and the rate of autocorrelation among adjacent branches in the tree.

The combined mtDNA dataset was analysed under a relaxed molecular clock and

Uncorrelated Lognormal (UCLN) model. The HKY model of nucleotide substitution

was used with invariant gamma rate heterogeneity among sites. A constant population

coalescent was assumed (Drummond et al. 2002). Monophyly was enforced for the

clades only when the ages of Most Recent Common Ancestors (MRCAs) were being

estimated; otherwise, no restrictions were placed on the topology. Rates were fixed at

0.01 average substitution rates per site per time unit (million years) throughout the tree.

Two independent MCMC chains were run for 5 ×106

generations with sampling every

1000 generations with the default 10 % burn-in of the posterior samples. The

convergence of the chain to a satisfactory distribution was confirmed by inspection of

the MCMC samples using the program Tracer 1.3 (Rambaut and Drummond 2003).

This application analyses posterior samples of continuous parameters from Bayesian

MCMCs to allow visual inspection of the chain behaviour, estimation of the effective

sample size of parameters and the plotting of marginal posterior densities. The effective

Page 38: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

22

sample size is the number of independent samples that would be equivalent to the

autocorrelated samples produced by the MCMC. This provides a measure of whether

the chain has been run for an adequate length (for example, if the effective sample sizes

of sampled parameters were greater than 100).

2.3 Results

2.3.1 Sequence analyses

2.3.1.1 Mitochondrial regions

Sequences for 1393 bp of mitochondrial genes (695 bp of ND2 and 698 bp of ND4)

were obtained for 57 individuals of Petaurus species. A total of 530 variable sites and

492 parsimony informative sites were observed for Petaurus sequences. A total of 47

haplotypes was observed for the mtDNA of Petaurus species, with 36 in P. breviceps (n

= 46), four in P. australis (n = 4), three in P. norfolcensis (n = 3), two in P. abidi (n = 3)

and one in P. gracilis (n = 1). On average, the mtDNA sequence was found to be A-T

rich (A = 35%, T = 30%, C = 24%, G = 9%). The transition: transversion ratios ranged

from 0.2-0.8. On average, transitions were more frequent than transversions (104 vs. 38)

with a majority of changes between C and T (78). Transversions were more common

between T and A (9) and rare between A and C (1). Details of sequence analyses for the

genes are summarised in Table 2.3.

Both ND4 and ND2 sequences had open reading frames in all sequences, suggesting

they are functional genes and unlikely to be nuclear copies of mtDNA. No evidence for

double PCR-amplification peaks and ambiguities in the sequence data was found to

suggest the presence of nuclear copies in the mtDNA data set. The combined ND2 and

ND4 sequence alignment for Petaurus samples used in this study is given in Appendix

2.

Sequence divergence values obtained by applying the HKY+I+G model to the mtDNA

dataset (Proportion of invariable sites = 0.49, gamma distribution with shape parameter

= 2.4) ranged from 2.2% to 45.5% between species. The minimum value was observed

between P. norfolcensis and P. gracilis (1.8 to 2.2%) and the maximum was between

P. australis and P. breviceps 35% to 45.2% (Table 2.4). Sequence divergence within

species ranged from 0.07% to 2%, with the exception of P. breviceps with divergence

Page 39: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

23

values ranging from 0.2 to 16% (see below). Tajima’s test could not reject the

hypothesis that all mutations are selectively neutral (D = 0.099, not significant, P = 0.1).

2.3.1.2 Nuclear marker

Sequences of a fragment of the ω-globin gene were obtained for 50 individuals of

Petaurus species. The sequenced fragment was aligned and phylogenetically analysed

with the published sequences of selected marsupials (Wheeler et al. 2001) to confirm

the orthology of the amplified fragment (data not shown). The fragment was 705 bp in

length consisting of 167 bp of coding sequence (Exon2 and Exon3) and 529 bp of non-

coding sequence (Intron2). The ω-globin sequence alignment for Petaurus samples is

given in Appendix 3. The sequence was highly conserved over the different species of

Petaurus. A total of 11 haplotypes was observed within the Petaurus species and

haplotype diversity was 0.66 ± 0.006 (Table 2.3). Nucleotide composition analysis

showed almost equality of nucleotide frequencies (T=27% C=28% A=24% G=21%) in

the sequence. Overall, 29 polymorphic sites and 22 parsimony informative sites were

found. Six deletions (indels), located in the intron, were found over the Petaurus

sequences with the largest being 7 bp in length. Tajima’s test could not reject the

hypothesis that all mutations are selectively neutral (D = -1.23, not significant, P = 0.1).

Table 2.3 Comparison of sequence statistics for all three genes used in the study.

Gene ND2 ND4 ωωωω-globin gene

Fragment length 695 698 705

Polymorphic sites 279 251 29

Parsimony informative sites 261 233 24

Total number of mutations 330 290 29

Number of haplotypes (h) 45 30 11

Haplotype diversity (Hd) 0.99 0.97 0.70

Nucleotide diversity (pi) 0.1 0.1 0.006

Table 2.4 the range of MtDNA (combined ND2 and ND4) sequence divergence between

Petaurus species calculated using the HKY+I+G model in PAUP*.

Taxa 1 2 3 4 5

P. abidi - 20.6- 25.2 22.8-24.4 23.2-23.4 37.1-39.6

P. breviceps - 10.3-16.7 11.1-14.2 35.3-45.2

P. norfolcensis - 1.8-2.2 40-40.8

P. gracilis - 40.2-43.5

P. australis -

Page 40: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

24

2.3.2 Phylogenetic analyses

2.3.2.1 Mitochondrial gene analyses

The monophyly of the genus Petaurus was supported by phylogenetic analyses of ND2

in comparison with representatives of other genera of gliders (Fig. 2.3). Both Bayesian

and MP trees supported this monophyletic clade with high Bayesian posterior

probabilities (1.00) and bootstrap values (97%). These analyses also revealed a strong

sister group relationship (99% bootstrap value and Bayesian posterior probability of 1)

between the yellow-bellied glider (P. australis) and a second group consisting of all

other Petaurus species. This sister relationship was also confirmed by phylogenetic

analyses of the ω-globin gene, using Petauroides volans as an outgroup (data not

shown). Consequently, in the further analyses of phylogenetic relationships among

species of Petaurus, P. australis was used as an outgroup.

MP and Bayesian analyses of the combined mitochondrial dataset produced trees with a

similar topology in which two species of Petaurus (P. abidi and P. norfolcensis) were

each represented by divergent mtDNA clades. P. norfolcensis samples grouped closely

with P. gracilis with a high bootstrap and posterior probability (Fig. 2.3 and 2.4).

Considerable mtDNA diversity was also identified within the species P. breviceps. The

existence of at least seven distinct and divergent (7 to 17.5% sequence divergence)

mtDNA lineages was strongly supported, with two lineages located in Australia and five

lineages in New Guinea and its surrounding islands (see below). The currently

recognized subspecies of P. breviceps from the Northern Territory (NT) grouped

closely with P. norfolcensis with high bootstrap and posterior probability support

values, to the exclusion of P. breviceps (Fig. 2.3 and 2.4). Samples from Normanby

Island (currently known as Petaurus sp) were grouped within New Guinean lineages of

P. breviceps (see below).

The first Australian clade of P. breviceps (Aus1) included populations from South

Australia, Victoria and north Queensland. The second clade (Aus2) consisted of

populations from New South Wales and south eastern Queensland (Fig. 2.5).

In New Guinea at least five monophyletic groups were found, with the majority of

populations resolved into two clades. In the first clade (NG1), populations of Bundi and

Gali in eastern PNG were grouped together with populations from Sol- River and

Page 41: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

25

Ofektaman in western PNG. A single sample from Irian Jaya was a sister clade to this

group. In the second clade (NG2), Waro and Namasado populations in southern-central

PNG were grouped together with a second group including Noru and Yoru in eastern-

central PNG. The samples from Karkar Island (an adjacent island in northern PNG) and

Tifalmin (western PNG) formed another clade within NG2. The third clade (NG3)

consisted of samples from Mt Sulen and Wigotei in northern PNG. Samples from

Normanby Island, an island adjacent to PNG, formed a fourth clade (NG4). Finally, the

fifth clade (NG5) of P. breviceps lineages represented Kai Besar Island (of Indonesia)

populations (see Figure 2.5).

The sequence divergence within P. breviceps (as obtained using the HKY85+I+G

model) is summarised in Table 2.5. Sequence divergence between two distinct

Australian clades averaged 11% (10.2 to 11.25). For New Guinean lineages the

minimum divergence (7%) was found between NG2 and NG5 and a maximum of 11 to

13% between NG3 and NG5. The sequence divergence between Australian and New

Guinean lineages ranged from (11 to 17.5%). It is notable that the sequence diversity

among NG lineages is almost as high as the diversity between Australian and New

Guinean populations and several times higher than the diversity found within other

glider species.

2.3.2.2 Nuclear gene analyses

Bayesian and parsimonious trees obtained from the ω-globin gene data had similar

topologies in which P. abidi and P. australis were distinct lineages and P. abidi formed

a sister lineage relationship with a clade containing all other species of Petaurus. In the

partitioned Bayesian tree obtained from ω-globin gene data with P. australis used as an

outgroup, individuals from the second Australian mtDNA clade (Aus2) formed a

distinctive ω-globin clade supported by 85% of bootstrap pseudoreplicates and a

Bayesian posterior probability value of 1.00 (Fig. 2.6). There were, however, a number

of specimens from the Aus2 mtDNA clade (e.g. 85533 and 85530) that grouped with

taxa from the Aus1 mtDNA clade in the ω-globin phylogeny (further analyses and

discussion of these Australian clades are presented in Chapter three).

Due to the low variation of the ω-globin marker, the phylogenetic relationships

between the other three species (P. breviceps, P. norfolcensis and P. gracilis) were

unresolved, with each of the species sharing a number of haplotypes.

Page 42: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

26

46098 NG Namosado

46200 NG Namosado

44768 NG Waro

45397NG Namosado

45398 NG Namosado

M19975 NG Tifalmin

M19968 NG Tifalmin

49347 NG Karkar Is

49349 NG Karkar Is

43395 NG Noru

43193 NG Yuro

43552 NG Noru

43100 NG Yuro

43068 NG Yuro

43069 NG Yuro

M42482 Kai Is

M42672 Kai Is

M20223 Noramby Is

M16002 NG Wigote

44206 NG Mt.sulen

49310 NG Bundi

49016 NG Gali

49311 NG Bundi

M30682 Irian.Jaya

47131 NG Solriver

43650 NG Ofekaman

47133 NG Solriver

47134 NG Solriver

85530 P. breviceps NSW

85524 P. breviceps NSW

80833 P. breviceps QLD

80835 P. breviceps QLD

27102 P. breviceps SA

Ren7 P. breviceps Vic

27042 P. norfolcensis SA

190 P. norfolcensis NSW

19 P. norfolcensis Vic

P. gracilis QLD

U433 NT

U434 NT

U5370 NT

29964NT Melvill.IS

M21350 P. abidi

M19216 P. abidi

M27670 P. abidi

B336 P. australis

D3609 P. australis

R9 P. australis

R10 P.australis

Petauroides volans

Pseudocheirus peregrinus

Gymnobelideus leadbeateri

Dactylopsila trivirgata

Dactylopsila palpator

Trichosurus vulpecula

100

99

99

99

69

100

92

96

88

45

83

87

92

94

100

92

75

75

17

26

99

80

97

67

100

53

99

93

62

62

33

50

85

98

70

100

65

94

71

99

92

59

68

72

97

99

99

99

97

20

Figure 2.3 Phylogenetic relationships of Petaurus species in comparison with the

representatives from other genera of Petauridae (Gymnobelideus and Dactylopsila) and

Pseudocheiridae (Petauroides and Pseudocheirus), using Maximum Parsimony analyses of

ND2 sequence data. The outgroup used to root the phylogeny was Trichosurus vulpecula.

Numbers at nodes are bootstrap values. P. breviceps samples from New Guinean region

are shown with the locations of samples. U433-434 NT, U5370 NT and 29964 NT are P.

breviceps samples from Northern Territory.

Page 43: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

27

44768PNG Waro

46098PNG Namosado

46200PNG Namosado

45397PNG Namosado

45398PNG Namosado

M19975 Tifalmin

M19968 Tifalmin

49347PNG Karkar Is

49349PNG Karkar Is

43395PNG Noru

43193PNG Yuro

43552PNG Noru

43100PNG Yuro

43068PNG Yuro

43069PNG Yuro

M42882 kai.Is

M42672 kai.Is

M20223 Normanby Is

M20224 Normanby Is

M16002 Wigote

44206 NG Mt.sulen

M30682 Irian.jaya

49310PNG Bundi

49016Gali

49311PNG Bundi

47131PNG Solriver

43650PNG Ofekaman

47133PNG Solriver

47134PNG Solriver

85533 P.breviceps NSW

85524 P.breviceps NSW

85531 P.breviceps NSW

85534 P.breviceps NSW

16138 P.breviceps QLD

85530 P.breviceps NSW

80833 P.breviceps QLD

80835 P.breviceps QLD

16137 P.breviceps QLD

P.brevicep 27086 SA

81258 P.breviceps SA

27102 P.breviceps SA

81225 P.breviceps SA

Ren5 P.breviceps Vic

Euroa.M5 P.breviceps Vic

CandlP Vic

29964NT Melvill Is

P.gracilis QLD

85528 P.norfolcensis NSW

27042 P.norfolcensis SA

27085 P.norfolcensis SA

M21350 P.abidi

M19216 P.abidi

M27670 P.abidi

B336 P.australis

D3609 P.australis

R9 P.australis

R10 P.australis

100

95

100

100

67

97

91

99

99

84

99

87

99

87

94

80

100

84

86

81

36

95

89

99

72

100

94

93

82

95

91

100

73

87

95

84

46

39

100

78

86

27

97

100

98

59

100

100

20

Figure 2.4 Phylogeny of the genus Petaurus based on combined mitochondrial ND2 and

ND4 genes, using maximum parsimony (MP) implemented in PAUP*. P. australis was

used as an outgroup. Numbers on the nodes are bootstrap values. Only one NT sample

(29964NT) was included in this phylogeny

Page 44: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

28

As a combination of two or more types of markers can provide a more powerful

approach to phylogenetic analyses than single marker analysis (Hillis et al. 1996),

phylogenetic analyses were carried out using the combined data set from all three genes.

A Bayesian tree derived from a partition analysis gave similar groupings of taxa to that

of the combined mitochondrial tree (Fig. 2.7). Similar to the mtDNA tree, divergent

clades were associated with the current known species of Petaurus and seven divergent

lineages were found within P. breviceps. However, the populations of Bundi, Gali, Sol-

River and Ofektaman (NG1) and Wigotte and Mt Sulen (NG3) formed two

monophyletic clades to the exclusion of other clades.

Table 2.5 Mitochondrial DNA sequence divergence (combined ND2 and ND4 genes)

between P. breviceps clades calculated using the HKY+I+G model in PAUP*. Aus

represents Australia and NG represents New Guinea. Populations associated with each

clade are described in the text and their distributions are shown in Fig. 2.5.

2.3.3 Molecular clock and divergence time estimates

The Program BEAST (Drummond and Rambaut 2006) was used to assess the behaviour

of rates throughout the tree. The coefficient of variation of rates was found to be 0.11

(95% highest posterior density (HPD) 2 ×10 -4

– 0.258), suggesting only a limited

departure from a molecular clock. The rate of covariance was -0.006 (95% HPD -0.15

to 0.13), indicating a low amount of rate autocorrelation among adjacent branches in the

tree.

The times of the Most Recent Common Ancestor (MRCA) of three internal nodes (N1-

N3) were obtained (see Fig. 2.5 and Table 2.6). The divergence time for the two

Australian clades (N1) was averaged at about 4.8 mya. The date of divergence between

Australia and New Guinea (N2) was estimated at about 5-7 mya and the split of New

Guinean lineages was aged at about 4.5 mya. These dates were used to investigate the

evolution of the species in Australia and New Guinea.

Clade Aus1 Aus2 NG1 NG2 NG3 NG4 NG5

Aus1 - 10.2- 11.5 13.7- 15.2 11- 17.5 13.9- 14.9 12.5- 13.5 12.6- 13.2

Aus2 - 15.3- 16 15.2- 16.5 16.7- 17.5 14.6- 15 15.4- 16.8

NG1 - 10.5- 12.4 9.2- 9.5 9.5- 10.5 10.3- 11.1

NG2 - 10.9- 12.4 9.3- 10.1 7- 7.5

NG3 - 10.3- 11.9 11.1- 13

NG4 - 10.3- 10.5

NG5 -

Page 45: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

29

Table 2.6 The estimated age of the Most Recent Common Ancestor already defined of P.

breviceps lineages in Australia and New Guinea using the program BEAST (Drummond

and Rambaut 2006). These estimates are based on a relaxed molecular clock with a rate of

0.01 per site per million years.

Clades being dated Mean 95% Credibility interval

lower upper

Million years (mya)

Aus1 and Aus2 (N1) 4.77 3.2 6.6

New Guinean split (N3) 4.5 3.7 5.9

Australia and New Guinea (N2) 5.8 5.2 6.5

Figure 2.5 Distribution map of the mitochondrial lineages within P. breviceps in Australia

and New Guinea. Circles are the location of samples used in this study. N1-N3 denote

internal nodes of interest.

Page 46: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

30

Figure 2.6 50% posterior probability Bayesian consensus tree generated from 14901 trees

sampled in two independent runs of MRBAYES. ω-globin gene tree inferred using a

partitioned mixed-model in MrBayes. Branch lengths are given above each branch.

Numbers in the parentheses are Bayesian posterior probabilities. Sample codes for each

specimen are given in Appendix 1

Page 47: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

31

Figure 2.7 50% posterior probability Bayesian consensus tree using all three genes (ND2,

ND4 and ω-globin gene) with model partitioning, implemented in MRBAYES. Numbers

on the nodes are Bayesian posterior probabilities.

2.4 Discussion

2.4.1 Phylogenetic relationships

Monophyly of the genus Petaurus was strongly supported by phylogenetic analyses of

the ND2 sequence data. The analyses revealed that currently recognised species of

Petaurus, with the exception of P. gracilis, were each associated with divergent mtDNA

clades. This finding is consistent with the results of allozymes (Colgan and Flannery

1992) in which P. breviceps, P. norfolcensis and P. abidi were recognised as distinct

species. Although the allozyme data from the earlier study revealed three fixed

1.00

0.96

0.96

0.96

1.00

1.00

1.00

0.96

1.00

1.00

1.00

1.00

1.00

1.00

Page 48: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

32

differences between P. norfolcensis and P. gracilis, suggesting distinction of both

species, the divergence of these two species based on mtDNA data obtained here was

very low (~2.2%), and similar to the level found within other species of Petaurus (e.g.

Brown et al. 2006). P. australis was found to be the sister lineage of all other Petaurus

species, with P. abidi being the sister lineage to a monophyletic group containing P.

norfolcensis/ P. gracilis and P. breviceps populations from Australia and New Guinea.

P. breviceps was also associated with considerable mtDNA diversity; two divergent

lineages (10.2-11.5% sequence divergence) were found within Australia (see Chapter

three for further discussion) and at least five in New Guinea.

The five divergent mtDNA clades from the New Guinean region formed a

monophyletic group to the exclusion of the Australian lineages. Allozyme analyses also

revealed that the New Guinean samples could be distinguished electrophoretically from

Australian samples (Colgan and Flannery 1992). Although the distribution of samples

used in this study was similar to that of Colgan and Flannery (1992), the grouping of

populations was not always consistent with the clustering obtained by allozymes.

Similar to the mtDNA results, Waro, Namosado and Yuro were clustered together

because of their possession of a common allele at the GA-3-PHD 2 (Glyceradehyde-3-

phosphate dehydrogenase) locus. However, Noru did not have that allele and clustered

with Gali, Sol-River and Bundi (NG2). Also similar to the mtDNA results, Tifalmin and

Karkar Island formed a cluster, mainly due to their sharing of the GPI 1 (Glucose-

phosphate isomerase) allele and high frequencies of the EST-1 1 (Esterase) and EST-2 5

alleles. However unlike the mtDNA results, Wigotte grouped with Ofekaman and

Normanby Island with Gali, Sol-River and Bundi (NG2).

Another notable feature of the Petaurus phylogeny obtained here was that the Northern

Territory subspecies of P. breviceps was grouped within the P. norfolcensis clade.

Three explanations are possible. First, glider samples from the NT have been

misidentified and may represent new populations of P. norfolcensis. Second, it might be

due to the stochastic process of lineage sorting and retention of an ancestral haplotype

by P. breviceps in the NT. Third, it is possible that there may have been introgression

between P. breviceps and P. norfolcensis species in the wild. The two taxa are known to

interbreed in captivity, producing fertile offspring, but there is no previous evidence to

date of hybridization in the wild (Suckling 1983a). Hybridization and mtDNA

introgression are phenomena that can leave traces of ancient history of the

Page 49: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

33

mitochondria, introducing errors in phylogenies. Reports of such introgression are

accumulating in the literature. Examples in mammals include pocket gophers (Ruedi et

al. 1997), deer (Goodman et al. 1999) and elephants (Roca et al. 2005). Due to low

variation within the ω-globin gene, these data were not able to provide additional

information on the possibility of hybridization between P. norfolcensis and P.

breviceps. Therefore, data from more divergent nuclear markers are required to further

investigate the possibility of hybridization between these two species.

The mtDNA sequence data supported the distinction of the four currently described

species of Petaurus including P. australis, P. abidi, P. norfolcensis and P. breviceps.

The distinction of P. gracilis has been supported by morphometric analyses (Van Dyck

1993) and limited allozyme data (Colgan and Flannery 1992). Although phylogenetic

analyses of the ω-globin data provided additional support to the distinctiveness of P.

abidi and P. australis, it did not help to resolve the relationships of the other three

species.

Glider samples from Normanby Island, currently known as Petaurus sp. (Flannery

1994) formed a single clade (NG4) that was distinct (> 9.3% mtDNA divergence) from

all the other New Guinean clades, supporting the long term isolation and potential

separate species status of this population. These animals are morphologically

distinguished from other populations by their narrow skulls, larger body size and colour

(Flannery 1994). One unusual characteristic of these animals is that they have two

distinct colour morphs, one light grey and the other greenish-grey (Flannery 1994).

Although several other marsupials exhibit two colour morphs, such as the eastern quoll

(Dasyurus viverrinus), the significance of these morphs is not well understood. Due to

the lack of samples, this study was not able to consider the phylogenetic relationships of

the New Guinean P. biacensis.

There was a notable geographic structuring within P. breviceps. In Australia, two

divergent clades were found, however, the geographical distribution of these two

apparent lineages does not conform to the currently accepted morphotaxonomic division

of P. breviceps at the subspecies level (Fig. 2.2). The current classification of the

species does not reflect the major genetic subdivisions found within P. breviceps in this

study, and may therefore be inappropriate for any future conservation and management

to maintain genetic diversity within the species. Further consideration of the

Page 50: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

34

phylogeographic structure and subspecific status of P. breviceps populations in

Australia is presented in Chapter three.

Similarly, the distribution of lineages found in New Guinean region does not correspond

with the current accepted morphological subspecies. Clade NG1 of P. breviceps

contains populations from the northern part of Papua New Guinea (Gali and Bundi),

Ofekaman, Solriver (western PNG) and Irian Jaya. This clade also does not correspond

to one of the current subspecies. Gali and Bundi are in the range of P. b. papuanus but

grouped with populations outside the supposed range of P. b. papuanus, such as

Ofekaman and Solriver (Fig. 2.8). Clade NG3 (Wigotie and Mt Sulen population) is

within the range of P. b. papuanus, although the type locality of this taxon is Huon Gulf

(Morobe Province, eastern PNG) (Fig. 2.8).

Likewise, the New Guinea clade NG2 (containing populations from southern-central

PNG and Karkar Island) could not be assigned to P. b. flavidus, as the distribution of

morphological subspecies suggests. The type locality of P. b. flavidus is from south-

western Papua New Guinea (River Oriomo; Tate and Archbold 1935), far distant from

and ecologically quite different (Flannery 1994) to the area where the samples come

from. Furthermore, Karkar Island is currently thought to be part of the distribution of P.

b. papuanus (Fig. 2.8).

The Karkar Island population (north of PNG) and Tifalmin (western end of PNG)

surprisingly grouped together. Allozyme data also suggested that animals from these

regions stand out as being different (Colgan and Flannery 1992) but the significance of

this was not clear. The Tifalmin and Karkar Island animals are similar in having a

relatively large body and long tail and differ in dorsal colouration (Colgan and Flannery

1992). These may represent different subspecies of P. breviceps which have remained

unnamed. The concordance of the geographical arrangement of the genetic profiles of

the DNA and allozyme analysis suggests that the population subdivision is not random

and implies that some wide-reaching phenomenon has impacted on their history (see

below).

Given these results, it is recommended that a revised morphometric analysis be carried

out taking account of the genetically defined populations to further investigate the

taxonomic status of the New Guinean populations. More samples from across the region

are also required to further define the boundaries of lineages found in the current study.

Page 51: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

35

Figure 2.8 a) the distribution of morphological subspecies: P. b. flavidus, 4; P. b.

papuanus, 5; P. b. tafa, 6; P. b. biacensis, 7. b) evolutionary lineages from genetic data

obtained in the present study. Areas included in each group are as follows NG1: Budi,

Gali and Irian Jaya; NG2: Waro, Namosado, Tifalmin, Noru and Yuro; NG3: Wigote and

Mt Sulen; and NG4: Normanby Island. NG5: Kai Island. Maps are not to scale.

2.4.2 Divergence time and biogeography

Divergence dates estimated from mtDNA sequences were used to investigate the

evolution of P. breviceps in Australia and New Guinea. The times of divergence

between Australian and New Guinean lineages were estimated at between 5.2 to 6.5

mya. Although the separation of Australia from New Guinea probably began about 20

mya, they were intermittently connected during the ice ages of the last two million years

(Dow 1977). Potentially a land bridge between Australia and Papua New Guinea, would

allow gene flow between populations from the Northern Territory and Papua New

Guinea (Galloway and Löffler 1972). One could argue that the Pleistocene sea

fluctuations (over the past 2 million years) accounted for the divergence between

Australia and New Guinea. However, the estimated times (5.2 to 6.5 mya) indicate that

fragmentation of the ancestral populations occurred earlier than the Pleistocene.

Furthermore, when contact with Australia was re-established in the Pleistocene, forest

Page 52: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Molecular systematics

36

corridors were few and poorly developed (Galloway and Löffler 1972; Flannery 1994)

and probably not suitable for crossing by forest dependent species such as gliders.

Opportunity for forest dependent species to disperse might have existed only

intermittently during the late Tertiary and Quaternary (Nix and Kalma 1972). In

biogeographic analyses of the New Guinean biota throughout the Tertiary and

Quaternary, the influence of two factors cannot be ignored: the substantial changes in

the geomorphology of the area due to extensive tectonic activities over the period (Dow

1977; Dow and Sukamto 1984) and the dramatic climate fluctuation of the late Tertiary

and the Quaternary (Axelrod and Raven 1982). During this period, tectonic movements

due to continental and island arc collisions have seen the formation and infilling of

several major sedimentary basins to produce new lowland habitats and the rapid uplift

of the central cordillera around 5 million years ago (Dow 1977). The degree of sequence

divergence between the lineages in the New Guinean region and the geographic

structuring seem compatible with the uplift of the central mountain range through the

Pliocene. For example, divergence of the population at Tifalmin from all eastern

populations in the West Sepik Province could be explained by the presence of the

central mountain. Several studies have found the central Cordillera as a barrier to gene

flow (e.g. Rawlings and Donnellan 2003). There are other geographical features such as

rivers that also may cause population structuring. Genetic divergence of the NG3 clade

(Mt Sulen-Wigote) from the other populations in the east might be due to the Sepik

River and mountains that separate this area. The phylogenetic relationship of Karkar

Island and the Tifalmin population is more difficult to explain. One possible explanation

of this affinity is that gliders from this island are relicts of a population that was once

widely distributed in the north of New Guinea. Karkar Island was once a part of the

mainland and has been separated from the mainland long enough to evolve some

genetic and morphological differences. Comparative phylogeographic studies of taxa

that occur in both Australia and New Guinea are likely to provide significant insights

into the evolutionary history of these regions. The divergence between Australian

lineages and the biogeography of the region will be discussed in Chapter three.

Page 53: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

37

3 Phylogeography of the sugar glider (Petaurus breviceps) in

Australia

3.1 Introduction

Patterns of population structure within species reflect both historical and current levels

of gene flow. Identifying patterns of geographic variation within species and relating

this variation to potential selective forces can help determine the relative contribution of

factors involved in evolutionary diversification and speciation (Simons 2002).

Revealing genetic diversity within species and populations can also direct conservation

priorities (Moritz et al. 2000; Arbogast and Kenagy 2001).

Climate fluctuations are thought to be catalysts for evolution, promoting diversification

and adaptation to new environmental conditions (Potts 1996). Climate and

environmental changes since the beginning of the Quaternary period (the past two

million years) are thought to have had a major impact on species distributions and

population divergence through repeated cycles of population contraction, extinction,

establishment of biogeographical barriers, isolation in refugia and range expansion

(Hewitt 1996; Avise and Walker 1998; Schneider and Moritz 1999; Moritz et al. 2000;

Hewitt 2004). Such environmental changes have been used in theories to explain

divergence and speciation in rainforests (Schneider and Moritz 1999; Schneider et al.

1999) as well as temperate regions (Taberlet et al. 1998; Hewitt 2004).

Forests of Australia today reflect the environmental changes that have occurred in

climate, geology and geographical position throughout time. The present restricted

distribution of forest in eastern Australia has been interpreted as the outcome of long

term contractions due to increasing aridity across the continent over the past six million

years (Adam 1992). The eastern seaboard forests of Australia are fragmented remnants

of the tropical forest that once had a widespread and continuous distribution across

Australia but declined as a result of increasing aridity across the Australian continent

through the mid-late Tertiary and Quaternary (the past six million years) (Kershaw

1981; Hope 1994). This has resulted in a series of disjunct, coastal forest patches

scattered from tropical rain forest in Queensland to open eucalypt forests and

woodlands in South Australia. These past climatic/ environmental events probably

significantly affected the fauna throughout the region. A number of phylogeographical

Page 54: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

38

studies have investigated the impact of this history on the distribution and population

structure of Australian forest taxa. However, the majority of studies to date have

focused primarily on the wet-tropical region (Joseph et al. 1995; Schneider et al. 1998;

Schneider and Moritz 1999; Pope et al. 2000). Little is known about how the population

structure of open forest and woodland species have been affected by past climatic

events. Furthermore, only a few studies have attempted to examine historical

biogeography of forest dependent species across the east coast (e.g. Donnellan et al.

1999; Moussalli et al. 2005; Nicholls and Austin 2005). The presence of several

biogeographical barriers across the eastern forests of Australia have been proposed,

including the Black Mountain corridor, a dry barrier separating northern and southern

sections of the Wet Tropics (Joseph et al. 1995; Schneider et al. 1998; Schneider and

Moritz 1999), the Burdekin and Broad and Sound gaps, hot and dry lowlands in central

Queensland (James and Moritz 2000; Moussalli et al. 2005; Brown et al. 2006) and the

Hunter Valley in New South Wales (Donnellan et al. 1999). However, more research is

required to examine the relative importance of such barriers to broadly distributed

species along the east coast and to assess whether other barriers to gene flow might exist

in this region.

The sugar glider (Petaurus breviceps) is the most geographically and ecologically

widespread species in the genus, having adapted to a range of habitats from sparse

woodlands through to dense eucalypt forests and rainforests (Suckling 1983b). Its

distribution exactly mirrors the distribution of forests along the east coast of Australia.

It is, therefore, an ideal candidate species to examine phylogeography and divergence

along the east coast. Over its geographic range, P. breviceps shows considerable

variation in external morphology such as body size and coat colour. This variation has

led to the recognition of three subspecies in Australia. These subspecies are P. b.

breviceps, Waterhouse 1839 in south-eastern Australia (from Tasmania to the tropic of

Capricorn in Queensland), P. b. longicaudatus, Longman 1924 in Queensland and P. b.

ariel, Gould 1842 in the Northern Territory and as far west as Kimberley (Suckling

1983b; McKay 1988; Flannery 1994)(see Fig. 2.2). A latitudinal cline in characters used

to describe these subspecies such as body size has also been reported in the species

(Alexander 1981; Quin et al. 1996b). However, no comparisons of the genetics or

skeletal morphology of these various subspecies have been published to verify these

subspecies. Some molecular evidence for population genetic subdivision within P.

Page 55: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

39

breviceps comes from a study by Colgan and Flannery (1992), who used allozyme

electrophoresis to investigate the systematics of the genus Petaurus. The study was

primarily focused on New Guinea with only a few samples from Australian populations

included. Their findings within Australia showed that P. breviceps from southern

Australia could be electrophoretically distinguished from Queensland populations. In

addition, a recent phylogenetic study of Petaurus species also revealed the presence of

cryptic diversity within P. breviceps in Australia (see Chapter two). Therefore, the

current study used phylogeographical approaches on a larger sample size to investigate

population structure and the genealogical history of P. breviceps in Australia and to

explore what forces might have contributed to population differentiation. A combination

of fast evolving mitochondrial genes (ND2 and ND4) and a nuclear marker (ω-globin

gene) were used to (i) examine phylogeographic structure of the species within

Australia, (ii) explore the impact of historic and environmental changes on the

distribution of the species, and (iii) develop conservation guidelines based on the

genetic distinctiveness of the populations.

3.2 Material and methods

3.2.1 Population sampling

A total of 63 samples were obtained from 45 sites across the distribution of the species

in Australia (Appendix 4). Samples were collected in South Australia (SA) from a

network of nest boxes placed in 23 native forest patches (see Chapter four). Live

trapping, using cage traps was also conducted at various sites in SA and Victoria (Vic).

Sugar glider samples were also obtained through several research projects involving

Petaurus species in Victoria, New South Wales and Queensland. Frozen or ethanol

preserved specimens from populations of the species in New South Wales and southern

Queensland were available from the Australian Museum. The sampling technique

involved the removal of small skin biopsies from the ear of each animal and

preservation in vials of 50:50 ethanol/ saline at room temperature.

No samples from Tasmania was included in phylogenetic analyses, because the

existence of sugar gliders in Tasmania is thought to have resulted from its introduction

in 1834 (Gunn 1851). Based on the current classification of P. breviceps, a distinct

subspecies (P. b. arial) occurs in Northern Territory. Four samples obtained from the

Page 56: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

40

NT were used in a phylogenetic analysis (see Chapter two). These samples grouped

within a clade consisting of P. norfolcesis and P. gracilis. However, the phylogenetic

analysis could not entirely rule out that the NT population were P. breviceps due to the

low variation of the nuclear marker (ω-globin). The identity of NT samples needs

further investigation; however, these populations were excluded from the

phylogeographical analysis of P. breviceps in the current chapter, due to the lack of

additional samples being available.

The outgroups used for phylogenetic analyses included a single sequence of P. abidi

from Papua New Guinea and two Victorian specimens of P. australis (see Appendix 4

for details). The latter species was shown in previous molecular phylogenetic studies to

be the sister lineage to all other species of Petaurus (see Chapter two for full details).

3.2.2 PCR- amplification and sequence analyses

Genomic DNA was extracted from frozen or ethanol preserved tissue samples using the

Gentra DNA Extraction Kit (MOBio Labs) following the manufacture’s procedures.

The selected fragments of three genes including ND2, ND4 and ω-globin were

amplified and sequenced using the primers given in Table 2.1 and the method described

in Chapter two.

Raw sequences were edited using BioEdit (version 7.0.5.2) and aligned using Clustal X

version 1.83 (Thomson et al 1997). The program PHASE version 2.1 (Stephens et al.

2001) was used on the ω-globin gene to reconstruct haplotypes and resolve ambiguities

at heterozygous sites. Single nucleotide polymorphisms (SNPs) of all individuals

(including individuals without ambiguous sites) were obtained and the program was run

using the default parameter values. DnaSP version 4.1 (Rozas et al. 2003) was used to

determine the number of haplotypes, gene diversity, nucleotide diversity and number of

polymorphic sites in each data set.

3.2.3 Phylogenetic analyses

Maximum Parsimony (MP), implemented in PAUP*, version 4.0 b10 (Swofford 2002),

was conducted separately on a combined mitochondrial dataset and the nuclear

sequence data, using the heuristic search algorithm with tree-bisection-reconnection

(TBR) branch swapping, stepwise addition starting trees, and random addition of

Page 57: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

41

sequences with 100 replicates. Nucleotide sites were treated as unordered characters

with equal weight and gaps were treated as missing data (mtDNA) or as fifth base (the

nuclear marker). Consensus trees (50% majority role) were determined if more than one

equally parsimonious tree was found. The reliability of MP trees was tested using the

bootstrap approach (Felsenstein 1985) with 1000 pseudoreplicates.

Bayesian phylogenetic analyses were carried out using the program MrBayes, version

3.1 (Huelsenbeck and Ronquist 2005). The most appropriate nucleotide substitution

models for all three genes were selected in Modeltest version 3.9 (Posada and Crandall

1998) as described in Chapter two (see Table 3.1). The Bayesian analyses were carried

out separately on the ω-globin gene and a combined ND2 and ND4 dataset, using a

partitioned mixed-model in MrBayes (Huelsenbeck and Ronquist 2005). The optimal

models of sequence evolution were used with the APPLYTO command and the

appropriate model parameter values estimated for each data partition using the

UNLINK command. A binary model was used to identify the presence (1) and absence

(0) of indels in the nuclear marker. The program was run for four chains simultaneously

in each analysis and the analysis was repeated three separate times. Each MrBayes

search was run with one million generations. After this number of generations the

standard deviation of split frequencies had reduced to less than 1%, confirming that a

good sample of the posterior distribution had been obtained. The likelihood values

converged to relatively stationary values after about 5,000 generations. A burn-in of 100

trees (equivalent to 10,000 generations) was chosen with a > 50% posterior probability

consensus tree constructed from the remaining 9901 trees.

Table 3.1 Summary of nucleotide substitution models selected for data partitioning using

Akaike Information Criterion in Modeltest version 3.9.

Data Partition DNA substitution

model

Number of

substitution

types

Invariant

sites Substitution rates

Mitochondrial

genes

ND2 HKY 2 Yes Gamma distributed

ND4 HKY 2 Yes Gamma distributed

ω-globin gene HKY 2 Yes Equal

Page 58: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

42

3.2.4 Population structure

The data was tested for the presence of genetic structure by analysis of molecular

variation (AMOVA) (Excoffier et al. 1992) using ARLEQUIN version 3.1 (Excoffier et

al. 2005). For this purpose, six geographical populations (based on geographic

proximity) including South Australia (SA), Victoria (Vic), southern New South Wales

(sNSW), northern New South Wales (nNSW), south-eastern Queensland (sQld) and

northern Queensland (nQld) were identified a priori. In order to test how genetic

variation was partitioned among the currently described subspecies, the above

populations were grouped, with all southern Australian populations, including SA, Vic,

sNSW, nNSW and sQld, further grouped together as subspecies1 and nQld populations

representing subspecies 2. Further analyses were also conducted to test the significance

of differences of genetic diversity between the regions. Significance levels for rejecting

the null hypothesis of a random distribution of genetic variation were determined using

a non-parametric permutation test with 10,000 permutations. FST estimates among pairs

of populations was calculated using the distance method as implemented in

ARLEQUIN (Excoffier et al. 1992).

To examine population structure and population history of P. breviceps, a nested clade

analysis (NCA) (Templeton et al. 1995; Templeton 1998) was used. A haplotype

cladogram was constructed using the statistical parsimony approach with the confidence

limit set to 95% (Templeton et al. 1992) in the program TCS version 1.21 (Clement et

al. 2000). The resulting haplotype network was then used to group nested cladograms

according to the methods described by Templeton et al. (1987). Based on this nested

cladogram, the software GeoDis version 2.0 (Posada et al. 2000) was used to test for

significant associations between haplotype and geography. Output from the GeoDis

program was interpreted using the latest version (November 2005) of the inference key

obtained from the GeoDis homepage (http://darwin.uvigo.es/software/geodis.html).

3.3 Results

3.3.1 Variation and distribution of haplotypes

MtDNA― Sequences for 1393 bp of mitochondrial genes (ND2 and ND4) were

obtained for 63 individuals. A total of 369 variable sites and 164 parsimony informative

sites were observed within the ingroup individuals. A total of 44 haplotypes was

Page 59: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

43

observed within the mtDNA of the species, with 23 in SA and Vic (n = 40), eight in

nNSW and sQLD (n = 11), eight in nQld (n = 8), four in sNSW (n = 4). One haplotype

was shared between nQld and nNSW. Haplotype diversity (Hd) was 0.98 ± 0.01 and

nucleotide diversity (Pi) was 0.05. Intra-specific sequence divergence obtained by

applying the HKY+I+G (Hasegawa et al. 1985) model selected by MODELTEST to the

mtDNA dataset (proportion of invariable sites = 0.48, Gamma distribution with shape

parameter = 1.2) ranged from 0.002 to 12.2 %. Sequence divergence between the two

major mtDNA clades (see analyses below) ranged from 10.4 to 12.2 and within each

clade variation, ranged from 0.002 to 2.4 % (Table 3.2). The combined ND2 and ND4

sequence alignment is given in Appendix 5.

Omega-globin gene― Sequences were obtained for 50 individuals. The fragment was

705 bp in length including 167 bp of coding DNA (partial Exon2 and Exon3) and 529

bp of non-coding DNA (Intron2). Two Deletions (indels), 1 bp and 7 bp in length, were

found within the sugar glider sequences. The 7 bp deletion was found in haplotypes

from SA, Vic and sNSW populations. The ω-globin sequence alignment is given in

Appendix 6. A total of 16 haplotypes was observed within the species, with five in

nNSW and sQLD and 11 in SA, Vic, sNSW and nQld. Haplotype diversity was 0.63 ±

0.07 and nucleotide diversity was 0.004.

3.3.2 Phylogenetic relationships

Maximum parsimony (MP) and Bayesian analyses produced trees with quite similar

topology in which P. breviceps samples grouped into two monophyletic clades of

mtDNA haplotypes. One clade contained haplotypes from nNSW and sQld and the

second contained haplotypes from all the remaining populations in SA, Vic, sNSW and

nQld (Fig. 3.1). This arrangement received strong bootstrap support (95%) and

Bayesian posterior probability (100%). A third monophyletic clade containing all SA

and Vic populations was also supported by 84% and 99% bootstrap and Bayesian

posterior probability values respectively.

Similar to the mtDNA tree, the Bayesian tree resulting from analyses of the ω-globin

gene showed two monophyletic clades. One clade contained most of the nNSW and the

sQld haplotypes and the second contained all the remaining populations in SA, Vic,

sNSW and nQld. Although this arrangement received high posterior probabilities,

bootstrap values were low (Fig. 3.2).

Page 60: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

44

There were some discrepancies between the mitochondrial and the nuclear trees. Two

individuals (85533 and 85530 from NSW) in the nNSW clade for mtDNA were in the

alternative clade for ω-globin. Although there is some concordance between the trees,

this arrangement may be evidence for either retention of ancestral haplotypes in the

nNSW clade or gene flow between the populations.

Table 3.2 Numbers of samples (n), mtDNA haplotypes and diversity indices ± standard

deviation of P. breviceps populations across Australia estimated using DnaSP v 3.4.

Location n No haplotypes Nucleotide diversity Gene diversity

SA/Vic 40 24 0.004 0.94 ± 0.02

sNSW 4 4 0.003 1.0 ± 0.17

nNSW 11 8 0.008 0.97 ± 0.06

nQld 9 8 0.007 0.97 ± 0.05

Table 3.3 the range of pairwise sequence divergence between regions estimated, using

HKY85+I+G (implemented in PAUP*) are shown as percentages. The range of intra-

regional divergence are on the diagonal. I= 0.48 and G= 1.2

Vic/SA sNSW nNSW nQld

Vic/SA 1.4-2.2 11.2-12.2 1.4-2.4

sNSW 10.4-11.8 0.002-1.6

nNSW 11.5-12

3.3.3 Population structure

3.3.3.1 Mitochondrial region

Negative variance components (P > 0.05) were obtained in AMOVA when the

populations were grouped by morphological subspecies (group1 = SA, Vic, sNSW,

nNSW and sQld; group2 = nQld). An AMOVA for population structure based on a

single group containing all six populations showed strong genetic structuring with 70%

of the variance explained by among-population variation (FST = 0.7, P = 0.000).

Pairwise FST estimates between each of the populations were also significantly different

from zero (P< 0.05, Table 3.4). However, the exact test of sample differentiation based

on haplotype frequencies only supported the presence of three distinct lineages

including SA/VIC, nQld and nNSW/sQld (P < 0.05). This result was also congruent

Page 61: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

45

with the TCS statistical parsimony analysis, which recovered three haplotype networks

corresponding to nNSW, nQld/sNSW, and SA/Vic. The network further showed that the

sNSW populations were divergent from nQld populations, with 13 mutational steps

(Fig. 3.3). The haplotype network provided further evidence for the similarity of

haplotypes from SA and Vic, suggesting relatively recent connections between

populations from these regions.

Table 3.4 Pairwise FST values are obtained for populations of P. breviceps in Australia,

using an analysis of molecular variance (AMOVA). Asterisks indicate significate values at

0.05.

SA Vic sNSW nNSW

SA 0.00

Vic 0.56* 0.00

sNSW 0.92* 0.91

* 0.00

nNSW 0.76* 0.68

* 0.81

* 0.00

nQld 0.80* 0.73

* 0.85

* 0.41

*

The null hypothesis of no geographical association of clades was rejected (P< 0.05) for

the nesting clades 2-2, 4-2 and 3-8 (Fig. 3.3). Clade 2.2 included individuals located in

Vic and SA and had significantly small Dcs and significantly large Dns. Interpreting the

result using the inference key suggested restricted gene flow with some long distance

dispersal. Clade 4.2 corresponded to populations from nQld and sNSW and had

significantly small Dcs and Dns. The inference key suggests a past history of

fragmentation and/or long distance colonization for this clade. Clade 3.8 corresponded

to nNSW populations and had significantly small Dcs and Dns. The inference key

suggested that geographical sampling was inadequate to discriminate between

contiguous range expansion/ long distance fragmentation or past fragmentation.

Page 62: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

46

Figure 3.1 Maximum Parsimony tree of combined mtDNA (ND2 and ND4) from P.

breviceps in Australia. P.abidi and P. australis were used as outgroups for the analysis.

Numbers next to the branches represent percentage of bootstrap values and Bayesian

posterior probabilities from left to right respectively.

Page 63: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

47

Figure 3.2 Omega-globin gene tree of P. breviceps inferred using a partitioned mixed-

model in MrBayes. Branch lengths are given on the branches. Numbers in parentheses

are bootstrap values (%, left) and Bayesian posterior probabilities (%, right) respectively.

Page 64: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

48

Figure 3.3 Unrooted network of mtDNA haplotypes from 47 P. breviceps haplotypes

inferred using statistical parsimony and associated nested clade design. Lines connecting

haplotypes represent one mutational step regardless of their length. Black dots represent

hypothetical haplotypes.

5-1

Page 65: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

49

3.3.3.2 Omega-globin gene

Similar to the mtDNA results, negative variance components (P = 1.0) were obtained in

an AMOVA analysis on the nuclear data set when the populations were grouped by

morphological subspecies (group1 = SA, Vic, sNSW and nNSW; group2 = nQld).

However, an AMOVA test for population structure based on a single group containing

all six regions showed strong genetic structuring in which 62% of the variance was

explained by among population variation (FST = 0.62, P= 0.001). Pairwise FST estimates

between each of the populations were also significantly different from zero. In this

analysis four distinct genetic lineages were supported, including SA/Vic, sNSW, nQld

and nNSW/sQLD. A single network consisting of all haplotypes was recovered by TCS

analysis. The network included three major haplotypic groups. One group consisted of

haplotypes from nNSW and sQLD conecting to two other haplotypes from nNSW with

two mutational steps. A majority of nQLD haplotypes were identical to one of the NSW

haplotypes (85527). However, one haplotype (16137), representing two samples from

nQLD (16137and 159/160), connected to the SA/VIC haplotype group by a single

mutational step. In total, four mutational steps separate the nNSW/sQLD group from the

most likely ancestral haplotype in SA (Fig 3.4).

Figure 3.4 Haplotype network of ω-globin gene generated under 95% statistical limit of

parsimony, using the program TCS 2.1. Size of ovals represents haplotype frequency.

Black dots represent hypothetical haplotypes. Lines connecting haplotypes represent one

mutational step regardless of their length. The most likely ancestral haplotype is drawn as

a rectangle.

Page 66: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

50

3.4 Discussion

3.4.1 Phylogeography and genetic structure

The phylogenetic analyses of both mitochondrial DNA and the ω-globin gene datasets

provided evidence for the existence of two divergent clades that are distributed over

distinct geographical regions. One clade of hapotypes was distributed over mid to north

NSW and south-eastern Queensland while a second clade was distributed over the

remaining distributional range of the species in SA, Vic, southern NSW and northern

Qld. Two individuals from NSW (ABTC 85523 and 85527) did not fit this geographic

pattern of distribution of the mtDNA clades. Similarly, two NSW samples, 85530 and

85533, which grouped in the nNSW mtDNA clade, grouped differently in the ω-globin

phylogenetic tree. These samples may represent cases of introgression of mtDNA/ ω-

globin haplotypes between the regions or perhaps there has been retention of ancestral

haplotypes within the NSW population. Because the number of sampling sites from

southern Queensland is sparse, it has not been possible to define the geographical limits

of these lineages.

The results of allozyme electrophoreses of two NSW samples from Limeburners Creek

(32º 36' S and151º 53' E) and Newholme (29º 31' S and 151º 51' E) in northern New

South Wales and a single sample from Gordonvale (17º 06' S and 145º 47') in northern

Queensland (Colgan and Flannery 1992), showed three fixed allozyme differences

between the two regions. From this the authors suggested that the current morphological

subspecies P. b. breviceps (southern Australia) and P. b. longicaudatus (Queensland)

were distinct. The current study also supports the distinctiveness of nNSW/sQLD from

nQld. However, the allozyme data are insufficient to allow a direct comparison with the

mtDNA and ω-globin data presented here.

Analyses of population structure also revealed significant genetic structuring in sugar

gliders across Australia, with the presence of at least four distinct genetic lineages

including SA/Vic, sNSW, nQld and nNSW being supported by mtDNA and the nuclear

marker. The general concordance of the geographical distributions of the genetic

lineages for the two types of marker suggests that population subdivision has impacted

P. breviceps during its evolution within Australia. An alternative explanation that the

common phylogeographic pattern is due to selection fixing alleles in different

Page 67: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

51

geographic regions would seem unlikely, given that the mtDNA and ω-globin gene are

independent genetic markers. The high level of intra-specific divergence between the

major mtDNA clades is best explained by long-term genetic isolation of these

populations. Although the habitat is currently heavily fragmented, the amount of genetic

divergence (11.2-12.2%, Table 3.3) indicates the presence of a historical barrier to gene

flow pre-dating the European colonization of Australia. In particular, the divergence

date estimated for the two mtDNA clades (node N1 on Fig. 2.5, average 4.77 mya, see

Table 2.6) suggests that environmental and climate changes that occurred during the

Pliocene may have facilitated this isolation and divergence of the populations. Prior to

this period, in the Oligocene and early Miocene, rainforest was prevalent in Australia,

which is reflected in the high level of marsupial diversity found in the Riversleigh fossil

deposit (Archer et al. 1994; Crosby et al. 2004). Rainfall began to decline and

conditions became cooler, drier and more seasonal over time, potentially resulting in

fragmentation of continuous closed forest habitats. These changes may have had an

influence on population structure by subdividing the range of the species. Major

climatic cycles associated with Ice Ages during the Pleistocene may have also led to the

contraction of the range of the species into refugia during Glacial Maxima. A number of

empirical studies have found genetic signatures of both animal and plant species that

support this scenario of refugia along the east coast of Australia (e.g. Schneider et al.

1998; Pope et al. 2000; Tolley et al. 2006). This pattern of restricted gene flow and

fragmentation may also be due to the development of physical barriers to gene flow

between populations. In NSW, in particular, the western slope of the Great Dividing

Range (GDR) may have acted as a historical barrier to gene flow across the GDR. A

correlation between population subdivisions and the topography of the GDR has also

been reported in a Saproxylic species (Garrick et al. 2004) and the satin bowerbird

(Nicholls and Austin 2005).

3.4.2 Taxonomy

It is difficult to make direct comparison of genetic divergence found in this study with

other marsupial species, as other studies used different genes (e.g. control region,

Moritz et al. 1997; Firestone et al. 1999; Pope et al. 2000), or different models of

evolution were used for estimating sequence divergence (e.g. Kimura Two-Parameters,

Osborne and Christidis 2001). However, the level of mtDNA divergence within the

species is several times higher than the range reported previously for P. breviceps, using

Page 68: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

52

a very small sample size (1.57-2.47%, Osborne and Christidis 2001) and for other glider

species such as P. norfolcensis (1.5%, Osborne and Christidis 2001) and P. australis

(0.24-2.33%, Brown et al. 2006). In contrast to the differentiation in mtDNA, the

preliminary analysis of morphological characters, based on 10 cranial characters of 40

sugar glider skulls from across the range of the species in Australia, revealed little

geographical structuring (see Chapter six for details). Specimens from each of six

regions within Australia (Qld, NSW, Vic, SA, Tas, and NT) clustered together (see Fig.

6.9). However, the number of samples was limited, particularly, from NSW. In fact no

skull was available from the northern part of NSW where the current divergent lineage

seems to be located. Further morphological data, in particular from specimens from

northern NSW are required to assess the potential morphological distinction between

the two current two divergent clades.

The geographical distribution of evolutionary lineages within P. breviceps does not

correspond with the distribution of the current morphological subspecies, which

includes a southern subspecies extending from Tasmania to the tropic of Capricorn and

two northern subspecies, in Queensland and Northern Territory (Fig 3.5-a). In contrast,

the current study found two divergent lineages over different geographical regions. One

lineage occurs in SA, Vic, sNSW and nQLD and the other occurs in the mid-north NSW

and sQLD (Fig 3.5-b). The identity of the NT subspecies remains unclear in the current

study. Samples obtained from NT fell outside the P. breviceps mtDNA clades and

grouped within a clade contained P. norfolcensis and P. gracilis. The ω-globin gene

tree, however, did not provide enough resolution to discriminate P. breviceps and P.

norfolcensis and, therefore, it was not possible to rule out alternative explanations (e.g.,

introgression through hybridization) for the lack of concordance of the mtDNA data

with species identifications based on morphology. This lack of geographic concordance

of subspecies and genetically defined populations is not uncommon in the literature.

Similar findings have been reported from several taxa including avian species (Zink

2004) and marsupials (e.g. P. australis; Brown et al. 2006). The current subspecies

classification, therefore, does not reflect the major genetic subdivisions present within

P. breviceps, and therefore would be inappropriate to use as conservation units for any

future conservation management to maintain genetic diversity within the species. In

addition, it is recommended that a revised morphometric analysis be carried out to

assess the species status of the two P. breviceps lineages in Australia.

Page 69: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

53

3.4.3 Implications for conservation

The primary objective of conservation biology is to ensure the maintenance of

evolutionary processes, underpinned by genetic diversity (Frankham et al. 2002).

Through revealing cryptic, deeply divergent evolutionary lineages that are otherwise

overlooked by traditional taxonomy, and by elucidating processes of biotic

diversification, phylogeography can direct conservation priorities (Arbogast and

Kenagy 2001).

Figure 3.5 Distribution of the current subspecies of P. breviceps in Australia (a) and the

two mtDNA clades found in the current study. The heavily outlined circles correspond

with the locations of one clade including three genetic groups SA/Vic, sNSW and nQLD.

The stippled circle represents the second clade including populations from nNSW and

sQLD.

Subspecies are considered to be regional variants of a species (Meikle 1957). However,

the concept of subspecies does not always effectively describe intra-specific diversity

and the historical evolution (e.g. Burbrink et al. 2000; Zink 2004). There have been

several attempts to formalize the relationship between conservation and taxonomic

status (reviewed by Fraser and Bernatchez 2001), although the area is still controversial.

Two widely applied concepts are the Evolutionarily Significant Unit (ESU) and the

Management Unit (MU). The goal of designating these distinct units is to allow their

Page 70: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Phylogeography

54

separate management so as to retain the long-term evolutionary diversity of a species.

ESUs were proposed as a mean of clarifying the conservation of a taxa that were being

conserved as separate subspecies, but where there was limited biological support for this

subspecific status (Ryder 1986). Although the use of molecular tools, particularly based

on phylogeographic analyses of mitochondrial sequence data, has become popular for

assigning populations to ESUs (e.g. Pope et al. 2000), the use of genetic criteria and, in

particular, mtDNA alone for defining conservation units may be restrictive (e.g.

Gompert et al. 2006). Genetic data alone may not reflect ecological exchangeability and

adaptive potential of populations (Peatkau 1999; Crandall et al. 2000). In the current

study reciprocal monophyly of mtDNA haplotypes and significant divergence in the ω-

globin gene were found for two populations within P. breviceps in Australia. Although

these results support their recognition as separate ESUs under the Moritz criteria

(Moritz 1994a; Moritz 1994b) it was not feasible to assess ecological exchangeability of

P. breviceps across its extensive distribution. A more flexible approach for defining

ESUs was described by Fraser and Bernatchez (2001). In this approach an ESU was

defined as "a lineage demonstrating highly restricted gene flow from other such lineages

within the higher organizational level (lineage) of the species". Evidence of two

divergent evolutionary lineages supported by both mtDNA and nuclear markers here

suggest that gene flow has been restricted for a considerable period of time between

these populations, supporting their status as separate ESUs under both the Fraser and

Bernatchez (2001) and Moritz (1994) criteria. Given that the current taxonomy of the

species does not reflect the underlying genetic diversity, the flexible ESU concept may

provide an appropriate approach for prioritizing units for conservation within P.

breviceps until more data can be gathered.

Page 71: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

55

4 Nest box-use, social structure and mating system of P. breviceps

4.1 Introduction

The social organisation and mating system of many species is not a fixed attribute but

can change in response to variations in environmental conditions (Emlen and Oring

1977; Lott 1984; Clutton-Brock 1989). Differences in social organisation and mating

system within and between populations of vertebrates may be correlated with variations

in ecological factors such as food abundance and distribution and habitat structure (e.g.

Bryja and Stopka 2005; Wong et al. 2005; Rossmanith et al. 2006), as well as

demographic factors such as population density (e.g. Carrete et al. 2006).

Habitat characteristics can have profound effects on the evolution of social and

reproductive behaviours. For example, the spatial distribution of habitat may be a key

determinate of animal dispersion, which in turn may influence their optimal social and

reproductive strategies (e.g. Brotherton and Manser 1997). In addition, habitat patch

size and quality may influence social group size by affecting individuals ability to form

groups or disperse (e.g. Komdeur 1992; Covas et al. 2004). Since social group size and

structure can predetermine the resulting mating system (Crook and Gartlan 1966),

aspects relating to habitat, such as size, quality and distribution play an important role in

the evolution of social and mating systems and their variation within and between

species.

Habitat fragmentation resulting from human activities reduces the size of habitat

patches and increases their spatial isolation (Saunders et al. 1991). When populations

are confined to discrete patches of habitat, the size of the patch can potentially limit the

size of social groups and interactions associated with mating (e.g. Wong et al. 2005).

Habitat fragmentation may also result in elevated relatedness among potential mates,

thereby increasing the likelihood of inbreeding. This in return is likely to decrease

offspring fitness and may be a significant contributor to extinction risk (e.g. Keller

1998; Keller and Waller 2002; Kruuk et al. 2002; Frankham 2005). Natural animal

populations generally avoid inbreeding through several mechanisms, including dispersal

of individuals from their natal population, extra-pair copulation or recognition and

avoidance of kin as mates (reviewed by Pusey and Wolf 1996). Changes resulting from

habitat fragmentation may lead to a disruption of inbreeding avoidance mechanisms by

Page 72: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

56

increasing mating between closely related individuals. For example, in a small

marsupial carnivore, Antechinus agilis, habitat fragmentation resulted in an increased

relatedness among potential mates and reduced the degree of multiple paternity (Banks

et al. 2005). However, these effects of habitat fragmentation are still under-researched.

Petaurus breviceps is a social and colonial species which lives in small groups of

between two and seven individuals (Henry and Suckling 1984; Suckling 1984). Groups

share tree hollows in which they build bowl-shaped nests of eucalypt leaves. They also

readily occupy artificial nest boxes in forests where natural hollows are rare or absent

(e.g. Suckling and Macfarlane 1983; Traill and Lill 1997). The sex ratio of groups in the

wild is generally female-biased (Quin 1995; Sadler and Ward 1999) and a polygamous

mating system has been proposed for the species (Henry and Suckling 1984; Suckling

1984; Trail 1995 cited in Sadler and Ward 1999). However, no study has yet been

carried out to determine the genetic mating system of the species. Molecular approaches

(e.g. microsatellite DNA analyses) are particularly useful for determining mating

systems and group structure of a social species (Ross 2001), as even the most careful

field-based observations of animals can result in a misleading assessment of their

breeding patterns (e.g. Noisy Miners, Dow 1979; Poldmaa et al. 1995). In studies of

arboreal marsupials, the cryptic and nocturnal natures of species make them even more

difficult to observe.

In south-eastern South Australia, habitats are highly fragmented and about 80% of

natural forests have been cleared for agriculture and softwood plantations (Croft et al.

1999). P. breviceps is known to have the ability to survive in small patches, where

larger gliders are absent (Suckling 1982). Surveys in the south-east showed that the

species is less likely to occupy patches less than 100 hectares (Carthew 2004).

However, little is known about how the species may respond to habitat characteristics

such as size, quality and isolation. It may be predicted that group size and structure of

the species will vary in response to habitat patch size: small patches should support

smaller numbers of individuals with potentially smaller social groups.

The present study aimed to investigate the social structure and mating system of P.

breviceps in the fragmented habitats of south-eastern South Australia. The effect of

patch size on nest-box use, group size and structure was investigated by assessing

animals inhabiting artificial nest boxes in small (less than 150 ha) and large (greater

Page 73: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

57

than 200 ha) patches. Highly polymorphic microsatellite markers were used to

investigate the mating system of the species in these patches, and to assess relatedness

of nesting individuals.

4.2 Material and methods

4.2.1 Study area

The study was conducted in 19 remnant patches of native forest in south-east South

Australia (37° 30′ S, 140° 25′ E to 38° 00′ S, 141° 00′ E), and three small remnants and

a large continuous forest (Rennick State Forest, 5000 ha) in south-west Victoria

(37°55'S 140°58'E). A majority of patches used in this study (11 of the 23) are on public

land and are administered by the Department for Primary Industries and Resources,

South Australia (PIRSA); two were managed for the Department for Environment and

Heritage (DEH), South Australia, and six patches were under private ownership.

Victorian forests were managed by the Department of Sustainability and Environment

(DSE) (Fig 4.1 and Table 4.1).

The native patches were selected because they were known to contain suitable habitat

for arboreal marsupials, particularly, P. breviceps (How 1996; How et al. 2004). The

size of patches varied from 2 to 2216 ha, providing an opportunity to compare the effect

of size on social structure of the species. Patches were isolated from one another and

surrounded by rural and agricultural land or Pinus radiata plantations.

4.2.2 Sampling methods

Nest boxes were installed in August 1999 as part of a survey for the feathertail glider

(Acrobates pygmaeus) in South Australia (Richardson and Carthew 2004). They were

constructed from rough-sawn pine timber and nailed to the trunks of trees about 3-4m

above the ground and spaced approximately 50m apart along each site. Two transects of

five nest boxes were located in each of the patches commencing 50-100m from the

access tracks. The distance between each transect was dependent upon the size of the

patch and varied between 100 to 500m apart (Richardson and Carthew 2004). Although

the entry hole of boxes initially had a diameter of 25mm, sugar gliders gained access by

chewing and enlarging the holes. Most nest boxes were still in place in 2004 and were

used to obtain sugar glider tissue samples for DNA analysis. Sugar gliders were also

Page 74: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

58

sampled from nest boxes installed for detecting the endangered Phascogale (Brush-

tailed Phascogale, Phascogale tapoatafa) in Comaum Forest Reserve (Deadmans

Swamp), South Australia. In addition, new nest boxes were installed in six further

patches in 2005 (see Table 4.1). These boxes were similarly constructed, but with larger

(40 mm) entry holes.

Table 4.1 Size, ownership and location for 23 native forest patches surveyed in the current

study. PIRSA, DEH, and DSE represent Department of Primary Industries and

Resources, Department for Environment and Heritage (South Australia) and Department

of Sustainability and Environment (Victoria) respectively. Patches in bold represent areas

in which new nest boxes (two transects of five nest boxes) were installed in 2005. * and ^

represent five small and the five large patches respectively that were used for

comparisons.

Id Patch Name Area (ha) Ownership Location (AMG)

1 Possum House 2 DSE 497674E 5812201N

2 Palpara Camping ground 16 DSE 498089E 5810061N

3 Casterton Rd* 43 Private 495000E 5820200N

4 Mc Eachens 49 PIRSA 496400E 5794500N

5 Wan win 76 DSE 499518E 5797949N

6 Bourne’s * 80 Private 471500E 5859500N

7 Paltridges* 116 Private 494100E 5836700N

8 Topperweins (a and b) * 117 PIRSA 497000E 5845300N

9 Mulligan Sanctury 133 Private 470000E 5822500N

10 Penola CP* 139 DEH 473000E 5866000N

11 Telford CP 168 DEH 481000E 5827800N

12 Snowgum NFR 194 PIRSA 494500E 5801000N

13 The Heath^ 204 PIRSA 492500E 5841000N

14 Old Woolwash Scrub 248 PIRSA 463500E 5825500N

15 Mt Meredith^ 250 Private 489500E 583000N

16 Warienga 250 PIRSA 488506E 5797483N

17 Honeysuckle 251 PIRSA 493500E 5797000N

18 Grundys Lane^ 260 PIRSA 478000E 5826500N

19 Yangery^ 286 Private 493400E 5839500N

20 Dry Creek 396 PIRSA 496000E 5798200N

21 Deadmans Swamp^ 525 PIRSA 487606E 5886068N

22 Nangwarry NFR 2216 PIRSA 490500E 5853000N

23 Rennick State Forest 5200 DSE 498000E 5802000N

Box inspection occurred at least once per season from April 2004 to April 2006. A

single inspection of Deadmans Swamp nest boxes occurred in June 2005. Inspections

were done during daylight hours, with the content of each box (including evidence of

use such as nesting materials) recorded. Any P. breviceps found were removed from the

box and placed in holding bags, and information such as sex, weight and reproduction

status was recorded. Skin biopsies were taken from the ear of animals using sharp

scissors, and these were placed in a sterile vial of 50:50 ethanol/saline and stored at the

Page 75: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

59

room temperature before processing in the laboratory. Sugar gliders were individually

tagged with numbered metal fingerling ear tags and were placed back in the nest box.

Figure 4.1 Location of 23 patches surveyed in this study. Numbers on the map correspond

to patches in Table 4.1.

Reproductive condition in male and females in conjunction with Suckling’s (1984)

weight and tooth wear categories were used to allocate captured sugar gliders to one of

three groups; adults, sub-adults and juveniles. All males with an obvious head scent

gland were classified as adults and, therefore, were considered potential fathers for all

offspring for a particular patch. These animals were greater than 120 g (ranged from

120-160 g) and had cracked or stained incisors. Adult females were classified as adults

if they showed signs of being reproductively active, i.e. pouches with loose skin,

elongated or lactating teats, or had a pouch young. Adult females were ~ 110-135 g,

with slightly worn and discoloured incisors. All reproductively mature females within a

patch, regardless of whether they were seen with offspring in a box, were assumed to be

potential mothers for all offspring in a specific patch. Sugar gliders were classified as

sub-adults if they were not reproductively mature; males had not yet developed a scent

gland on top of their heads and female pouches were pale pink in colour and tight

(obviously unused). These animals were around 100 g in weight and had sharp or

slightly flat incisors, but had not obviously bred yet. Sub-adult sugar gliders captured in

2004 and 2005 were also considered as potential parents of offspring collected in 2005

Page 76: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

60

and 2006 respectively. The category of juvenile was given to pouch young and young

gliders that had left the pouch but were still with their mothers.

Trapping was also conducted to sample animals from Rennick State Forest, as no nest

boxes were installed there prior to this study, and to augment nest box samples at

Snowgum, Honeysuckle, Mt Meredith, Paltridges and Dry Creek. Wire cage traps were

baited with creamed honey placed on a cloth at the back of the trap, and were installed

3-6m above the ground on metal brackets nailed to the trunk of trees. Trap trees were

also sprayed with a mixture of honey water, around and above the trap, as an attractant.

Traps were checked at midnight and first light, and any captured gliders were removed

and placed into holding bags. Captured gliders were checked for reproductive condition,

sexed, weighed and skin biopsies were taken in the same way as given above and they

were released at the point of capture. All samples used in genetic analyses are given in

Appendix 7.

4.2.3 Comparison between small and large patches

To investigate any possible differences in nest box occupancy rate and group size, and

structure of P. breviceps, five small and five large patches were compared (Table 4.1).

Surveys in the region showed that while P. breviceps may be present in many

fragments, they were less likely to occupy areas less than 100 ha (Carthew 2004). Here,

due to the availability of data, five patches less than 150 ha and five patches larger than

200 ha were selected. In order to get sufficient numbers for comparison, data were

pooled for each category. Patches sampled by trapping, including Rennick State Forest

and Snowgum, were excluded because the methods were not comparable.

4.2.4 DNA extraction and microsatellite analysis

Genomic DNA was extracted from all samples using a Gentra DNA Extraction Kit

following the manufacture’s procedures. A panel of nine microsatellite loci (Table 4.2)

was used for genotyping each individual. Five tetranucleotide and one trinucleotide

microsatellite loci were isolated from P. breviceps (Accession Numbers AY633628-

AY633632, Brown et al. 2004), one trinucleotide microsatellite locus was isolated from

P. australis (unpublished) and two dinucleotide loci were isolated from P. norfolcensis

(accession numbers 330707 and 330728, Millis 2000).

Page 77: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

61

PCR amplifications were carried out in a final volume of 15 µL with approximately 100

ng genomic DNA, 2 pmol of each primer (forward primers were synthesized with

fluorescent tags FAM, NED, VIC or PET at the 5′ end), 1x PCR buffer (Applied

Biosystems) 0.20 mM dNTPs, 2.5mM MgCl2 and 0.1UAmpliTaq Gold (Applied

Biosystems). Thermocycling was performed using touch down programs as described in

Brown et al. (2004) with annealing temperatures ranging from 47-60 ºC (see Table 4.2

for annealing temperatures of each locus). Microsatellite alleles were detected by using

an ABI 3730 DNA analyser and scored using the software program Genemapper

version 2.1 (Applied Biosystem). Data were checked for errors and identical individuals

using Microsatellite toolkit (Park 2001). A number of samples were also genotyped

twice: 52 individuals at Petb1, 50 individuals at Pet6, 36 individuals at Pn3, seven

individuals at Petb7 and five individuals for Pn49. These samples were used to estimate

genotyping error rates for parentage analysis.

Table 4.2 Primer sequences (F, Forward; R, Reverse), annealing temperatures and source

of the nine polymorphic microsatellite loci used in screening of P. breviceps samples.

4.2.5 Parentage analysis and mating system

The revised likelihood equation of the program CERVUS 3.0, which provides greater

power to assign parentage at a given level of confidence (Kalinowski et al. 2007) than

the former equation (Marshall et al. 1998), was used to assign parentage to 85 offspring

Locus Name Sequence 5′′′′→→→→3′′′′ Ta °°°°C Source

Petb1 F: CTTGAGTTCCTAGTATGAGC

R: ATCACAGTGTAGAGGTAACC 47-57 Brown et al. (2004)

Petb2 F: AAAGATATAGAGAGAAATATG

R: TCCTCAGAGGCTA

47-57 unpublished

Petb4 F: CTTTCCAGTGCTATATGT

R: GCTCCTAACAAGTTGCCA 47-57 Brown et al. (2004)

Petb6 F: AATGTCTTTGGGATATGGAC

R: CCAGGACTTAGGAAACATC 50-60 Brown et al. (2004)

Petb7 F: TCACCAGTACCCAAATAATG

R: GGATAGGAAACTAGGTCACC

47-57 Brown et al. (2004)

Petb8 F: AGAAAACTGAGGTAGAGAA

R: ATTACCAGACATAGTGAGG 50-60 Brown et al. (2004)

Pn3 F: CTTCCCCTACCTGCCCCT

R: TGGAATGATCTCCAAGG

50-60 Millis (2000)

Pn49 F: TAGTGGGCTAGGACTGCTGC

R: ACCATTGGTCCAACAGACAT 50-60 Millis (2000)

Peta12 F: ACAAACTCCTAGAAGAG

R: AGAAGTCCAAAACCAAAG 50-60 unpublished

Page 78: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

62

(juveniles/ sub-adults) from 12 populations (Table 4.3). Because neither parent was

known, parent pair analysis (sexes known option) was used to test for parentage. To

identify the most likely genetically compatible mother and father for each offspring,

LOD scores were calculated for each offspring in each patch with all adult animals in

the patch being used as possible parents. The program differentiates the most likely

parent by comparing the likelihood ratio of parentage with alternative candidates

(Marshall et al. 1998) and significance levels for assignments were derived by

comparing the differences in likelihood ratios between the two most likely parents with

critical log-likelihood ratios (delta values) calculated through simulation. Strict (95%)

and relaxed (80%) levels of confidence were used to assign parentage in this study.

Parentage stimulations were based on 10,000 cycles. The proportion of loci typed was

0.94 and the genotype error rate was set to 0.067 based on the average percentage error

at each locus estimated from the number of individuals genotyped twice at that locus.

The simulation parameter, proportion of un-sampled gliders in each patch, was

estimated from an assessment of the likely carrying capacity of adults within patches.

Home range estimates from behavioural observations (where available, Le Duff 2000;

Parkhurst 2005) or an average of approximately two ha (average based on estimations in

several studies including Henry and Suckling 1984; Suckling 1984; Quin et al. 1992; Le

Duff 2000; Parkhurst 2005) was used in conjunction with the suitability rankings of

habitat patches for arboreal marsupials (Carthew and Goldingay 1998) to estimate the

likely carrying capacity. Sex ratios were then estimated based on composition in nest

boxes and were used to infer the number of adult males and females likely to be present

in each patch given the estimated carrying capacity of the patch. From this, the

proportion of the population sampled was estimated for each population and an average

of 40% was used for parentage simulations. In parentage exclusion, one mismatch at

one locus per parent-offspring pair was allowed to count as a typing error and an

individual was excluded as a putative parent if a mismatch occurred at two or more loci.

Sugar gliders disperse from their natal population when they are about one year old

(Suckling 1984). To allow for the possibility of dispersal between patches, the

parentage assignment of all offspring was repeated on a single dataset including all

potential parents across all patches in the region.

Page 79: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

63

4.2.5.1 Relatedness analysis

Relatedness analysis was carried out to further investigate the relationships of

individuals nesting together and to test whether P. breviceps avoided or preferentially

shared nest with kin. Pairwise relatedness values among individuals within a patch were

estimated using the Queller and Goodnight (1989) relatedness estimator with the

software package GenAlEX6 (Peakall and Smouse 2006). Pairwise relatedness values

of nesting adult males, adult females and adults of opposite sex were obtained. In

addition, the age composition of individuals nesting together was used to categorize

nesting groups as a putative family nest group (a mix of adults and juveniles/ sub-

adults), an adult nest group, or a sub-adult nest group. The significant difference of

average relatedness between the above categories was tested using a single–factor

analysis of variance (ANOVA). To test for inbreeding avoidance in mate choice,

pairwise relatedness values of the most likely mated pairs, based on the most likely

parent pairs resulting from parentage analyses at each patch, were compared with the

average relatedness of random pairs of adult males and females of that patch.

Table 4.3 Number of adult male, female and offspring (juvenile and sub-adult) P.

breviceps sampled from 12 populations. *sex unknown individuals include museum

specimens and several carcasses found in nest boxes.

Patch name Area (ha)

No samples

No females

No males Offspring

Sex Unknown*

Casterton 43 11 3 3 5 0

Bourne 80 13 5 2 6 0

Paltridges 116 10 2 4 4 0

Topperwiens 117 14 5 2 6 1

Penola 139 6 1 0 1 4

Snowgum 194 9 2 3 4 0

The Heath 204 20 4 6 9 1

Mt Meredith 250 7 2 0 5 0

Grundys 260 29 5 5 17 2

Deadmans Swamp

525 35 7 11 17 0

Nangwarry 2216 5 2 1 2 0

Rennick SF 5200 14 3 4 7 0

Page 80: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

64

4.3 Results

4.3.1 Nest box occupancy

4.3.1.1 Species, Occupancy rate and pattern of use

Nest boxes were occupied by four species of marsupials, including P. breviceps,

Antechinus flavipes, Pseudocheirus peregrinus and Trichosurus vulpecula (Table 4.4).

Microbats were recorded at six sites and signs of use by passeriform birds (nest

materials, feathers and eggs) were found at two sites. Invertebrates were also recorded

including spiders and ants. Of a total of 254 nest boxes (by the time of last inspection in

2006) 151 (59.4 %) had been occupied by vertebrate species.

Sugar gliders make bowl-shaped nests of leaves which are distinctive from other

potential species that use nest boxes, such as Antechinus. These nests were used as

evidence of usage by the species in the absence of animals in boxes. Signs of visitation

by P. breviceps (in the form of nesting material or animals themselves) were evident in

nest boxes at 18 of the 23 sites surveyed, giving an occupation rate of 38.1 % (97 nest

boxes of the 254 available nest boxes). However, at the time of inspections, animals

were found in residence at only 12 sites. Overall, 152 P. breviceps samples were

collected from nest boxes.

The first evidence of visitation by P. breviceps (in the form of nest materials) in new

nest boxes was recorded at about 60 days after installation. However, actual

colonization of nest boxes by P. breviceps was first recorded six to nine months after

installation. In Rennick State Forest, P. breviceps nests were found about nine months

after installation of nest boxes. However, no animals were ever found in residence at the

time of inspections.

Sugar gliders could be resident in nest boxes all the year round, with peaks of usage in

autumn and winter (Fig 4.2). The difference between seasons was significant when cold

(autumn-winter) and warm (spring-summer) seasons were compared (Fig. 4.2, χ2

= 7.24,

df = 1, P < 0.01).

4.3.1.2 Comparison between small and large patches

From a total of 418 nest box checks, 221 were carried out in five small patches (< 150

ha) and 197 in five large patches (> 200 ha), such that approximately equal sampling

Page 81: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

65

effort was applied to each patch type. Thus samples from each patch size were used to

investigate differences in occupancy rate and group structure between large and small

patches.

Table 4.4 Species recorded using nest boxes, and the number of patches and nest boxes in

which animal species were detected.

Species No. patches No. boxes

P. breviceps 18 97

Antechinus flavipes 11 37

Trichosurus vulpecula 1 1

Pseudocheirus peregrinus 2 2

Bats 7 12

Spider 11 19

Birds 2 3

Ants 3 3

0

2

4

6

8

10

12

14

16

18

autumn w inter spring summer

Perc

en

atg

e o

f b

oxes f

ou

nd

occu

pie

d b

y

P.

bre

vic

ep

s

Figure 4.2 Seasonal use of nest boxes by P. breviceps, based on the percentage of boxes

occupied by the species in 12 patches over a three year period 2004-2006.

Nest boxes were more likely to be occupied by P. breviceps in large than small patches

(Fig. 4.3, χ2

= 6.63, P = 0.01), with a maximum of three nest boxes occupied in a

transect of five nest boxes in large patches, compared to a maximum of one occupied

per transect in small patches. The mean number of animals co-habiting a nest box was

also significantly greater in large patches using an independent-samples t test (Fig. 4.4, t

= -2.82, P = 0.006). Boxes with greater numbers of gliders were also more frequently

observed in large patches and contained up to seven individuals (Fig. 4.5).

Page 82: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

66

0

5

10

15

20

25

small large

Patch size category

Pe

rce

na

tge

of

bo

xe

s f

ou

nd

oc

cu

pie

d b

y P

. b

rev

ice

ps

e

Figure 4.3 The percentage of the total of nest box checks where a nest box was occupied

by at least one P. breviceps individual in five small and five large patches. The number of

nest boxes in small and large patches was 49 and 58 respectively.

0

0.5

1

1.5

2

2.5

3

3.5

4

small large

Patch size category

Me

an

# P

. b

rev

ice

ps

Figure 4.4 The mean number of individual P. breviceps per nest box (± s.e) in small (< 150

ha) and large (>200 ha) patches.

Page 83: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

67

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

No. of animals per box

No

. o

f o

bserv

ati

on

ssmall

large

Figure 4.5 Frequency histogram of the number of P. breviceps inhabiting nest boxes at one

time in small and large patches.

Nesting groups consisted of varying numbers of males and females. Some groups

consisted of only one sex and others had mixed sexes. A two factor ANOVA was used

to test for significant differences between small and large patches in the number of adult

and juvenile gliders in nest boxes. There were significantly fewer reproductively active

adult males than females in small patches (Fig. 4.6, F = 5.4, P = 0.02). However

proportions of reproductively active adult males and females between large and small

patches were near significant (F = 3.35, P = 0.07). There were also significantly more

juvenile and sub-adult individuals detected in large rather than small patches (Fig 4.7, F

= 11.6, P = 0.001). However the proportion of juvenile and sub-adult males and females

was similar for both small and large patches (F = 1.23, P = 0.27). The number of

juveniles relative to adults did not differ between large and small patches (F = 0.4, P =

0.7). The average sex ratio of reproductively active adult males and females within a

nest box was 1 male: 2.4 females in small patches and approximately one to one in large

patches (Fig. 4.6). The average sex ratio of juvenile and sub-adult males and females

was one to one in both small and large patches.

Page 84: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

68

0

0.2

0.4

0.6

0.8

1

1.2

small large

Patch size category

Me

an

# o

f g

lid

er

pe

r b

ox

Female

Male

Figure 4.6 The mean number of reproductively active adult male and female P. breviceps

per nesting group in small and large patches, n = 29 nesting groups in small and 42

nesting groups in large patches.

0

0.2

0.4

0.6

0.8

1

1.2

small large

Patch size category

Me

an

# o

f g

lid

ers

pe

r b

ox

Female

Male

Figure 4.7 The mean number of juvenile and sub-adult male and female P. breviceps per

nesting group in small and large patches, n = 29 nesting groups in small and 43 nesting

groups in large patches.

The number of nesting groups with multiple females was significantly higher in large

patches than small patches (Table 4.5, χ2

= 4.00, P = 0.047). Single adult females were

almost equally recorded in both small (n =10) and large patches (n = 11). Nesting

groups of sub-adult males and females were also found in small (n = 4) and large (n = 7)

patches. Multiple male groups were uncommon in both patch types and male-biased

groups (multiple adult male with a single or multiple females) were absent in both small

and large patches (Table 4.5).

Page 85: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

69

Table 4.5 Frequency of the various combinations of adult sugar gliders nesting together in

nest boxes in five small patches (n = 17) and five large patches (n =35). * represents sub-

adult nest groups.

Multiple female Single female No female Total

Multiple male 0 0 1 1

Single male 1 3 1 5

No male 0 7 4* 11 small

Total 1 10 6 17

Multiple male 0 0 2 2

Single male 6 6 4 16

No male 5 5 7* 17 large

Total 11 11 13 35

4.3.2 Parentage analyses

Positive maternal LOD scores were obtained for 49 of the 85 offspring (juveniles / sub-

adults). However, 36 offspring showed at least two genotypic mismatches with all

candidates and could not be allocated to a mother. Similarly, positive paternal LOD

scores were obtained for 27 offspring, although 58 offspring could not be assigned to a

father based on only one mismatch allowed.

From the simulation data, critical values of 5 at the 95% confidence level and 1.88 at

the 80% confidence lavel were obtained for female candidates. Based on these results,

maternity was assigned to 24 offspring at the 95% confidence level and to an additional

11 offspring at the 80% confidence level. Two offspring (G20 and 83903) were

assigned to a female candidate (83905) with a positive LOD score but obtained a zero

delta value (Table 4.6). Further investigations were carried out using a second CERVUS

analysis to obtain the two most likely female parents. The results showed that adult

female 83905 was the only candidate that gave a positive LOD score for offspring G20.

This female did not obtain a significant delta because it shared several common alleles

with the offspring. Maternity of offspring 83903 was assigned to two candidate females

with similar LOD scores. The two adult females (81225 and 83905) had a relatedness

value of 0.16 suggesting they were potentially half-sibs. Therefore, it is likely that the

low confidence of this assignment is due to the presence of related individuals who

shared alleles with the potential mother.

Page 86: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

70

Critical delta values for male candidates ranged from 6 at the 95% confidence level to 2

at the 80% level. Paternity assignments were made for nine offspring at the 95%

confidence level and to a further 16 offspring at the 80% confidence level. A critical

LOD value of 5 at the 95% confidence level and 3.5 at the 80% confidence level was

obtained for parent pairs. Thirteen juvenile/ sub-adults obtained positive LOD scores for

parent pair assignments. However, only seven juvenile / sub-adults were assigned to

two parents at the 95% confidence level and to a further two were assigned two parents

at the 80 % confidence level (Table 4.6).

No parentage of an offspring was assigned to an adult outside the patch in question. A

comparison between the parentage assignments and the location of animals showed that

55% of maternal and 30% of parental assignments were made to females and males that

shared a nest box with the offspring at the time of sampling. The rest of the assignments

were made to males and females captured from the same transect of nest boxes.

CERVUS simulation, assuming that all mothers had been sampled, resulted in only 32%

of offspring (27 of 85) being assigned with 95% confidence. The close agreement of

this figure with the observed (24) figure, when taking account of a proportion of un-

sampled mothers, suggests that marker resolution in addition to incomplete sampling of

adult females may have been primarily responsible for failure to assign maternity. In

paternity assignment, however, the simulation result suggested that only 24% of

offspring could be assigned to a father with 95% confidence. The discrepancy between

observed (12%) and the expected rate of assignment is likely to be the result of

incomplete sampling of adult males. In addition to marker resolution and incomplete

sampling of adult males and females, the presence of close relatives (e.g. siblings or

half-sibs) may have also reduced the success and confidence of assignments (Marshall

et al. 1998).

Page 87: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

71

Table 4.6 Result of parentage assignments for juvenile and sub-adults sampled in this study by calculation of the most likely male and female

parents. LOD scores and Delta statistics for the most likely mother and male father for each offspring are provided. Trio LOD and Trio Delta

scores represent the most likely candidate parent pairs. Assignments at the 95% confidence level are designated by * and at the 80% by +. Id codes

for offspring, mothers and fathers correspond with those in Appendix 7.

Patch name

Offspring ID

ML mother ID

LOD score

Delta ∆ obt ≥ ∆ crit

ML father ID

LOD score

Delta ∆ obt ≥ ∆ crit

Trio LOD score

Trio Delta ∆ obt ≥ ∆ crit

C1 C5 10.02 5.55 ≥ 3.5* C2 9.95 8.23 ≥ 6* 22.44 6.73 ≥ 5*

C11 C7 7.53 2.28 ≥ 1.88+ C10 8.48 0.98 < 2NS 15.16 4.98 ≥ 3.5+

C3 C5 13.13 9.56 ≥ 3.5* C2 9.91 9.91 ≥ 6* 24.99 11.08 ≥ 5*

C8 C7 7.45 2.48 ≥ 1.88+ C9 10.23 10.23 ≥ 6* 15.92 5.16 ≥ 5*

Casterton Rd

C4 C6 10.72 4.50 ≥ 3.5* C9 7.42 7.42 ≥ 6* 14.09 4.38 ≥ 3.5+

B6 B7 7.66 7.66 ≥ 3.5*

81266 81265 11.08 11.08 ≥ 3.5* Bourne

81267 81265 11.56 11.56 ≥ 3.5*

G11 G10 9.00 6.36 ≥ 3.5* G12 9.61 4.28 ≥ 2+ 21.88 10.53 ≥ 5*

G14 81225 4.9 1.9 ≥ 1.88+ G12 8.59 7.52 ≥ 6* 3.76 0.00< 3.5 NS

G16 83901 8.47 6.78 ≥ 6*

G18 G10 3.79 3.79 ≥ 3.5*

G20 83905 4.80 0.00 < 1.88 NS

G21 81225 6.35 2.77 ≥ 1.88 +

Grundys

G22 83905 9.53 5.65 ≥ 3.5*

G25 G19 6.54 2.24 ≥ 1.88+

G26 G10 6.22 0.59 < 1.88 NS G12 2.79 2.79 ≥ 2+

G27 G10 7.01 1.78 < 1.88 NS G12 3.42 3.42 ≥ 2+

Page 88: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

72

Patch name

Offspring ID

ML mother ID

LOD score

Delta ∆ obt ≥ ∆ crit

ML father ID

LOD score

Delta ∆ obt ≥ ∆ crit

Trio LOD score

Trio Delta ∆ obt ≥ ∆ crit

G28 G24 4.93 4.89 ≥ 3.5* G12 2.90 2.90 ≥ 2+ 10.22 5.46 ≥ 5*

83902 G19 1.85 0.43 < 1.88 NS

83903 83905 3.90 0.00 < 1.88 NS

83904 83905 3.40 1.96 ≥ 1.88+ 83901 2.87 1.78 < 2NS 6.46 2.43 < 3.5 NS

83906 83907 4.90 4.90 ≥ 2+

Grundys

83908 81225 9.14 9.14 ≥ 3.5*

83890 83893 9.44 1.75 < 1.88 NS H11 5.74 4.64 ≥ 2+ 10.66 2.49< 3.5 NS

H14 H10 5.65 2.37 ≥ 2+

H15 83891 5.82 2.47 ≥ 1.88+

H16 H9 3.96 3.96 ≥ 2+

H17 83893 8.79 5.88 ≥ 3.5* H10 4.74 4.74 ≥ 2+ 15.60 6.24 ≥ 5*

H18 83893 7.64 0.67 < 1.88 NS H10 7.59 6.87 ≥ 6* 16.63 3.09 < 3.5 NS

83892 83893 3.55 2.90 ≥ 1.88+

The Heath

83894 83891 8.23 1.19 < 1.88 NS

83895 83898 9.17 3.58 ≥ 3.5*

83897 83898 6.60 1.20 < 1.88 NS

83899 83896 5.51 0.12 < 1.88 NS

Mt Meredith

MtTR2 83898 3.64 2.57 ≥ 1.88+

Nangwarry N4 N5 5.71 2.78 ≥ 1.88+

83887 PL8 1.69 1.69 < 1.88 NS

83888 PL8 2.47 2.47 ≥ 1.88+ Paltridges

PL7 81262 5.74 5.74 ≥ 3.5*

Page 89: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

73

Patch name

Offspring ID

ML mother ID

LOD score

Delta ∆ obt ≥ ∆ crit

ML father ID

LOD score

Delta ∆ obt ≥ ∆ crit

Trio LOD score

Trio Delta ∆ obt ≥ ∆ crit

REN1 REN10 11.39 6.71 ≥ 6*

REN12 REN7 8.57 8.57 ≥ 3.5* REN10 3.09 3.09 ≥ 2+ 13.96 13.96 ≥ 5*

REN3 REN10 6.57 5.97 ≥ 2+

REN4 REN2 6.56 6.56 ≥ 3.5*

REN5 REN10 9.09 7.30 ≥ 6*

Rennick

SGR.PA REN2 10.08 10.08 ≥ 3.5*

snow3 snow2 2.30 2.30 ≥ 2+

snow4 snow2 2.69 2.69 ≥ 2+ Snowgum

snow6 snow5 8.34 8.34 ≥ 3.5*

TP3 TP2 4.89 4.89 ≥ 2+

TP4 TP2 5.03 5.03 ≥ 2+

TP6 TP7 9.95 9.95 ≥ 3.5*

81273 81275 7.01 1.75 < 1.88 NS

Topper-weins

81274 81275 11.18 7.91 ≥ 3.5*

DS13 DS11 2.10 0.00 < 1.88 NS

DS15 DS14 5.13 5.13 ≥ 3.5*

DS17 DS21 10.38 10.38 ≥ 3.5*

DS3 DS2 8.86 8.86 ≥ 3.5*

DS8 DS14 1.09 1.09 < 1.88 NS

Deadmans Swamp

DS23 DS14 6.84 6.84 ≥ 3.5*

DS22 DS24 5.78 5.78 ≥ 2+

Page 90: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

74

4.3.3 Mating system

Parent pairs assigned to offspring with at least an 80% confidence level were used to

investigate the mating system of P. breviceps in those populations. In addition, a second

CERVUS analysis was conducted to obtain the two most likely parents for each

offspring. Results of this analysis were used to investigate whether a female could be

excluded as being the mother of an offspring based on her having a negative LOD

score.

In the Casterton Rd population, adult male C9 and adult female C7 were chosen as the

most likely parent pair for offspring C8 at the 95% confidence level (Table 4.6). This

adult male with another adult female (C6) were chosen as the parent pair for offspring

C4 at the 80% confidence level (Table 4.6). Similarly, in the Grundys population, adult

male G12 and adult female G10 were chosen as the most likely parent pair for offspring

G11 at the 95 % confidence level. The same adult male was selected with another adult

female (G24) as the parent pair for offspring G28 at the 95 % confidence level. Male

G12 was also selected as the most likely father for offspring G14 at the 95% confidence

level and offspring G26 and G27 at the 80% confidence level. Adult female 81225 as

the most likely mother of G14 obtained a significant delta at the 80 % confidence level.

However, this pair (G12, 81225) did not obtain a significant delta. An alternative

mother for offspring G14 had a negative LOD score (data not shown). No candidate

female with positive LOD scores were obtained for offspring G26. Two females (G10

and G24) with positive LOD scores were obtained for the offspring G27. However delta

values for these two females were close to zero, suggesting an equal chance of each

being the parent. The relatedness value of these two females was 0.51, suggesting

potential siblings and therefore sharing similar alleles.

Adult male 83901, from Grundys, with adult female 83905 were chosen as the most

likely parent pair for offspring 83904, although the delta score for this pair was close to

significant. A second female (G19) chosen for this offspring had a lower but positive

LOD score. An analysis of relatedness showed that these two most likely mothers were

close relatives (r = 0.4). Although the same male (83901) was selected as the most

likely father of offspring G16 at the 95% confidence level, no female with a positive

LOD score was obtained for this offspring.

Page 91: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

75

In The Heath population, adult male H10 with adult female 83893 were selected as the

most likely parent pair for offspring H17 at the 95% confidence level. One further

offspring H18 was also assigned to this pair with a positive LOD and a near significant

delta. The alternative female 83891 was a close relative to 83893 (r =0.39). Offspring

H14 was assigned to adult male H10 at the 80% confidence level. Although two females

(H13 and 83893) with positive LOD scores were selected for offspring H14, both

obtained a zero delta. Taking account of the relatedness value of these two females (r =

0.13) suggests they may potentially be half-sibs.

The above results revealed cases of potential polygamous pairs in which adult males

sired several offspring with different partners. The low confidence level for the

assignments of some animals is most likely to be due to the presence of relatives in the

data set. Adult females with high relatedness values mentioned above were also found

in the same nest box with offspring. Although data is limited, the presence of related

females with offspring in the same box may imply a cooperative rearing of offspring of

P. breviceps.

4.3.4 Relatedness and kinship

Pairwise relatedness values of individuals nesting together were used to further

investigate the relationships of individuals within nest boxes. On average, adult females

within nest boxes had higher relatedness values (0.185 ± 0.096) compared to adult male

pairs and adults of the opposite sex (Fig 4. 8). Adult males and females who shared a

nest box showed, on average, the lowest relatedness values (0.003 ± 0.061). On average,

adult male pairs had higher relatedness values compared to adults of opposite sexes.

However, pairwise relatedness values of adult males within nest boxes varied greatly

and ranged from -0.45 to +0.33. The differences between the three groups were not

significant when a single-factor ANOVA was used (F = 1.18, P = 0.32).

Page 92: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

76

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

F/M F/F M/M

Nesting adults

Avera

ge c

oeff

icie

nt

of

rela

ted

ness

Figure 4.8 Average coefficient of relatedness (Mean ± s.e.) of nesting adult individuals is

estimated from 30 nest groups.

Average relatedness values were calculated for nesting mates from 20 putative family (a

mix of adults and sub-adults /juveniles), 10 adult and 11 sub-adult nest groups. On

average, putative family groups showed higher relatedness values (0.31 ± 0.03)

compared to adult (0.022 ± 0.07) and sub-adult (-0.085 ± 0.04) nest groups (Fig 4.9).

Average relatedness between adult and sub-adult nest groups was significantly lower

than family nest groups, using a single-factor ANOVA (F =18.6, P = 0.000). The range

of relatedness values between individuals within the 20 family nest groups was +0.11 to

+0.57, indicating that the majority of animals within these nests were relatives.

Relatedness values for adult nest groups ranged from -0.22 to 0.54. The highest

relatedness value was from two adult females sharing a box (r = 0.54). Three nest boxes

with multiple adult males had relatedness values of 0.19, 0.13 and -0.089. In sub-adult

nest groups, the coefficient of relatedness was lower than in adult nest groups, although

the difference was not significant (F = -0.09, P = 0.3). Within sub-adult nest groups,

pairwise relatedness values between nest mates ranged between -0.36 and 0.15,

indicating unrelated individuals or potentially half-sibs following a polygamous mating.

Page 93: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

77

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Putative family adult sub-adult

Nest groups

Avera

ge c

oeff

icie

nt

of

rela

ted

ness

Figure 4.9 Average coefficient of relatedness (Mean ± s.e) for nesting individuals nesting

together is estimated from 20 mixed nests, 10 adult nests and 11 sub-adult nests.

The most likely parent pairs selected by CERVUS, at least at the 80% confidence level,

were used to assess potential inbreeding in P. breviceps. Pairwise relatedness values of

these presumably mated pairs were compared to the average relatedness of adults within

that patch. Two of the eight most likely mated pairs showed relatedness values greater

than the average relatedness of adults within that patch, indicative of close relatives

(Table 4.7). Adult male C2 and adult female C5, who shared the same nest box at the

time of sampling, were selected as the most likely parents of offspring C1 and C3 at the

95% confidence level. This pair showed a relatedness value of 0.21, suggesting

potential half-sibs. Similarly, adult male C9 and adult female C7, selected as the most

likely parents pair of offspring C8 at the 95 % confidence level, showed a positive

relatedness value of 0.26. Male C9 shared a box with offspring C8. However female C7

was captured in a different nest box (200m away). The two pairs with positive

relatedness values were both from Casterton Rd, a small patch (43 ha) surrounded by a

matrix of agricultural land and exotic pine plantation. The remaining six unrelated pairs

were sampled from two larger patches (> 200 ha) and a continuous forest.

Page 94: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

78

Table 4.7 Pairwise relatedness values for the most likely mated pairs from one small patch

(Casterton Rd), two larger patches (Grundys and The Heath) and a continuous forest

(Rennick State Forest). Mean of relatedness of all randomly paired adults and mean of

relatedness of adults of opposite sex for each pair are also given.

Most likely pairs

Patch name Mean adult

relatedness

Mean

adult F/M

relatedness male female

Pairwise

relatedness

C2 C5 + 0.21

C7 C10 - 0.07

C9 C7 + 0.26

Casterton

Rd - 0.21 ± 0.07 - 0.167 ± 0.09

C6 C9 - 0.15

G12 G10 -0.38 Grundys

- 0.13 ± 0.04 - 0.089 ± 0.07

G12 G24 -0.3

The Heath -0.055 ±0.03 -0.1 ± 0.05 H10 83893 -0.21

Rennick SF - 0.13 ± 0.04 - 0.089 ± 0.07 REN 10 REN 7 -0.23

4.4 Discussion

4.4.1 The effects of patch size on nest-box use, group size and structure

In the current study, four marsupial species were recorded occupying nest boxes, the

most common of which was P. breviceps. The occupancy rate of nest boxes by sugar

gliders, however, was significantly higher in large (> 200 ha) patches than small (< 150

ha) patches. The number of gliders per box was also significantly higher in large

patches and boxes with greater number of gliders were more frequently observed in

larger patches. The higher occupancy rates and greater number of gliders per box are

presumably a response to better resource availability (e.g. see Grundel and Pavlovic

2007), although this was not tested in the current study. Several studies of habitat

fragmentation have found that animal population density is related to patch size

(reviewed by Debinski and Holt 2000). However other researchers suggested that

habitat quality is more important than habitat size (e.g. Fleishman et al. 2002; Franken

and Hik 2004), and in fragmented habitats both habitat quality and isolation determine

the long-term viability of populations (Thomas et al. 2001). The effect of patch size on

population density is also known for some of the larger gliders such as P. gracilis

(Jackson 1999). Pope et al. (2004) also showed that as patch size decreased, the

population size of Petauroides volans also decreased. A number of other studies found

that the density of arboreal marsupials increases with patch size and some suggested

that the quality of the soil, that indirectly accounts for the quality of the patch, was the

Page 95: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

79

main factor that influenced the population size (van der Ree et al. 2001; van der Ree and

Bennett 2003). Results from the present study suggest that P. breviceps may respond to

higher resource availability in large patches via increased population density and group

size.

Nest-box use by arboreal marsupials appears to be influenced by the availability of

natural hollows at a site. (Menkhorst 1984a; Traill and Lill 1997; Smith and Agnew

2002; Lindenmayer et al. 2003). Although higher occupancy rates of nest boxes have

been interpreted as indicators of lower natural hollow availability, no replicated study

has been conducted to investigate the relationship between natural hollow availability

and occupancy of nest boxes. Menkhorst (1984b) found sugar gliders frequently

occupied nest boxes at a site with a relatively high abundance of natural hollows.

Furthermore, a number of studies have shown that the presence of sugar gliders is best

explained by the abundance and quality of food resources and to a lesser extent by

denning resources (e.g. Jackson 2000). Habitat ranking data (Carthew and Goldingay

1998) was used to assess habitat quality of small and large patches selected for

comparisons in the current study. These patches had a similar ranking for hollow

availability, suggesting that the population density was not influenced by the

availability of hollows. However, in ranking for P. breviceps large patches such as

Grundy and The Heath had a lower ranking compared to a small patch such as

Paltridges, suggesting that potentially several other factors may influence nest box-use.

Other factors such as the number of eucalypt trees (e.g. E. viminalis), height of trees and

diameter at breast height also have shown to be correlated with the presence of P.

breviceps (How 1996; Carthew and Goldingay 1998; Le Duff 2000).

This study found that the number of adult males was significantly lower than adult

females in the small patch category. However, a female-biased sex ratio was not

reflected in a biased sex ratio at birth in both small and large patches. A female sex-bias

structure may result from male dispersal if the isolation of a patch is leading perhaps to

a lack of immigration of males from outside the patch. A female-biased sex ratio also

reported in sugar glider nesting groups (Sadler and Ward 1999) and populations

(Suckling 1984). This may be consistent with the general theory of male dispersal in

polygamous species (Greenwood 1980), a pattern that has been documented in a range

of marsupial species, including the yellow-bellied glider (Russell 1984), Antechinus

Page 96: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

80

(Cockburn et al. 1985), brushtailed possum (Clout and Efford 1984), and phascogale

(Soderquist and Lill 1995).

4.4.2 Mating system of P. breviceps

In the current study, nesting groups consisted of a single adult male with a single adult

female, as well as groups of multiple females with a single male were observed. From

genetic analyses, using parent pairs assigned to offspring with at least 80 % confidence

level, five out of seven offspring/ parent combinations, with at least one common

parent, were found to represent cases of polygamy. In these cases two adult males were

found to sire two offspring each with different partners and one adult female was found

to sire two offspring with two different male partners. Two further offspring were sired

by the same male and female parents. Although these results suggest that polygamy

may be a common mating strategy in these sugar gliders, further data are required to

confirm this observation. Furthermore, these pairs were found in fragmented habitats,

and the results may not be representative of mating strategies in more continuous forest.

Difficulties associated with trapping of gliders in tall eucalypt forests resulted in a low

sample size from a more continuous forest at Rennick State Forest. In addition, no nest

boxes were available in the continuous forest prior to this study. Therefore, a

comparison of social group structure or mating system with a continuous forest was not

possible.

The results are consistent with a number of other studies that have suggested a

polygamous mating system for P. breviceps (e.g. Suckling 1984; Sadler and Ward

1999). These studies have been observational and mainly based on the composition of

nesting groups. A mixed social system consisted of polygamous and monogamous pairs

also have been reported for sugar gliders at Limeburners Creek Nature Reserve, on the

central north of New South Wales (Quin 1995). Several researchers have suggested that

the mating system of number of arboreal marsupial species may vary between different

populations and habitats. For example, Menkhorst (1995) observed that Victorian

populations of the squirrel glider lived alone or in pairs whereas Quin (1995a) found

that squirrel gliders in northern coast of New South Wales nested in colonies of two to

nine animals and were probably polygamous. Mixed social systems have been reported

for a number of other possum and glider species, including yellow-bellied gliders

(Goldingay and Kavanagh 1990; Goldingay 1992), Leadbeater’s possums (Lindenmayer

Page 97: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

81

and Meggs 1996) and mountain brushtail possums (Lindenmayer et al. 1997).

Moreover, even within the same population of arboreal marsupials, mating system may

vary between groups of animals (e.g. the greater glider, Henry 1984). Few studies,

however, have determined whether the social mating system equates to the genetic

mating system using molecular analyses (but see Brown et al. 2007). It is, therefore, not

known whether variations in the observed mating system are due to actual changes in

mating strategies or to the failure to detect the actual mating system because of the

arboreal, cryptic and nocturnal natures of the species.

4.4.3 Relatedness and Kin structure of P. breviceps

Petaurus breviceps is a communally nesting species, known to form social groups in the

wild (Suckling 1984; Quin 1995; Sadler and Ward 1999). However, the relationship of

nesting individuals is less known. In the current study, the analyses of genetic

relatedness between individuals within nest boxes showed that the groups of gliders that

shared nest boxes were generally comprised of related individuals. Parentage analyses

showed that around 55% of maternal and 30% of paternal assignments were made to

adult females and males that shared a nest box with offspring. Genetic relatedness

analyses also showed that nesting females in a majority of cases were relatives (e.g.

siblings or half-sibs). The assignment of offspring to candidate mothers was more

difficult in the presence of related females who shared several alleles. The presence of

co-nesting related females may imply that they live and rear their offspring together in a

single nest. Potential benefits of this behaviour include protection of offspring from

infanticide, improved thermoregulation and adoption of young whose mother dies

(Hayes 2000). Nesting adult males were found to vary in the degree of relatedness.

However, adults of the opposite sex were the least related. The presence of unrelated

male and females as potential sexual partners within nest boxes could result from a

natural behaviour within the species to choose unrelated partners or is a natural process

resulting from sex-biased dispersal. Further analyses are required to elucidate these

possibilities.

In the current study, gliders were found using nest boxes in all seasons. However, the

nest-box use was higher in cold seasons and it is suggested that group nesting greatly

reduces winter energy expenditure of P. breviceps (Fleming 1980; Körtner and Geiser

2000). The higher occupancy rate of nest boxes in autumn and winter may be viewed as

Page 98: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

82

a way of conserving energy. Group nesting or increases in group size over winter, as a

way of conserving energy, have been reported or suggested for several small mammals,

including voles (Wolff and Lidicker 1981); squirrels (Koprowski 1996); the southern

flying squirrel (Layne and Raymond 1994); and the mountain brushtailed phascogale

(Rhind 2003). The huddling associated with nesting either increases actual body

temperature, or animals are able to maintain their normal temperature at a lower

metabolic cost (Withers and Jarvis 1980).

4.4.4 Inbreeding avoidance

This study found two cases of offspring/parent combinations where the parents were

potentially related (R>0.21), providing some direct evidence of inbreeding in a small

and isolated patch. Although these data are very limited, this finding may be due to the

smaller patch size (43 ha) or potential isolation of the population, which is surrounded

by a matrix of pine and agricultural land. Population analyses revealed significant

pairwise FST values between this population (Casterton Rd) and other populations

(Chapter five), suggesting potential isolation of this population, which might be

expected to lead to inbreeding in small populations.

In the absence of the capacity for dispersal, kin recognition may act as a mechanism for

inbreeding avoidance, therefore mitigating the problem of a high density of related

individuals in small populations. Mechanisms of social recognition in natural

populations of P. breviceps remain unclear (Mallick et al. 1994; Klettenheimer et al.

1997; Sadler and Ward 1999). Male P. breviceps possess several scent glands (e.g.

frontal, sternal and urogenital) which secrete pheromones. Schultze-Westrum (1965,

1969) (cited in Suckling 1984) suggested that scent marking is important in determining

the social organization of sugar glider captive groups. Schultze-Westrum (1969)

suggested that pheromones may be transferred to group members by one or two of the

dominant males. These dominant males also perform most of the other social activities

such as mating, territory maintenance, territory patrolling, and aggression against

outside individuals. However, little is known about scent markings in natural

populations and the role of pheromones in the social structure of P. breviceps.

Within a species, comparisons of populations found in both continuous and fragmented

habitats are of particular value. These comparisons allow an assessment of the impact of

fragmentation on population dynamics and social organization. The findings of this

Page 99: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Social structure and mating system

83

study only reflect social organisation and group structure of the species in fragmented

habitats and do not necessarily equate to those of a continuous forest. In this study the

limited samples from the continuous forest at Rennick State Forest did not provide such

an opportunity for comparison. More research is required to compare social structure

and mating system of the species between fragments and continuous forest.

Page 100: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

84

5 Genetic diversity and population structure of P. breviceps

5.1 Introduction

The loss of natural habitats caused by human activities is one of the major threats to

long-term persistence of many species. The remaining habitat patches are often small

and isolated from each other by less suitable landscape elements such as agricultural

and rural areas, softwood plantations, settlements and roads. Potentially, negative

effects of fragmentation include reduction of habitat area, modification of the

environment and increased isolation of local populations. The latter is of particular

importance because it may increase the risk of population extinction due to different

demographic and genetic factors (reviewed by Reed 2004; Burkey and Reed 2006).

Genetic variability provides the raw material for evolutionary change and is therefore

crucial to the long-term viability of isolated populations (Reed and Frankham 2003).

Habitat fragmentation can affect the genetic structure of populations both directly and

indirectly through its effects on gene flow, by restricting dispersal and increasing the

effect of inbreeding and genetic drift in small habitats (Frankham 2005). The long-term

viability of a species in a fragment is strongly influenced by its location within the

broader landscape, and, in particular, by the nature of the surrounding vegetation and

the presence of corridors (Downes et al. 1997).

Although landscape heterogeneity and patchy distribution of resources may affect

species survival in fragmented habitats, it is unclear to what extent habitat

fragmentation represents population fragmentation. Furthermore, the degree and the

type of habitat fragmentation can have different effects depending both on the species

and the context (e.g. Swihart et al. 2006). The extent to which a species is affected by

habitat fragmentation is determined by its degree of habitat specialization, dispersal

potential and behavioural responses to habitat fragmentation (Weins 1997).

Population fragmentation is expected to reduce within-population genetic

polymorphism and increase genetic differentiation. Loss of polymorphism can reduce

the potential for adaptation and, in combination with increased mating among relatives,

lead to inbreeding depression (Frankham 2005). In contrast, increased genetic

differentiation among populations may potentially lead to outbreeding depression,

following interpopulation mating (Marshall and Spalton 2000). However, gene flow

tends to homogenise population genetic composition and thereby counteracts such

Page 101: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

85

effects (Slatkin 1985). Consequently, a minimum level of gene flow is considered

important for the viability of small, isolated populations (Mills and Allendorf 1996).

In south-eastern South Australia, native forests have been cleared for agricultural

activities, urbanisation or softwood production. The region originally consisted of a

mosaic of grasslands, woodlands and forests. However, it has suffered severe habitat

fragmentation, with only 13 % of the original native vegetation now remaining (Croft et

al. 1999). The area now comprises agricultural and rural areas, and most suitable

remaining habitats are confined to small less productive remnant patches, which are

often degraded. The sugar glider (Petaurus breviceps) is one of nine species of arboreal

marsupials in the region (Carthew 2004), and is listed as Rare under Schedule 7 of the

South Australian National Parks and Wildlife Act (1972). P. breviceps is likely to be

vulnerable to the effects of fragmentation as it is forest dependent and virtually absent

from exotic pine plantations such as radiata pine (Pinus radiata) (Lindenmayer et al.

1999b; Lindenmayer et al. 2000). Arboreal marsupials have been long recognised as a

group of mammals that are potentially vulnerable to habitat disturbance and

fragmentation (McIllroy 1978; Bennett et al. 1991; Laurance and Vasconcelos 2004).

However, studies to date on the effects of habitat fragmentation on arboreal marsupials

have primarily focused on the presence and absence of species (Lindenmayer et al.

1993a; McAlpine and Eyre 2002), and their diversity and relative abundance in the

fragmented landscape (Deacon and Nally 1998; Lindenmayer et al. 1999b; Soderquist

and Mac Nally 2000; Kavanagh and Stanton 2002; Woinarski et al. 2006). Much less

attention has been paid to the genetic consequences of fragmentation. Such data are

important for long-term conservation management of the species.

Surveys of native forest patches in the south-east of SA showed that the presence of

arboreal marsupials was positively correlated with habitat attributes such as the density

of eucalyptus species and the surrounding land use (How 1996; Le Duff 2000).

Although P. breviceps was present in many of the native patches surveyed, suggesting

relative tolerance of the species to habitat fragmentation (Le Duff 2000), the effects of

the fragmentation on genetic structure of the species is yet to be documented. There is

also a lack of knowledge of whether gene flow occurs between fragmented populations.

Le Duff (2000) found that P. breviceps was more likely to be detected in patches which

were surrounded by grazing land rather than Pinus radiata plantations, suggesting that

scattered large and old eucalyptus trees within grazing lands or thin corridors along

Page 102: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

86

fence lines and roadsides may provide nesting sites or assist P. breviceps to disperse

between patches.

The present study aimed to evaluate whether the population genetic structure of P.

breviceps in south-eastern South Australia has been influenced by habitat

fragmentation. Highly variable microsatellite markers were used to investigate the

genetic diversity and population structure of 13 populations of P. breviceps in

fragmented habitats. Specifically, this study aimed to determine whether (i) genetic

diversity and polymorphism has reduced due to the reduction in size of habitats and (ii)

if the current genetic structure of the species suggests isolation and restricted gene flow

between populations.

5.2 Materials and methods

5.2.1 Study populations and molecular data

Samples of P. breviceps were collected from 12 remnant patches of native forest in

south-east South Australia (37° 30′ S, 140° 25′ E to 38° 00′ S, 141° 00′ E), and an area

of continuous forest (Rennick State Forest) in south-west Victoria (37°55' S 140°58' E).

They were obtained from nest boxes and by trapping (see Chapter four for details). The

genotypic data was obtained for nine microsatellite loci. Primer sequences, PCR

amplification and screening protocols are given in Chapter four. Preliminary analysis

was conducted to determine levels of relatedness between individuals sampled (see

Chapter four for the details of the analysis) and remove those considered related,

including offspring of glider pairs, siblings and potential half-sibs from the same nest

box or within close proximity (up to 200 m). Consequently 87 individuals, including

adults and sub-adults, were used in population analyses. Five additional samples from

sites further north, at Western Flat, Bordertown and Alaman, were obtained from the

Australian Biological Tissue Collection at the South Australian Museum.

5.2.2 Genetic diversity

Tests for departure from Hardy-Weinberg equilibrium (HWE) and linkage

disequilibrium between loci were performed using the program GENPOP 3.4 (Raymond

and Rousset 1995). A probability test based on a Markov chain algorithm (Guo and

Thompson 1992) with 10000 dememorizations, 100 batches and 5000 iterations were

Page 103: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

87

conducted at each combination of locus and population. The resultant P values were

adjusted for multiple tests via the sequential Bonferroni method (Rice 1989). Observed

(HO) and expected heterozygosity (HE) (Nei 1978) for each population was calculated in

POPGENE version 1.32 (Yeh et al. 1997). Allelic diversity (average number of alleles

per locus), allelic richness (allelic diversity corrected for sample size) and levels of

inbreeding (FIS) were estimated for all populations. The significance of FIS values were

tested by permuting the alleles within samples over all loci in each population in the

program FSTAT 2.9.3.2 (Goudet 2001), using 1000 permutations. Bonferroni correction

was applied to the resultant P values. Differences in allelic diversity, allelic richness and

heterozygosity (HE) among populations were assessed using one-way analysis of

variance (ANOVA) and post hoc Tukey tests in SPSS version 13.0 (SPSS, 2004. Inc).

Linear regression was used to determine if there was a relationship between patch size

and allelic richness or heterozygosity.

5.2.3 Population structure

To determine differences in genetic variability between populations and to assess

whether habitat fragmentation may have contributed to genetic differentiation between

the populations, a hierarchical analysis of molecular variance (AMOVA) (Excoffier et

al. 1992) was conducted using GenAlEX6 (Peakall and Smouse 2006). Pairwise

estimations of FST were used to evaluate the genetic differentiation between each pair of

populations and were tested for significance using 10000 permutations.

The Bayesian clustering method in the program STRUCTURE version 2.1 (Pritchard et

al. 2000) was used to determine whether populations of sugar gliders in the region could

be subdivided into genetically distinct groups, and whether the structure of these groups

reflected the population structure of the region The program attempts to find population

groupings that minimize Hardy-Weinberg and linkage disequilibrium by assigning

individuals to subpopulations on the basis of their genotypes, while simultaneously

estimating population allele frequencies (Pritchard et al. 2000). An admixture ancestry

model was chosen based on the history of the region and connectivity of the populations

prior to habitat fragmentation. The option of correlated allele frequencies between

populations was used, as this configuration is considered best by Falush et al. (2003) in

cases of subtle population structure. Alpha was inferred from the data and other

parameters such as Lambda were set to their default values. No prior population

Page 104: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

88

information was provided. The length of the initial burn-in period was set to 100,000

iterations followed by a run of 500,000 Markov chain Monte Carlo iterations. Five

independent runs each of K (optimal number of populations) from 1 to 18 (two more

than the actual number of populations) were performed and the mean estimated

posterior probability Ln P(X/K) was calculated for each value of K. The optimal value

of K was assessed using the original method described in Prichard et al. (2000), as well

as the more recent method described by Evanno et al. (2005), where the highest ∆K

score represents the optimal number of populations.

Data was tested for isolation by distance by comparing genetic distance between

populations (as measured by pairwise FST) to geographical distance using GenAlEX6

(Peakall and Smouse 2006). Significance was tested using a Mantel test (Mantel 1967).

5.3 Results

5.3.1 Genetic diversity

In total, genotypic data for 92 individuals from 16 populations and nine loci were used

in population analyses. A total of 57 alleles were scored across all populations and loci,

with the number ranging from three to 11 per locus. Calculations of allelic diversity and

allelic richness were performed only on 13 populations, as three populations with only

one individual each were excluded. The average population allelic diversity ranged

from 2.66 to 7.4. Levels of moderate to high heterozygosity were found within each of

these populations, with a mean heterozygosity across all loci and populations of 0.66

(Table 5.1).

There was no significant departure from Hardy Weinberg Equilibrium after the

Bonferroni correction for each population. One locus (Petb1) showed some departure

from HWE (P = 0.01), however the result was not significant when corrected for the

number of tests (α = 0.005). No significant linkage disequilibrium was observed

between 36 pairwise locus combinations.

Overall, there was a significant difference in allelic diversity among populations (F =

3.49, P = 0.001). However, a post hoc Tukey test showed that only six pairwise

comparisons were significant. Five of the six significant differences were between the

population with the largest number of samples (Deadmans swamp) and five of the

Page 105: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

89

smallest populations (≤ five samples). A further significant comparison occurred

between Rennick State Forest and a small population (Mt Meredith). Comparisons of

allelic richness and unbiased hereozygosity (HE) (Nei 1978) among populations were

not significant (F = 1.2, P = 0.43 and F = 0.35, P = 0.8 respectively). No significant

relationship was found between patch size and either allelic diversity (r2 = 0.046, P =

0.48), allelic richness (r2 = 0.07, P = 0.78) or heterozygosity (r

2 = 0.05, P = 0.6). Despite

overall HW equilibrium in populations, positive values of the inbreeding coefficient

were evident at nine of the 13 populations and values ranged from 0.007 to 0.13. The

0.007 value was from the large continuous forest at Rennick State Forest. This value

was several times smaller than the values found in smaller fragments. Although two

small (Paltridges and Topperweins) and one larger population (Deadmans Swamp) had

significant FIS values at the 95% level, none remained significant after corrections were

made for multiple tests (k = 9 and P= 0.005); (Table 5.1). Linear regression revealed no

relationship between inbreeding coefficient and patch size (r2 = 0.03, P = 0.56).

Table 5.1 Summary statistics of genetic diversity for P. breviceps in south-eastern South

Australia. Values are area, number of samples (n), allelic diversity (AD), allelic richness

(AR), observed (HO) and expected (HE) heterozygosity and inbreeding coefficient (FIS) and

probability (P) of FIS values for 13 populations sampled. Numbers are given as mean ± s.e.

Numbers in bold are two small and one large populations with significant FIS values

before Bonferroni correction for multiple tests (K = 9, P = 0.005). See Fig. 4.1 for the

location of patches.

Patch name Area

(ha)

n AD AR HO HE FIS P

Casterton Rd 43 5 3.88 ± 0.67 3.32 ± 0.48 0.65 ± 0.06 0.57 ± 0.06 -0.1 0.93

Bourne 80 9 5.66 ± 1.00 3.79 ± 0.35 0.65 ± 0.04 0.66 ± 0.05 0.062 0.17

Paltridges 116 8 6.33 ± 1.13 4.17 ± 0.41 0.74 ± 0.04 0.72 ± 0.05 0.092 0.047

Topperweins 117 8 6.33 ± 0.98 4.14 ± 0.39 0.69 ± 0.03 0.71 ± 0.03 0.13 0.025

Penola CP 139 5 3.88 ± 0.45 3.82 ± 0.34 0.83 ± 0.07 0.66 ± 0.05 -0.138 0.92

Snowgum 194 7 5.00 ± 0.97 3.70 ± 0.45 0.66 ± 0.07 0.64 ±0.06 0.073 0.13

Western Flat 200 3 3.77 ± 0.64 4.25 ± 0.49 0.79 ± 0.09 0.66 ± 0.07 0.013 0.56

The Heath 204 6 4.4 ± 0.67 3.66 ± 0.36 0.66 ± 0.03 0.68 ± 0.03 0.031 0.33

Mt Meredith 250 3 2.66 ± 0.40 2.87 ± 0.39 0.72 ± 0.09 0.56 ± 0.06 -0.079 0.77

Grundys 260 8 5.1 ± 0.65 3.73 ± 0.33 0.65 ± 0.02 0.71 ± 0.03 0.026 0.35

Deadmans

Swamp

525 15 7.4 ±1.591 4.01 ± 0.36 0.67 ± 0.03 0.69 ± 0.03 0.078 0.03

Nangwarry 2216 4 3.66 ± 0.28 3.37 ± 0.26 0.78 ± 0.06 0.64 ± 0.07 -0.165 0.90

Rennick SF 5200 8 6.89 ±1.20 4.15 ± 0.41 0.73 ± 0.04 0.71 ± 0.03 0.007 0.51

Page 106: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

90

5.3.2 Population structure

Overall, the level of genetic subdivision (FST) among all populations was small, but it

was significantly different from zero (FST = 0.067 ± 0.005; P = 0.002). A large

proportion (93%) of the genetic variance was explained by variation within populations,

with only 7% among populations. After adjustments were made for multiple tests (Rice

1989) 28 of 78 pairwise comparisons were significant (k = 78, α = 0.0006; Table 5.2).

The smallest patch (Casterton Rd) was significantly differentiated from the other 12

populations. Snowgum, a patch embedded in a matrix of pine, also was significantly

differentiated from 10 other populations. However, the pairwise FST between this patch

and the nearby Rennick State Forest (5 km) was not significant.

One further patch with significant FST values was Deadmans Swamp, a larger patch

(525 ha) surrounded mainly by pine plantation and geographically located a fair

distance (up to 80 km) from other populations. The effect of surrounding land use was

assessed by dividing patches into two groups of agriculture (coded by 1 and 2) and pine

plantation (coded by 3, 4 and 5). No significant difference in FST values was found

between the two groups (FST = 0.06, P = 0.12).

A total of 92 samples from 16 populations were used in the Bayesian clustering

analysis. The convergence of the data was evaluated from the values of the summary

statistics such as α, F and the likelihood values. At the end of the burn-in phase

(100,000 iterations), and throughout the run (500,000 iterations) α was almost constant.

The consistency of the estimated probability of the data (Ln P(X/K) across different

runs also verified that the chains had converged. The maximal value of the log

likelihood of the data was obtained at K = 1 (Ln P(X/K) = -3273) and declined

thereafter from K= 2 to 18 (Fig. 5.1). Standard deviations of the log probability

estimates were very small, less than 1% of the mean. Using the method of Evanno et al.

(2005), a clear mode in ∆K was also observed at K= 1 (∆K = 89) and ∆K dropped to 3

after that. Based on these results, the analyses suggest that the optimal number of

populations is one.

Page 107: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

91

Table 5.2 Pairwise FST (below diagonal) and probability (above diagonal) values based on 10000 permutations between each pair of populations

sampled in this study. Probabilities in bold were significant after sequential Bonferroni was applied (P = 0.0006). Population codes are as follow:

Cast = Casterton Rd, Boun = Bournes, Palg = Paltridges, Topw = Topperwiens, Penl = Penola Cp, Snwg = Snowgum, Wf = Western Flat, Heth =

Heath, Mdth = Mt Meredith, Grnd = Grundys, DmS = Deadmans Swamp, Nang = Nangwarry and Renk = Rennick State Forest. Surrounding land

use codes are: 1 = surrounded by grazing land, 2 = ¼ Pinus radiata, 3 = ½ P. radiata, 4 = ¾ P. radiata and 5 = surrounded by P. radiata. c =

continuous forest

Surrounding

Land use Cast Boun Palg Topw Penl Snwg WF Heth Mdth Grnd DmS Nang Renk

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cast

1 0.124 0.028 0.006 0.010 0.000 0.004 0.005 0.003 0.004 0.000 0.011 0.016 Boun

3 0.114 0.027 0.298 0.004 0.000 0.010 0.160 0.012 0.012 0.004 0.023 0.005 Palg

3 0.140 0.042 0.006 0.008 0.000 0.039 0.028 0.015 0.007 0.002 0.011 0.036 Topw

1 0.161 0.057 0.071 0.069 0.000 0.014 0.004 0.005 0.040 0.000 0.029 0.001 Penl

5 0.082 0.060 0.053 0.071 0.126 0.003 0.000 0.000 0.000 0.000 0.000 0.034 Snwg

1 0.153 0.073 0.063 0.048 0.114 0.091 0.007 0.002 0.019 0.264 0.294 0.012 WF

3 0.145 0.053 0.017 0.036 0.084 0.091 0.094 0.103 0.049 0.000 0.006 0.162 Heth

1 0.240 0.091 0.068 0.072 0.158 0.114 0.155 0.047 0.007 0.000 0.000 0.034 Mdth

3 0.126 0.043 0.039 0.045 0.047 0.083 0.067 0.033 0.086 0.000 0.032 0.171 Grnd

4 0.132 0.053 0.035 0.037 0.093 0.078 0.012 0.059 0.117 0.058 0.006 0.000 DmS

c 0.139 0.055 0.048 0.064 0.076 0.116 0.015 0.077 0.158 0.047 0.049 0.001 Nang

c 0.097 0.033 0.041 0.028 0.085 0.032 0.064 0.017 0.055 0.013 0.057 0.074 Renk

Page 108: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

92

A Mantel test revealed that there was no significant relationship between geographical

and genetic distance (R (XY) = -0.003, P = 0.53) across the region. However, small

sample sizes in this study precluded further breakdown of data and comparison of

patterns of spatial genetic structure within populations or between sexes, which may

have provided better resolution of isolation by distance within the region.

-7000

-6000

-5000

-4000

-3000

-2000

-1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of Populations (K)

Esti

mate

d L

n p

rob

ab

ilit

y

Figure 5.1 Log likelihood probability of data (Ln P(X/K) as a function of K for P.

breviceps samples from 16 populations.

5.4 Discussion

One major objective of conservation management should be to maintain genetic

diversity in natural populations to ensure the continued survival, fitness and

evolutionary potential of a species (Reed and Frankham 2003). An accurate knowledge

of local genetic diversity and population structure can, therefore, provide critical

information for assessing the conservation status of populations and establishing the

appropriate scale for conservation management strategies (Petit et al. 1998). Genetic

diversity and structure in P. breviceps populations were studied here by sampling 13

populations and using nine polymorphic microsatellite loci. Heterozygosity and allelic

diversity of sugar gliders at microsatellite loci were moderate (HE = 0.56 to 0.71 and

AD = 2.87 to 7.4) compared to a range observed across 24 marsupial species (AD = 1.2

to 12, HE = 0.05 to 0.86, Bowyer et al. 2002). The average heterozygosity (0.66) was

higher than those found in species known to suffer range contraction or recent founder

events such as the southern koala (0.43, Houlden et al. 1996), and northern hairy-nosed

wombat (0.27, Taylor et al. 1994), but lower than levels observed in undisturbed

Page 109: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

93

populations such as eastern grey kangaroos (0.82, Zenger et al. 2003) and allied rock

wallabies (0.86, Spencer et al. 1997). In order to assess the effects of fragmentation on

genetic diversity of these populations, pre-fragmentation samples are necessary, but

such information was not available in the current study. However, in a similar

investigation, populations of the greater glider (Petauroides volans) in remnant patches

at Tumut showed evidence of a significant loss of microsatellite genetic diversity

relative to pre-fragmentation samples (A. Taylor et al. unpublished data, cited in Banks

et al. 2005).

Although there were fewer alleles in populations from smaller patches than large

patches in this study, there were no significant differences in either allelic richness or

heterozygosity. The differences in the number of alleles are likely to be the effect of

sample size. No significant relationship was also found between the size of the patches

and either allelic diversity, allelic richness or heterozygosity. Overall, no significant

inbreeding effect was detected in the populations studied. However, two small and one

larger patch had FIS values significantly greater than zero before applying Bonferroni

corrections, and the values were >9 fold larger than the FIS value in a continuous forest

(Rennick State Forest). Pairwise FST comparisons also revealed that the smallest patch

(Casterton Road) was significantly differentiated from other populations. These results

in conjunction with some direct evidence of inbreeding between two closely related

pairs of gliders (relatedness values of 0.21 and 0.26, see Chapter four for details)

suggest that small and isolated populations in the region may potentially be more likely

at the risk of inbreeding depression.

An overall small but significant FST was obtained for populations in the region, with

AMOVA results showing 7% of the variation was partitioned among populations.

However, Bayesian clustering indicated a single cluster (no substructuring) in the

absence of prior information on the location of sampled populations. No significant

relationship between FST and surrounding land use was detected. However, a small

patch (Snowgum) embedded in a matrix of pine was differentiated from 10 of the 12

populations compared. Although data is limited, a non significant FST between Rennick

State Forest and Snowgum, which are in close proximity (5 km), may imply some level

of gene flow between these populations. Significant pairwise FST values were also

observed between Deadmans Swamp, a population surrounded mainly by pine

plantation and geographically distantly located from other populations, and eight other

Page 110: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Genetic diversity and population structure

94

populations. However, there was no evidence for isolation-by-distance in populations of

P. breviceps in south-eastern South Australia.

Overall, this study revealed some limited evidence for genetic structuring of populations

of P. breviceps in the south-east of South Australia. However larger sample sizes from

these patches are required to verify these results. The findings of the study also may be

affected by the sampling technique, which mainly involved sampling from nest boxes

and may not have randomly and evenly covered populations. An alternative explanation

for the low genetic substructuring is that anthropological fragmentation is a recent

phenomenon in evolutionary time and the final, long-term impacts of fragmentation

may not yet have shown in the allelic frequencies of microsatellite loci.

Page 111: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia 6 An extension to the known distribution of the squirrel glider (Petaurus norfolcensis) in Australia 6.1 Preamble A large section the following chapter has been published in Malekian et al. (2006),

Australian Mammalogy 28, 235-238

6.2 Introduction The squirrel glider (Petaurus norfolcensis) is a small (190-300g), arboreal and

nocturnal marsupial. It is very similar in appearance to its more common relative, the

sugar glider (Petaurus breviceps). However, it has a longer, more pointed face; longer

and narrower ears; a bushier, more softly furred tail and is almost double the weight

(Suckling 1983b; Menkhorst 1995). P. norfolcensis inhabits dry sclerophyll forests

and woodlands and is absent from rainforests and closed forests (Menkhorst et al.

1988). Compared to P. breviceps, P. norfolcensis is more restricted in distribution and

less studied. It is sparsely distributed along the east coast of Australia, from Victoria

to north Queensland (Fig. 6.1). This hollow dependent species is listed as Threatened

in New South Wales and Victoria but considered Endangered (presumed extinct)

under Schedule 7 of the South Australian National Parks and Wildlife Act (1972).

NOTE: This figure is included on page 95 in the print copy of the thesis held in the University of Adelaide Library.

Figure 6.1 Distribution map of P. norfolcensis in Australia prior to this study. Map from Menkhorst and Knight (2004). The only known record of P. norfolcensis from South Australia is a single specimen

held in the South Australian Museum from Bordertown in 1939 (Carthew 2004).

Recently, however, two suspected P. norfolcensis specimens were found in the SA

95

Page 112: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia

96

Museum collection during a broad genetic study of the genus Petaurus and more

specifically, P. breviceps in South Australia. The specimens, both caught by cats, came

from localities in the upper south-east of the state: Western Flat (36º 32′ S and 140º 45′

E), collected in 1993 and Bordertown (7 km west of the town; 36º 18′ S and 140º 50′ E),

collected in 1991 (Fig. 6.2).

Figure 6.2 Sketch map of upper south-east of South Australia. Black dots show the

location of suspected P. norfolcensis samples in SA.

Traditional morphometric methods and more recently molecular techniques have been

developed for species identification. In the glider genus Petaurus, morphological

characters such as colour and body size, as well as skull parameters have been used to

distinguish and describe species (e.g. Alexander 1981; Ziegler 1981; Van Dyck 1993;

Quin et al. 1996b). In particular, skull parameters have been used to differentiate P.

breviceps and P. norfolcensis by a number of researchers. For example, Quin et al.

(1996) found a strong positive correlation between condylobasal length (CBL) and

maximum zygomatic breadth (MZB) in both species. The CBL/MZB ratio was

significantly greater in the squirrel glider than in the sugar glider. They, therefore, relied

on skull length as an index of body size (Quin et al. 1996b).

Page 113: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia

97

Molecular based methods for species identification are also well established (e.g.

Martin 1993; Baker and Palumbi 1994; Alacs et al. 2003) and have been used for many

species, including marsupials (e.g. Alacs et al. 2003). Several approaches are available

to identify species based on analysis of proteins and DNA. A powerful approach for

resolving taxonomic uncertainties is to survey nucleotide sequence variation in

mitochondrial DNA (mtDNA) (Martin 1993). Because mtDNA evolves rapidly, it is

possible to distinguish closely related as well as distantly related species (Martin 1993;

Baker and Palumbi 1994). Furthermore, a large number of mtDNA sequences already

exist for most glider species (Osborne and Christidis 2001; Brown et al. 2006),

providing a background of data to assess species boundaries using robust phylogenetic

methods.

In this study, both morphometric and molecular techniques were used to identify the

suspected squirrel glider samples from South Australia. This chapter describes the

genetic discovery of the squirrel glider in South Australia and the consequent field

investigations for the species in the state. It also assesses the accuracy of the skull

parameters in distinguishing this species from its similar relative the sugar glider. Since

the next nearest locality for known P. norfolcensis is the eastern side of the Grampians,

several hundred kilometres east of the current potential population in SA (Menkhorst

1995), I also wish to explore whether the SA population is an isolated population or a

continuum that had not previously been recognised, perhaps, because of the difficulties

in distinguishing the two species in the field.

6.3 Material and methods

6.3.1 Genetic investigation

Tissue samples from suspected squirrel glider specimens were used in genetic analyses.

A 700bp fragment of NADH dehydrogenase subunit 2 (ND2) was PCR-amplified and

sequenced, using mmND2.1 and mrND2c primers as described in Osborne and

Christidis (2001). Sequences were obtained from the two museum specimens (27042

and 27085), two glider specimens obtained in 2006 in Bordertown (85784 and 85785)

(see below), two known P. norfolcensis samples from populations in New South Wales,

and a single sequence from a Victorian P. norfolcensis from GenBank (accession

number AF300995). A number of P. breviceps samples obtained across the range of the

Page 114: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia

98

species in Australia (see Chapter three for details) were also included. To confirm the

identity of the suspected samples among Australian gliding petaurids, sequences of

yellow-bellied glider (Petaurus australis) from Victoria and mahogany glider (Petaurus

gracilis) from Queensland were added to the analyses. The greater glider (Petauroides

volans) was used as an outgroup for phylogenetic analyses (GenBank accession number

AF300997). The sequences were aligned using Clustal X (version 1.83) and checked

visually. Phylogenetic relationships between mtDNA haplotypes for known glider

species from Australia and unknown samples were assessed by Neighbour Joining (NJ)

(HKY85 distance) using PAUP (version 4.0 b10) (Swofford 2002). Robustness of this

analysis was tested using 1000 bootstrap pseudoreplicates.

6.3.2 Field investigations

A field trip to Bordertown and Western Flat was conducted in February 2006, in order

to assess habitat at the collection site of museum specimens and determine whether the

sites were occupied by gliders. Trees at the sites were assessed during daylight for

flowering and incisions/or any sign of animal presence. Spotlighting was conducted

over two consecutive nights at the sites using 55W hand-held spotlights connected to

12V sealed lead acid batteries. Observations started before dusk and were followed by

about an hour of spotlighting. Several observers watched and listened for calls or

rustling that might be an indicator of animals. The location of any animals detected was

entered into a Garmin Global Positioning System (GPS).

6.3.3 Morphometric assessments

To further investigate the identity of the SA specimens, a morphological assessment of

the available voucher specimens of the three samples (two museum specimens and one

carcass (85784) found in Bordertown) was carried out. The three specimens were

checked and measured (carcass only) for the external characters such as fur colour and

body size. The fourth suspected squirrel glider was a young orphaned animal (85785)

from Bordertown. The skull measurements of these animals were not available.

To test the accuracy of skull parameters in species identification in these two species,

skull measurements were also taken from 41 sugar glider and 12 squirrel glider skulls in

collections from the South Australian Museum and Victorian Museum. Catalogue

numbers for those samples are given in Appendix 8. The age of the animals was

Page 115: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia

99

assessed roughly from the amount of tooth wear on the lower and upper incisors and

only adults were included in the analyses. All measurements were taken with vernier

callipers to the nearest 0.1 mm. Only cranial characters could be used, as few complete

skeletons were available. Ten skull parameters (Fig. 6.3) were chosen for use according

to several criteria: (i) measurements were easily taken and repeatable, (ii) measurements

were relatively independent and covered most areas of the skull, and (iii) characters

were preserved in most of the skulls examined.

Figure 6.3 Parameters used in morphometric analysis: 1. Condylobasal length; 2.

maximum zygomatic breadth; 3. rostrum height; 4. upper molar tooth raw length; 5.

upper tooth raw length; 6. lower molar raw length; 7. rostral width between upper

canines; 8. width of ascending ramus; 9. upper incisor- premolar row; 10. interorbital

width

Statistical analyses were conducted in SPSS version 13.0 (SPSS.Inc 2004). Summary

statistics of skull parameters were generated separately for both species. An Analysis of

Variance (ANOVA) was used to test the significance of these variables between sugar

gliders and squirrel gliders. Means of CBL, MZB and CBL/MZB ratios were calculated

for each species and a t-test was used to test the significance of these variables. A

bivariate correlation analysis using Pearson coefficient (e.g. Quin et al. 1996b) was used

to test for significant relationships between CBL and MZB in both species. The

bivariate analyses used condylobasal length, an index of absolute skull size, as the

independent (X) variable. Principle Components Analysis (PCA) was also used as a

Page 116: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia

100

multivariate analysis to identify underlying variables that explain the pattern of

correlations within the set of variables (Rao 1964).

Measurements of P. breviceps skulls taken from museum specimens sourced from the

intervening distance between current localities in western SA (36º 00′ S and 140º 50′ E)

and the known far west population in Victoria (37º 00′ S and 142º 34′ E) were used in a

second analysis as unknown species. A Discriminant Analysis (Lachenbruch 1975) was

conducted to test whether the skull variables were able to be assigned to either P.

breviceps or P. norfolcensis groups. This analysis builds a predictive model of group

membership based on observed characteristics of each case. The procedure generates a

discriminant function based on linear combinations of the predictor variables that

provide the best discrimination between the groups (Lachenbruch 1975). The functions

are generated from a sample of cases for which group membership is known. The

functions can then be applied to new cases with measurements for the predictor

variables, but unknown group membership.

6.4 Results

6.4.1 Genetic investigation

The sequenced fragments of three samples, including Bordertown (27042 and 85785)

and Western Flat (27085), were consistently and strongly associated with the three

samples forming a monophyletic group containing known P. norfolcensis and P.

gracilis to the exclusion of other glider samples, with 100% bootstrap support (Fig. 6.4).

P. gracilis appeared to be a sister clade to P. norfolcensis with 61% bootstrap support.

The remaining Bordertown (85784) sample grouped within a clade containing P.

breviceps samples, suggesting the presence of both species in this region. Among the

haplotypes within P. norfolcensis, sequence divergence (as determined using the

HKY85 model) ranged from 0.2 to 1%. This group was separated from P. gracilis by

2% nucleotide diversity. Sequence divergence between the suspected haplotypes and

other glider species averaged 13% for P. breviceps and 24% for P. australis (Table 6.1).

Page 117: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia

101

Figure 6.4 Neighbour-Joining phylogram from 700 base pairs of ND2 sequenced from

four Australian gliding petaurid species and suspected P. norfolcensis from Bordertown

and Western Flat. Bootstrap values are shown above branches. Australian Biological

Tissue Collection (ABTC) numbers, from the South Australian Museum, are given in

parenthesis. Accession numbers for sequences of P. norfolcensis VIC and Petauroides

volans are given in the text.

Table 6.1 Pairwise distances (HKY model) between four Australian gliding petaurid

species and suspected P. norfolcensis from Bordertown and Western Flat along with the

outgroup.

1 2 3 4 5 6 7 8 9 10 11

P. australis - 23.3 22.9 22.9 22.9 23.3 23.1 23.1 22.5 22.7 32.5

P. norfolcensis_NSW - 0.5 0.5 0.5 1.1 13.2 13.2 13.2 13.2 33.7

Bordertown - 0.00 0.00 1.86 13.6 13.6 13.6 13.6 33.2

P. norfolcensis_VIC - 0.00 1.86 13.6 13.6 13.6 13.6 33.2

WesternFlat - 1.86 13.6 13.6 13.6 13.6 33.2

P. gracilis - 13.6 13.6 13.6 13.6 33.7

P. breviceps_SA - 0.5 1.4 2.00 34.2

P. breviceps_VIC - 1.7 2.2 34.7

P. breviceps_NSW - 1.5 33.8

P. breviceps_QLD - 34.1

Petauroides volans -

6.4.2 Field investigation

Sites assesed in Bordertown and Western Flat were roadsides of open woodlands, a few

hundred meters wide (Fig 6.6). One site in Western Flat was investigated. The dominant

species at this site was Brown Stringybark (Eucalyptus baxteri), which formed an open

canopy and had a sparse understorey of Silver Banksia (Banksia marginata) and a

ground cover of grasses and herbs. E. baxteri was in flower during the time of visit

Page 118: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia (February 2006). Three sites in Bordertown were investigated, including roadside

habitat in Canawigra Rd, Poocher Swamp Game Reserve and Canawigra Swamp.

Two tree species, including Blue Gum (Eucalyptus globulus) and Grey Gum

(Eucalyptus moluccana) were dominant in Canawigra Rd. The dominant eucalypt

species at the other two sites was Red Gum (Eucalyptus seeana).

Gliders were detected at two road side sites in Western Flat and Bordertown. In

Western Flat, gliders were detected in the canopy of E. baxteri feeding on the pollen

and nectar (three individuals) and on a gum tree (one individual). Six gliders were

also detected in the roadside habitat in Canawigra Rd. However, the species could not

be identified precisely at this time, as they were high in the canopy. Therefore the

presence of P. norfolcensis is yet to be confirmed by trapping. Other species of

arboreal marsupials were also detected including common brushtail possum

(Trichosurus vulpecula). The presence of a barn owl (Tyto alba) and a southern

boobook (Ninox boobook) were also noted.

Further field investigation was carried out in the Bordertown area in the following

month, providing two additional glider specimens. One was a carcass (ABTC 85784)

and the other one was a sample from an orphaned animal found near Bordertown

(85785) (Fig. 6.5). These samples were also included in the genetic analyses.

NOTE: This figure is included on page 102 in the print copy of the thesis held in the University of Adelaide Library.

Figure 6.5 The first live suspected squirrel glider in South Australia. The animal is a juvenile. (Photo: Dan Harley).

102

Page 119: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia

103

Figure 6.6 Roadside habitat in Western Flat.

6.4.3 Morphometric assessments

The Bordertown (27042) museum specimen showed the main morphological

characteristics of P. norfolcensis as described in Smith and Winter (1984) and Suckling

(1983). It had a bigger and broader head compared to P. breviceps, a more pointed face,

a very fluffy tail and white-creamy fur under the body. The Western Flat (27085)

museum specimen showed the same characteristics with the exception of having grey

fur under the body, which might be a result of age or individual differences in coat

colour, as reported in other glider species (e.g. P. australis, Russell 1984).

The carcass of the recent Bordertown animal (85784) was also checked and measured.

It showed the characteristics of P. breviceps with brown-grey fur above, pale-grey

under the body and black tail with no white tip. These morphometric assessments

showed the occurrence of both P. norfolcensis and P. breviceps from the same localities

in South Australia. The fourth animal was a juvenile (85785), however in appearance it

was similar to P. breviceps.

CBL/MZB ratios for both species support the general belief that live P. norfolcensis has

a longer and more pointed face than P. breviceps. The ratio averaged 1.56 for P.

Page 120: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia

104

norfolcensis and 1.45 for P.breviceps. A two-sample t-test revealed that the CBL/MZB

ratio was significantly greater in P. norfolcensis than P. breviceps (t = 1.885, df = 52,

P= 0.045). A bivariate correlation analysis using Pearson coefficient also showed a

significant positive relationship between CBL and MZB in both species (Table 6.2 and

Fig. 6.7). Sample size was insufficient to investigate the effects of sex and age on

average skull size for both species. On the multivariate plot the two species were

completely differentiated by skull parameters (Fig. 6.8). However, a second analysis on

P. breviceps revealed neither a sexual dimorphism nor a consistent geographic

variability for any of the morphometric characters examined (Fig. 6.9). In plots from

both analyses the sexes were overlapping (results not shown) and were, therefore,

combined for geographic analyses. When examined according to geographic origin, a

single specimen of P. breviceps from Papua New Guinea separated out. Although there

are some apparent outliers on the right hand side of the plot, specimens from each of six

regions within Australia (Qld, NSW, Vic, SA, Tas, and NT) clustered together (Fig.

6.8). Small sample sizes precluded further breakdown of data into age classes (e.g. Quin

et al. 1996b), which may have provided better resolution of variation between sexes and

thus between regions. Summary statistics for the ten parameters examined in this study

are given in Table 6.3, with all showing significant differences between the species.

Discriminant analysis successfully classified the skulls obtained from the intervening

distance (between current localities in western SA and the known far west population in

Victoria) as P. breviceps, suggesting the accuracy of the skull variables in

distinguishing these species.

Table 6.2 Average and range of CBL: MZB ratio for P. breviceps and P. norfolcensis.

Pearson correlation coefficients (rp) for correlation analysis comparing both species and

the Probability (P) values are presented.

Species N Mean CBL:MZB Range Correlation coefficient

(rp) P value

P. breviceps 40 1.45 1.2-1.6 0.78 0.000

P. norfolcensis 12 1.56 1.45-1.9 0.89 0.000

Page 121: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution of squirrel gliders in South Australia

105

45.040.035.030.0

CBL

30

25

20

15

MZ

B

P.norfolcensis

P.breviceps

species

Figure 6.7 Bivariate plot of Condylobasal length (CBL) over maximum zygomatic breadth

(MZB) for P. breviceps (○) (n = 41) and P. norfolcensis (●) (n =11)

.

4.000002.000000.00000-2.00000-4.00000

PCA1

2.00000

0.00000

-2.00000

-4.00000

-6.00000

PC

A2

P. norfolcensis

P. breviceps

species

Figure 6.8 Relationship between the first (PCA1) and second (PCA2) components of the

Principle Component Analysis. Ten characters measured on 50 skulls of both species are

included.

Page 122: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution o f squirrel gliders in South Australia

106

2.000001.000000.00000-1.00000-2.00000-3.00000

PCA2

2.00000

1.00000

0.00000

-1.00000

-2.00000

-3.00000

-4.00000

PC

A1

VIC

TAS

SA

QLD

PNG

NT

NSW

location

Figure 6.9 Relationship between the first (PCA1) and second (PCA2) components of the

Principle Component Analysis. Ten characters measured on 39 skulls of both sexes of P.

breviceps are included. Qld = Queensland, NSW = New South Wales, VIC = Victoria, SA

= South Australia, Tas = Tasmania, NT = Northern Territory and PNG = Papua New

Guinea.

Table 6.3 Average skull parameters and summary statistics for P. norfolcensis (1) and P.

breviceps (2). Analyses of variance (F) between two species and probability values (P) at

the ten skull parameters examined.

Skull parameters species n Mean ± SE Range F P

Condylobasal length 1

2

11

41

44.6 ± 0.48

37.1 ± 0.22

42-47.5

33-39.5 226.5 0.000

maximum zygomatic breadth 1

2

12

41

29.1 ± 0.64

24.52 ± 0.23

24-33

20.2-27 69.5 0.000

Rostrum h

1

2

12

39

10.3 ± 0.17

8.5 ± 0.87

9.3-11

7-10.5 46 0.000

Upper molar L

1

2

10

40

8.6 ± 2.6

7.3 ± 0.7

8.5-9.8

5.2-8.5 7.7 0.008

Lower molar L

1

2

10

40

8.7 ± 0.4

7.3 ± 0.6

8-9.3

5.7-9 57.8 0.000

Upper tooth L

1

2

10

39

22 ± 1.3

17.4 ± 0.9

19.2-23.5

14-18.7 156.5 0.000

Upperincisor-premoalr

1

2

10

39

13.9 ± 1.3

9.2 ± 2.9

11.5-16

7.5-12.1 23.3 0.000

Rostral width 1

2

10

39

8.8 ± 0.9

6.8 ± 0.7

7.3-10.2

5.4-8.9 56 0.000

Inter-orbital 1

2

12

40

8.5 ± 0.9

6.9 ± 0.7

7.1-10

5.1-8.4 44 0.000

Ascending armus 1

2

12

40

10.9 ± 0.7

8.4 ± 0.6

9.8-12

7-9.9 134 0.000

Page 123: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution o f squirrel gliders in South Australia

107

6.5 Discussion

This study confirmed the occurrence of P. norfolcensis in South Australia and

significantly extended the current distribution of P. norfolcensis several hundred

kilometres to the west. The molecular marker (ND2) strongly and consistently

associated the three South Australian suspected specimens with known squirrel gliders.

The result further showed the occurrence of both P. breviceps and P. norfolcensis in the

Bordertown area. Preliminary field investigation in Bordertown and Western Flat areas

also identified Petaurus species by spotlighting potential habitats. However, the identity

of the species in different parts of habitat is yet to be confirmed through trapping

surveys. P. norfolcensis on mainland Australia is broadly sympatric with P. breviceps

and both species have been recorded together at various sites in Victoria, New South

Wales and Queensland (Menkhorst et al. 1988; Quin 1995; Traill and Lill 1997; Smith

and Murray 2003; Rowston and Catterall 2004). Both species have similarities in diet

(Smith and Ganzhorn 1996) and habitat requirements, such as tree hollows (Traill and

Lill 1997), although habitat partitioning may be occurring (e.g. Rowston and Catterall

2004). Detailed analysis of populations and habitat preferences were beyond the scope

of this study, although they need to be explored in future investigations.

Results of this study were also consistent with the finding of Quin et al. (1996) which

used CBL: MZB ratio as a taxonomic measurement for the species. The species were

divergent for the skull characters and in the western part of the range and this can be

used in the future for species identification. Although no P. norfolcensis skull or skin

was found from the intervening region between SA and eastern Grampians in Victoria

in museum records, due to the small sample size, the potential presence of the species in

the intervening region can not be ruled out. Further research is required to investigate

potential habitats of P. norfolcensis.

Surveys in Victoria have shown that squirrel gliders were often patchily distributed

(Menkhorst et al. 1988 and Emison et. al. 1984, cited in Menkhorst 1988). This is

presumably due to removal of most of the native vegetation over the past 100 years and,

therefore, lack of interconnecting habitat corridors. In Victoria, remaining P.

norfolcensis habitats tend to be in areas of open-forest or woodlands that have been

retained because they were of greater value for timber production than for agriculture,

or in narrow belts of eucalypt left standing along roadsides (Menkhorst et al. 1988).

Page 124: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Distribution o f squirrel gliders in South Australia

108

Studies have shown that remnant roadsides and creek-side woodlands are important

parts of P. norfolcensis habitat and such areas might be crucial for its survival (e.g. van

der Ree 2002). Potential habitat for P. norfolcensis in south-east of SA also consists of

small isolated patches and roadsides. The extensive clearing of productive habitat in this

region has reduced the amount of available habitat for possum and gliders to small

isolated patches and roadsides which are often degraded (Croft et al. 1999). Populations

in these small remnants may face extinction as a result of small population size and lack

of re-colonization opportunities. These remnant patches and roadside areas therefore

need to be conserved from further contraction and degradation.

Page 125: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Concluding discussion

109

7 Concluding discussion

In this chapter, I bring together the results of each chapter and discuss how they may

contribute to conservation management of gliding petaurids. I first review the aims of

the study, and then give an overview of the major results and their implications for

conservation. Finally, I outline the limitations of the study and point out

recommendations for further research.

7.1 Review of aims

This project aimed to:

• investigate evolutionary relationships of Petaurus species

• examine the phylogeographic structure of P. breviceps and explore the effect of

past history on genetic diversity within the species

• investigate nest-box use, social structure and the mating system of P. breviceps

in fragmented habitats

• assess genetic diversity and the population structure of P. breviceps in

fragmented habitats.

7.2 Evolutionary relationships of Petaurus species

In prioritizing taxa and habitats for conservation we seek to maximize both

representation and persistence of diversity. Conservation requires an accurate targeting

of resources together with information on population processes. Information from gene

phylogenies can make significant contributions to conservation through the more

rigorous definition of evolutionary lineages and by contributing to a better

understanding of historical population processes (Moritz 1995). This study aimed to

establish a better understanding of the phylogenetic relationships of Petaurus species

and assess genetic diversity within the genus. Two mitochondrial genes (ND2 and ND4)

and a nuclear gene marker (ω-globin) were screened for sequence variation in samples

obtained from across the distribution of Petaurus species, including Australia, New

Guinea and its surrounding islands. Phylogenetic analyses of ND2 confirmed the

monophyly of the genus Petaurus and revealed a strong sister group relationship

between the yellow-bellied glider (P. australis) and a second group consisting of all

other Petaurus species. The analyses showed that currently recognised species of

Page 126: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Concluding discussion

110

Petaurus, with the exception of P. gracilis, were associated with divergent mtDNA

clades. P. gracilis was a unique haplotype within a clade containing P. norfolcensis.

The analyses also revealed considerable mtDNA diversity within P. breviceps. The

existence of at least seven distinct and divergent (7 to 17.5 %) mtDNA lineages was

strongly supported, with two lineages located in Australia and at least five lineages in

New Guinea and its surrounded islands. Species clearly require management as separate

units. However, distinct phylogenetic lineages within the species indicate long-term

evolutionary splits that potentially can lead to speciation. These evolutionary lineages

with significant genetic differentiation should potentially be considered as separate

evolutionarily significant units (ESUs) (Moritz 1994a; Fraser and Bernatchez 2001).

The results further indicated that the current morphological classification does not

reflect major population genetic divisions present within the species. These findings

highlight a need for revising taxonomy within P. breviceps and defining units for

conservation.

7.3 Phylogeography and population differentiation within P. breviceps in

Australia.

Population structure and current patterns of gene flow among populations of P.

breviceps in Australia were further examined using phylogeographic approaches to

explore the potential causes of geographic variations within the species. The

phylogenetic analyses of both mitochondrial DNA and the ω-globin gene datasets

provided evidence for the existence of two divergent clades that are distributed over

distinct geographical regions. One clade of hapotypes was distributed over the northern

part of New South Wales and south-eastern Queensland while, a second clade was

distributed over the remainder of the distribution of the species including, South

Australia, Victoria, southern New South Wales and northern Queensland. Population

structure analyses also revealed significant genetic structuring in sugar gliders across

Australia, with the presence of four distinct genetic groups, including SA/Vic, sNSW,

nQld and nNSW/sQLD being supported by mtDNA and the nuclear marker. NCA

analyses found significant associations in the spatial distribution of haplotypes. Patterns

of isolation by distance and past fragmentation, which were identified for sugar glider

populations, were consistent with a more continuous historical distribution of forests

along the eastern seaboard of Australia. Evidence of two divergent evolutionary

lineages supported by both mtDNA and nuclear markers suggest that gene flow has

Page 127: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Concluding discussion

111

been restricted for a considerable period of time between these populations, supporting

their status as separate ESUs under both the Fraser and Bernatchez (2001) and Moritz

(1994) criteria. The results revealed that the current taxonomy of the species within

Australia does not reflect the underlying genetic diversity and suggest the flexible ESU

concept may provide an appropriate approach for prioritizing units for conservation

within P. breviceps until the taxonomy within the species becomes resolved. The

Pliocene divergence dates estimated for the two major mtDNA clades in Australia

suggested that environment and climate changes which occurred during the Pliocene

may have facilitated this diversification. This pattern of restricted gene flow and

fragmentation may also be due to the development of physical barriers to gene flow

between populations. In NSW, in particular, the western slope of the Great Dividing

Range (GDR) may have acted as a historical barrier to gene flow across the GDR.

Given these results, it is recommended that a revised morphometric analysis be carried

out to determine whether the two major mtDNA/nuclear clades represent distinct taxa at

the species level.

7.4 Nest box-use social structure and mating system of P. breviceps in

fragmented habitats

The continuing growth of human populations has resulted in fragmentation of natural

habitats. Habitat fragmentation is considered a major threat to forest dependent species

such as gliders, as it has the potential to lead to isolation and extinction of small

populations. Obtaining empirical knowledge about species life history, such as social

structure and mating system, are important in managing species in fragmented habitats.

In this part of my study several aspects of life history characteristics of P. breviceps

were explored in fragmented habitats. The networks of nest boxes were used to

investigate site occupancy of P. breviceps and collect samples for genetic analyses of

population structure and mating system of the species within fragmented habitats in

south-eastern South Australia. The occupancy rate of nest boxes was, overall, high and

several species of marsupials occupied nest boxes, suggesting an overall low

availability of natural hollows in the region and the importance of managing habitats

from further degradation. The formation and development of hollows suitable for

occupancy by arboreal marsupials is a long process and may take several hundreds of

years (Lindenmayer et al. 1993b). It is also suggested that the number of trees with

Page 128: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Concluding discussion

112

hollows is more important than the number of hollows itself; probably because arboreal

marsupials prefer not to share the same tree when denning (Lindenmayer et al. 1990).

Although nest boxes represent an alternative to natural hollows where they are scarce,

they should not be viewed as a complete replacement to natural hollows because they

neither reflect the abundance and diversity of natural hollows, nor provide the other

benefits of wood decay to forest and woodland ecosystems (Gibbons and Lindenmayer

2002).

Petaurus breviceps was one species that regularly used nest boxes in the region.

However, occupancy rates and group sizes were higher in larger patches (> 200 ha).

This is presumably due to more resource availability in larger patches. Communal nests

consisted of two to seven gliders, and these were often close relatives, including parents

with their offspring. Parentage analyses provided some evidence for a polygamous

mating system within fragmented habitats, with a number of males found to have

fathered offspring from multiple female partners and females with multiple male

partners. Some evidence of inbreeding also was found within a small and isolated patch.

Population genetics theory predicts that small, isolated populations experience increased

random genetic drift and inbreeding as a result of reduced gene flow (Wright 1969;

Barrett and Charlesworth 1991). This may result in the depletion of genetic diversity,

inbreeding depression and reduced fitness and may ultimately cause local extinction

(Frankham 2005). Establishing corridors of narrow strips of favoured habitats and

linking isolated patches may help mitigate against genetic loss in small populations.

7.5 Genetic diversity and population structure of P. breviceps

A further aim of the study was to investigate genetic diversity and population structure

of P. breviceps within fragmented habitats and whether habitat fragmentation has led to

population differentiation in the region. On average, a moderate level of genetic

diversity at microsatellite loci was found for populations of gliders within fragmented

habitats. An overall significant FST value suggested that gene flow was restricted

between some of these populations. In a number of cases, smaller and isolated patches

showed significant differentiation from other patches which may have resulted from

genetic drift acting more quickly to differentiate the small populations. However, the

overall result revealed little sub-structuring between populations in the region. This may

suggest that anthropological fragmentation in the region is a recent phenomenon in

Page 129: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Concluding discussion

113

evolutionary time and the final, long-term impacts of fragmentation on population

structure may not yet have shown. Findings of the study, however, may be affected by

small sample sizes or sampling technique which did not randomly and evenly cover

each population. Therefore these results should be verified by larger sample sizes from

populations in the region

7.6 Limitations of the study

Small sample sizes are often an issue in ecological and genetic studies. Most samples

used in this project were museum specimens or obtained from nest boxes and live

trappings. Sample sizes were limited because of the difficulty of trapping gliders in tall

eucalypt forests, which leads to low trap success rates. These difficulties are also

compounded by the arboreal, cryptic and nocturnal natures of gliders and low

population densities. Furthermore, suitable samples for DNA extraction were poorly

available from museum tissue collections around Australia. The results of the

phylogeographic analyses of P. breviceps could be more comprehensive if more

samples from southern Queensland and New South Wales were available. This could

help to define the boundaries of the two major evolutionary lineages found within P.

breviceps in Australia. Small sample sizes also preclude a comparison between

fragments and continuous forests. The findings of this study only reflect social

organisation and group structure of P. breviceps in fragmented habitats and do not

necessarily equate to those of a continuous forest. Apart from small sample sizes, non

random sampling of P. brevicesps populations may have also affected the results of

genetic diversity and population structure of the species. Pre-fragmentation samples

which could provide a comparison of genetic diversity before and after the

fragmentation were not available in the current study.

7.7 Further research

The conservation and management of species largely depends on a detailed knowledge

of distributional patterns, population structure and status and habitat requirements of

species. The study has helped to address several gaps in our knowledge about genetic

diversity and evolution of Petaurus species. It is one of the first to investigate genetic

diversity and structure of a gliding petaurid in fragmented habitats. While this has given

us important insights into phylogenetic relationships of Petaurus species, as well as

social structure and mating system of P. breviceps, further research is required to

Page 130: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Concluding discussion

114

investigate some of the issues raised in this study. The most important of these are

outlined below.

Clarification of the taxonomic issues raised in this study clearly awaits analysis of

morphometric characters in conjunction with additional molecular data. Morphological

examinations of sugar glider specimens across the range in Australia and New Guinea

may help elucidating subspecific and specific status of several populations within P.

breviceps represented by distinct mtDNA and, in some cases, nuclear DNA markers.

Sampling additional sites in southern Queensland and New South Wales is also required

as a means of elucidating boundaries of the two major evolutionary lineages found in

Australia. While molecular phylogenies can recover the patterns of ancestry and descent

that gave rise to species or lineages, collecting ecological data (e.g. habitat

requirements) is also essential for revealing ecological exchangeability and adaptive

potential of populations of P. breviceps.

The identity of the P. breviceps population from the Northern Territory remains unclear

in this study. Although mitochondrial data classified them as P. norfolcensis, the

nuclear marker did not have enough variation to separate the two species. Further

sampling of these populations in conjunction with using other nuclear markers with

higher variability, such as microsatellites, may help to resolve whether NT populations

are P. norfolcensis or P. breviceps that have retained an ancestral mtDNA.

The current knowledge of the effect of habitat fragmentation on arboreal marsupials is

limited. Furthermore, the effect of fragmentation on inter-patch processes, such as

social structure and mating systems of species are even less known. Within a species,

comparisons of populations found in both continuous and fragmented habitats are of

particular value. These comparisons allow an assessment of the impact of fragmentation

on population dynamics and social organization. In this study limited samples from the

continuous forest at Rennick State Forest did not provide such a comparison. Therefore

more research focusing on the continuous forest is required to allow a comparison of the

social structure and mating system of the species between fragments and continuous

forests. The research would also benefit from the development of additional genetic

markers to help distinguish parentage in cases where related females and males are

found within the same social group.

Page 131: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Concluding discussion

115

Little is known about the dispersal ability of gliders and whether they are able to cross

exotic pine plantations to access to suitable habitats. Further research is required to

obtain an accurate knowledge of local genetic diversity and gene flow between

populations in the fragmented habitats. This information is critical for determining the

scale of conservation management and which populations may benefit from the

development of habitat corridors. Comparative studies using species with different life

style characteristics such as size, diet, breeding strategies and type of locomotion also

help to understand which trait may make species vulnerable or resilient to genetic

diversity loss following habitat changes.

Page 132: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

116

References

Adam P, 1992. 'Australian Rainforests.' (Oxford University Press: Melbourne)

Alacs E, Alpers D, de Tores PJ, Dillon M, Spencer PBS, 2003. Identifying the presence

of quokkas (Setonix brachyurus) and other macropods using cytochrome b

analyses from faeces. Wildlife Research 30, 41-47.

Alexander JSA, 1981. The status of the squirrel glider, Petaurus norfolcensis

(Marsupialia: Petauridae) in Victoria. Honours thesis, La Trobe University.

Arbogast BS, Kenagy GJ, 2001. Comparative phylogeography as an integrative

approach to historical biogeography. Journal of Biogeography 28, 819-825.

Archer M, 1984. The Australian marsupial radiation. In 'Vertebrate Zoogeography and

Evolution in Australasia'. (Eds M Archer and G Clayton) pp. 633-808.

(Hesperian Press: Carlisle, Australia)

Archer M, Godthelp H, Hand SJ, 1994. 'Riversleigh: the story of animals in ancient

rainforests of inland Australia.' ( Reed Books: Sydney)

Avise JC, 2000. 'Phylogeography, The History and Formation of Species.' (Harvard

University Press, Cambridge.)

Avise JC, Walker D, 1998. Pleistocene phylogeographic effects on avian populations

and the speciation process. Proceedings of the Royal Society of London Series B-

Biological Sciences 265, 457-463.

Axelrod DI, Raven PH, 1982. Paleobiogeography and origin of the New Guinea flora.

In 'Biogeography and Ecology of New Guinea'. (Ed. JL Gressitt) pp. 919–941.

(W. Junk, The Hague)

Baker CS, Palumbi SR, 1994. Which whales are hunted? A molecular genetic approach

to monitoring whaling. Science 265, 1538-1539.

Banks SC, Ward SJ, Lindenmayer DB, Finlayson GR, Lawson SJ, Taylor AC, 2005.

The effects of habitat fragmentation on the social kin structure and mating

system of the agile antechinus, Antechinus agilis. Molecular Ecology 14, 1789-

1801.

Barrett SCH, Charlesworth D, 1991. Effects of a change in the level of inbreeding on

the genetic load. Nature 352, 522-524.

Baverstock PR, Krieg M, Birrell J, 1990. Evolutionary relationships of Australian

marsupials as assessed by albumin immunology. Australian Journal of Zoology

37, 273 - 287.

Bennett AF, 1987. Conservation of mammals within a fragmented forest environment:

the contributions of insular biogeography and autecology. In 'Nature

Conservation: The Role of Remnants of Native Vegetation'. (Ed. DA Saunders)

Page 133: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

117

pp. 41-52. (Surrey Beatty and Sons, Chipping Norton, New South Wales, Australia)

Bennett AF, Lumsden LF, Alexander JSA, Duncan PE, Johnson PG, Robertson P,

Silveira CE, 1991. Habitat use by arboreal mammals along an environmental

gradient in north-eastern Victoria. Wildlife Research 18, 125-46.

Blakers M, Davies SJJF, Reilly PN, 1984. 'The Atlas of Australian Birds.' (Melbourne

University Press: Victoria)

Bowyer JC, Newell GR, Eldridge MDB, 2002. Genetic effects of habitat contraction on

Lumholtz's tree-kangaroo (Dendrolagus lumholtzi) in the Australian Wet

Tropics. Conservation Genetics 3, 59-67.

Brotherton PNM, Manser MB, 1997. Female dispersion and the evolution of monogamy

in the dik-dik. Animal Behaviour 54, 1413-1424.

Brown M, Carthew SM, Cooper SJB, 2007. Monogamy in an Australian arboreal

marsupial, the yellow-bellied glider (Petaurus australis). Australian Journal of

Zoology in press.

Brown M, Cooksley H, Carthew SM, Cooper SJB, 2006. Conservation units and

phylogeographic structure of an arboreal marsupial, the yellow-bellied glider

(Petaurus australis). Australian Journal of Zoology 54, 1-13.

Brown M, Kendal TA, Cooksley H, Saint KM, Taylor AC, Carthew SM, Cooper SJB,

2004. Polymorphic microsatellite markers for the gliding marsupials Petaurus

australis and Petaurus breviceps. Molecular Ecology Notes 4, 704-706.

Brown WM, George M, Wilson AC, 1979. Rapid evolution of animal mitochondrial

DNA. Proceedings of the National Academy of Sciences of the United States of

America 76, 1967-1971.

Bryja J, Stopka P, 2005. Facultative promiscuity in a presumably monogamous mouse

Apodemus microps. Acta Theriologica 50, 189-196.

Burbrink FT, Lawson R, Slowinski JB, 2000. Mitochondrial DNA phylogeography of

the polytypic North American rat snake (Elaphe obsoleta): a critique of the

subspecies concept. Evolution 54, 2107-2118.

Burgman MA, Lindenmayer DB, 1998. 'Conservation Biology for the Australian

Environment.' (Surrey Beatty & Sons, Chipping Norton, New South Wales,

Australia)

Burkey TV, Reed DH, 2006. The effects of habitat fragmentation on extinction risk:

mechanisms and synthesis. Songklanakarin Journal of Science and Technology

28, 9-37.

Cale PG, 2003. The influence of social behaviour, dispersal and landscape

fragmentation on population structure in a sedentary bird. Biological

Conservation 109, 237-248.

Page 134: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

118

Carrete M, Donazar JA, Margalida A, Bertran J, 2006. Linking ecology, behaviour and

conservation: does habitat saturation change the mating system of bearded

vultures? Biology Letters 2, 624-627.

Carthew SM, 2004. Distribution and conservation status of possums and gliders in

South Australia. In 'The Biology of Australian Possums and Gliders'. (Eds RL

Goldingay and SM Jackson) pp. 63-70. (Surrey Beatty and Sons: New South

Wales, Australia)

Carthew SM, Goldingay RL, 1997. Non-flying mammals as pollinators. Trends in

Ecology & Evolution 12, 104-108.

Carthew SM, Goldingay RL, 1998. Habitat Suitability and persistence of the yellow-

bellied glider in forest fragments in South Australia. Report for the Department

of Environment and Heritage and Aboriginal Affair.

Clement M, Posada D, Crandall KA, 2000. TCS: a computer program to estimate gene

genealogies. Molecular Ecology 9, 1657-1659.

Clout MN, Efford MG, 1984. Sex-Differences in the dispersal and settlement of

brushtail possums (Trichosurus vulpecula). Journal of Animal Ecology 53, 737-

749.

Clutton-Brock TH, 1989. Mammalian mating systems. Proceedings of the Royal Society

of London Series B-Biological Sciences 236, 339-372.

Cockburn A, Scott MP, Scotts DJ, 1985. Inbreeding avoidance and male-biased natal

dispersal in Antechinus Spp (Marsupialia, Dasyuridae). Animal Behaviour 33,

908-915.

Cogger HG, 2000. 'Reptiles & amphibians of Australia.' (Reed New Holland: Sydney)

Colgan DJ, Flannery TF, 1992. Biochemical systematic studies in the genus Petaurus

(Marsupialia, Petauridae). Australian Journal of Zoology 40, 245-256.

Cooper SJB, Wheeler D, De Leo A, Cheng JF, Holland RAB, Graves JAM, Hope RM,

2006. The mammalian alpha(D)-globin gene lineage and a new model for the

molecular evolution of alpha-globin gene clusters at the stem of the mammalian

radiation. Molecular Phylogenetics and Evolution 38, 439-448.

Cooper SJB, Wheeler D, Hope RM, Dolman G, Saint KM, Gooley AA, Holland RAB,

2005. The alpha-globin gene family of an Australian marsupial, Macropus

eugenii: the long evolutionary history of the theta-globin gene and its functional

status in mammals. Journal of Molecular Evolution 60, 653-664.

Covas R, Doutrelant C, du Plessis MA, 2004. Experimental evidence of a link between

breeding conditions and the decision to breed or to help in a colonial cooperative

bird. Proceedings of the Royal Society of London Series B-Biological Sciences

271, 827-832.

Page 135: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

119

Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK, 2000. Considering

evolutionary processes in conservation biology. Trends in Ecology & Evolution

15, 290-295.

Croft T, Carruthers S, Possingham HP, Inns B, 1999. Biodiversity plan for the southeast

of South Australia. Department for Environmental Heritage and Aboriginal

Affairs: South Australia.

Crook JH, Gartlan JS, 1966. Evolution of primate societies. Nature 210, 1200-1203.

Crosby K, Bassarova M, Archer M, Carbery K, 2004. Fossil possums in Australia:

discovery, diversity and evolution. In 'The Biology of Australian Possums and

Gliders'. (Eds RL Goldingay and SM Jackson) pp. 161-176. (Surrey Beatty and

Sons: New South Wales, Australia)

Crozier RH, 1997. Preserving the information content of species: genetic diversity,

phylogeny, and conservation worth. Annual Review of Ecology and Systematics

28, 243-268.

Deacon JN, Nally RM, 1998. Local extinction and nestedness of small-mammal faunas

in fragmented forest of central Victoria, Australia. Pacific Conservation Biology

4, 122-131.

Debinski DM, Holt RD, 2000. A survey and overview of habitat fragmentation

experiments. Conservation Biology 14, 342-355.

Donnellan SC, McGuigan K, Knowles R, Mahony M, Moritz C, 1999. Genetic evidence

for species boundaries in frogs of the Litoria citropa species-group (Anura:

Hylidae). Australian Journal of Zoology 47, 275-293.

Dow DB, 1977. A geological synthesis of Papua New Guinea. Australian Bureau of

Mineral Resources Geology and Geophysics Publication No 210.

Dow DB, Sukamto R, 1984. Late Tertiary to Quaternary tectonics of Irian Jaya.

Episodes 7, 3-9.

Dow DD, 1979. The influence of nests on the social behaviour of males in Manorina

melanocephala, a communally breeding honey-eater. EMU 79, 71-83.

Downes S, Handasyde KA, Elgar MA, 1997. The use of corridors by mammals in

fragmented Australian eucalypt forests. Conservation Biology 11, 718-726.

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A, 2006. Relaxed phylogenetics and

dating with confidence. The Public Library of Science Biology 4, 699-710.

Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W, 2002. Estimating mutation

parameters, population history and genealogy simultaneously from temporally

spaced sequence data. Genetics 161, 1307-1320.

Page 136: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

120

Drummond AJ, Rambaut A, 2006. BEAST version 1.4. Available from

http://evolve.zoo.ox.ac.uk/beast/.

Edwards D, Westerman M, 1992. DNA-DNA hybridization and the position of

Leadbeater possum (Gymnobelideus-Leadbeateri) in the family Petauridae

(Marsupialia, Diprotodontia). Australian Journal of Zoology 40, 563-571.

Edwards D, Westerman M, 1995. The molecular relationships of possum and glider

families as revealed by DNA-DNA hybridisations. Australian Journal of

Zoology 43, 231-240.

Eldridge MD, King JM, Loupis AC, Pope LC, Hall GP, 1999. Unprecedented low levels

of genetic variation of the black-footed rock-wallaby. Conservation Biology 13,

531-541.

Emlen ST, Oring LW, 1977. Ecology, sexual selection, and the evolution of mating

systems. Science 197, 215-223.

Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals

using the software STRUCTURE: a simulation study. Molecular Ecology 14,

2611-2620.

Ewers RM, Didham RK, 2006. Confounding factors in the detection of species

responses to habitat fragmentation. Biological Reviews 81, 117-142.

Excoffier L, Laval G, Schneider S, 2005 Arlequin ver. 3.0: an integrated software

package for population genetics data analysis. Evolutionary Bioinformatics

Online 1:47-50.

Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred

from metric distances among DNA haplotypes: application to human

mitochondrial DNA restriction data. Genetics 131, 479-491.

Falush D, Stephens M, Pritchard JK, 2003. Inference of population structure using

multilocus genotype data: linked loci and correlated allele frequencies. Genetics

164, 1567-1587.

Felsenstein J, 1985. Confidence limits on phylogenies: an approach using the bootstrap.

Evolution 39, 783-791.

Firestone KB, Elphinstone MS, Sherwin WB, Houlden BA, 1999. Phylogeographical

population structure of tiger quolls Dasyurus maculatus (Dasyuridae:

Marsupialia), an endangered carnivorous marsupial. Molecular Ecology 8, 1613-

1625.

Flannery T, 1994. 'Possums of the World: A Monograph of the Phalangeroidea.' (Geo

Productions in association with the Australian Museum: Chatswood, New South

Wales, Australia)

Page 137: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

121

Flannery TF, 1990. 'Mammals of New Guinea.' (Robert Brown & Associates: Carina,

Queensland)

Flannery TF, Rich TH, Turnbull WD, Lundelius EL, 1992. The Macropodoidea

(Marsupialia) of the early Pliocene Hamilton local fauna, Victoria, Australia.

Fieldiana Geology 25, 1-37.

Fleischer RC, McIntosh CE, Tarr CL, 1998. Evolution on a volcanic conveyor belt:

using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian

Islands to estimate molecular evolutionary rates. Molecular Ecology 7, 533-545.

Fleishman E, Ray C, Sjogren-Gulve P, Boggs CL, Murphy DD, 2002. Assessing the

roles of patch quality, area, and isolation in predicting metapopulation dynamics.

Conservation Biology 16, 706-716.

Fleming MR, 1980. Thermoregulation and torpor in the sugar glider, Petaurus

breviceps (Marsupialia, Petauridae). Australian Journal of Zoology 28, 521-534.

Franken RJ, Hik DS, 2004. Influence of habitat quality, patch size and connectivity on

colonization and extinction dynamics of collared pikas Ochotona collaris.

Journal of Animal Ecology 73, 889-896.

Frankham R, 2005. Genetics and extinction. Biological Conservation 126, 131-140.

Frankham R, Ballou JD, Briscore DA, 2002. 'Introduction to Conservation Genetics.'

(Cambridge University Press)

Fraser DJ, Bernatchez L, 2001. Adaptive evolutionary conservation: towards a unified

concept for defining conservation units. Molecular Ecology 10, 2741-2752.

Friesen VL, Congdon BC, Walsh HE, Birt TP, 1997. Intron variation in marbled

murrelets detected using analyses of single-stranded conformational

polymorphisms. Molecular Ecology 6, 1047-1058.

Galloway RW, Löffler E, 1972. Aspects of geomorphology and soils in the Torres Strait

region. In 'Bridge and Barrier: the Natural and Cultural History of Torres Strait,'.

(Ed. D Walker) pp. 11–28. (Australian National University: Canberra)

Garrick RC, Sands CJ, Rowell DM, Tait NN, Greenslade P, Sunnucks P, 2004.

Phylogeography recapitulates topography: very fine-scale local endemism of a

saproxylic 'giant' springtail at Tallaganda in the Great Dividing Range of south-

east Australia. Molecular Ecology 13, 3329-3344.

Gaston KJ, Spicer JI, 2004. 'Biodiversity : An Introduction.' (Blackwell Publishing:

Malden, MA)

Giannasi N, Malhotra A, Thorpe RS, 2001. Nuclear and mtDNA phylogenies of the

Trimeresurus complex: implications for the gene versus species tree debate.

Molecular Phylogenetics and Evolution 19, 57-66.

Page 138: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

122

Gibbons P, Lindenmayer D, 2002. 'Tree hollows and wildlife conservation in Australia.'

(CSIRO Publishing: Collingwood, VIC)

Goldingay RL, 1992. Socioecology of the yellow-bellied glider (Petaurus australis) in a

coastal forest. Australian Journal of Zoology 40, 267-278.

Goldingay RL, 2000. Gliding mammals of the world: diversity and ecological

requirments. In 'Biology of Gliding Mammals'. (Eds RL Goldingay and J

Scheibe) pp. 9-44. (Filander Verlag: Fu¨rth)

Goldingay RL, 2004. A review of the ecology of the Australian Petauridae. In 'The

Biology of Australian Possums and Gliders'. (Eds RL Goldingay and SM

Jackson) pp. 376-400. (Surrey Beatty and Sons: New South Wales, Australia)

Goldingay RL, Kavanagh RP, 1990. Socioecology of the yellow-bellied glider,

Petaurus australis, at Waratah Creek, NSW. Australian Journal of Zoology 38,

327-341.

Gompert Z, Nice CC, Fordyce JA, Forister ML, Shapiro AM, 2006. Identifying units for

conservation using molecular systematics: the cautionary tale of the Karner blue

butterfly. Molecular Ecology 15, 1759-1768.

Goodman SJ, Barton NH, Swanson G, Abernethy K, Pemberton JM, 1999.

Introgression through rare hybridization: a genetic study of a hybrid zone

between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics 152,

355-371.

Goudet J,2001. Fstat, a program to estimate and test gene diversities and fixation

indices; available at URL: http://www.unil.ch/izea/softwares/fstat.html.

Greenwood PJ, 1980. Mating systems, philopatry and dispersal in birds and mammals.

Animal Behaviour 28, 1140-1162.

Groves C, 2005. Order Diprotodontia: Petauridae. In 'Mammal Species of the World: A

Taxonomic and Geographic Reference'. (Eds DE Wilson and DM Reeder) pp.

54-55. (Johns Hopkins University Press: Baltimore)

Grundel R, Pavlovic NB, 2007. Resource availability, matrix quality, microclimate, and

spatial pattern as predictors of patch use by the Karner blue butterfly. Biological

Conservation 135, 135-144.

Gunn RC, 1851. On the introduction and naturalisation of Petaurus Sciureus in

Tasmania. Papers and Proceedings of the Royal Society of Tasmania 1, 253-

255.

Guo SW, Thompson EA, 1992. Performing the Exact Test of Hardy-Weinberg

Proportion for Multiple Alleles. Biometrics 48, 361-372.

Page 139: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

123

Hasegawa M, Kishino H, Yano TA, 1985. Dating of the Human Ape splitting by a

molecular clock of mitochondrial-DNA. Journal of Molecular Evolution 22,

160-174.

Hayes LD, 2000. To nest communally or not to nest communally: a review of rodent

communal nesting and nursing. Animal Behaviour 59, 677-688.

Henry SR, 1984. Social organization of the greater glider (Petauroides volans) in

Victoria. In 'Possums and Gliders.' (Eds AP Smith and ID Hume) pp. 222-228.

(Australian Mammal Society: Sydney)

Henry SR, Suckling GC, 1984. A review of the ecology of the sugar glider. In 'Possums

and Gliders'. (Eds AP Smith and ID Hume) pp. 355-358. (Australian Mammal

Society: Sydney)

Hewitt GM, 1996. Some genetic consequences of ice ages, and their role in divergence

and speciation. Biological Journal of the Linnean Society 58, 247-276.

Hewitt GM, 2004. Genetic consequences of climatic oscillations in the Quaternary.

Philosophical Transactions of the Royal Society of London. Series B, Biological

Sciences 359, 183-195.

Hillis DM, Moritz C, Mable BK, 1996. 'Molecular Systematics.' (Sunderland:

Massachusetts)

Hope GS, 1994. Quaternary vegetation. In 'History of the Australian Vegetation:

Cretaceous to Recent'. (Ed. RS Hill) pp. 368-389. (Cambridge University Press:

Cambridge)

Houlden BA, England PR, Taylor AC, Greville WD, Sherwin WB, 1996. Low genetic

variability of the koala Phascolarctos cinereus in south-eastern Australia

following a severe population bottleneck. Molecular Ecology 5, 269-281.

How T, 1996. Habitat fragmentation and its implications for common arboreal

marsupials. Honours thesis, University of Adelaide.

How T, Carthew SM, Tap P, 2004. A comparison of survey techniques for detecting

possums and gliders in forest of southern Australia. In 'The Biology of

Australian Possums and Gliders'. (Eds RL Goldingay and SM Jackson) pp. 564-

570. (Surrey Beatty and Sons: New South Wales, Australia)

Huelsenbeck JP, Ronquist F, 2005. Bayesian analysis of molecular evolution using

MrBayes. In 'Statistical Methods in Molecular Evolution'. (Ed. R Nielsen) pp.

183-232. (Springer: New York)

Hunter ML, 1996. 'Fundamentals of Conservation Biology.' (Blackwell Science; USA)

IUCN, 2006 Red-list statistics. http://www.iucnredlist.org/info/stats.

Page 140: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

124

Jackson SM, 1999. Preliminary predictions of the impacts of habitat area and

catastrophes on the viability of mahogany glider Petaurus gracilis populations.

Pacific Conservation Biology 5, 56-62.

Jackson SM, 2000. Habitat relationships of the mahogany glider, Petaurus gracilis, and

the sugar glider, Petaurus breviceps. Wildlife Research 27, 39-48.

James CH, Moritz C, 2000. Intraspecific phylogeography in the sedge frog Litoria

fallax (Hylidae) indicates pre-Pleistocene vicariance of an open forest species

from eastern Australia. Molecular Ecology 9, 349-358.

Jones ME, Paetkau D, Geffen E, Moritz C, 2004. Genetic diversity and population

structure of Tasmanian devils, the largest marsupial carnivore. Molecular

Ecology 13, 2197-2209.

Joseph L, Moritz C, Hugall A, 1995. Molecular support for vicariance as a source of

diversity in Rain-Forests. Proceedings of the Royal Society of London Series B-

Biological Sciences 260, 177-182.

Kalinowski ST, Taper ML, Marshall TC, 2007. Revising how the computer program

CERVUS accommodates genotyping error increases success in paternity

assignment. Molecular Ecology 16, 1099-1106.

Kavanagh JR, Burk-Herrick A, Westerman M, Springer MS, 2004. Relationships

among families of Diprotodontia (Marsupialia) and the phylogenetic position of

the autapomorphic honey possum (Tarsipes rostratus). Journal of Mammalian

Evolution 11, 207-222.

Kavanagh RP, Stanton MA, 2002. Response to habitat fragmentation by the powerful

owl (Ninox strenua), sooty owl (Tyto tenebricosa), masked owl (Tyto

novaehollandiae) and other nocturnal fauna in southeastern Australia. In

'Ecology and conservation of owls'. (Ed. I Newton). (CSIRO Publishing:

Melbourne)

Keller LF, 1998. Inbreeding and its fitness effects in an insular population of song

sparrows (Melospiza melodia). Evolution 52, 240-250.

Keller LF, Waller DM, 2002. Inbreeding effects in wild populations. Trends in Ecology

& Evolution 17, 230-241.

Kershaw AP, 1981. Quaternary vegetation and environment. In 'Ecological

biogeography of Australia'. (Ed. A Keast) pp. 81-101. (Hague: Boston)

Kimura M, 1983. 'The neutral theory of molecular evolution.' (Cambridge University

Press: Cambridge)

Kirsch JAW, 1977. The comparative serology of Marsupialia, and a classification of

marsupials. Australian Journal of Zoology Supplement 52, 215-216.

Page 141: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

125

Kirsch JAW, Lapointe F-J, Springer MS, 1997. DNA-hybridisation studies of

marsupials and their implications for metatherian classification. Australian

Journal of Zoology 45, 211-280.

Kirsch JAW, Springer MS, 1993. Timing of the molecular evolution of New Guinean

marsupials. Science in New Guinea 19, 147-156.

Klettenheimer BS, Temple-Smith PD, Sofronidis G, 1997. Father and son sugar gliders:

more than a genetic coalition? Journal of Zoology (London).

Komdeur J, 1992. Importance of habitat saturation and territory quality for evolution of

cooperative breeding in the Seychelles warbler. Nature 358, 493-495.

Koprowski JL, 1996. Natal philopatry, communal nesting, and kinship in fox squirrels

and gray squirrels. Journal of Mammalogy 77, 1006-1016.

Körtner G, Geiser F, 2000. Torpor and activity patterns in free-ranging sugar gliders

Petaurus breviceps (Marsupialia). Oecologia 123, 350-357.

Krajewski C, Blacket M, Buckley L, Westerman M, 1997. A multigene assessment of

phylogenetic relationships within the dasyurid marsupial subfamily

Sminthopsinae. Molecular Phylogenetics and Evolution 8, 236-248.

Krajewski C, Wroe S, Westerman M, 2000. Molecular evidence for the pattern and

timing of cladogenesis in dasyurid marsupials. Zoological Journal of the

Linnean Society 130, 375-404.

Kruuk LEB, Sheldon BC, Merila J, 2002. Severe inbreeding depression in collared

flycatchers (Ficedula albicollis). Proceedings of the Royal Society of London

Series B-Biological Sciences 269, 1581-1589.

Kumar S, Tamura K, Nei M, 2004. MEGA3: integrated software for molecular

evolutionary genetics analysis and sequence alignment. Briefings in

Bioinformatics 5, 150-163.

Lachenbruch PA, 1975. 'Discriminant Analysis.' (Hafner Press: New York)

Lacy RC, 1997. Importance of genetic variation to the viability of mammalian

populations. Journal of Mammalogy 78, 320-335.

Laurance WF, Vasconcelos HL, 2004. Ecological effects of habitat fragmentation in the

tropics. In 'Agroforestry and Biodiveristy Conservation in Tropical Landscapes'.

(Eds G Schroth, GAB Fonesca, CA Harvey, C Gascon, H Vasconcelos and

AMN Izac) pp. 33-49. (Island Press: Washington, USA)

Layne JN, Raymond MAV, 1994. Communal nesting of southern flying squirrels in

Florida. Journal of Mammalogy 75, 110-120.

Page 142: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

126

Le Duff M, 2000. An investigation into the impact of native habitat fragmentation on

the marsupial sugar glider (Petaurus breviceps) and other arboreal marsupials in

the south east of South Australia. Honours thesis, University of Adelaide.

Lindenmayer DB, Cunningham RB, Donnelly CF, 1993a. The conservation of arboreal

marsupials in the montane ash forests of the central highlands of Victoria, south-

east Australia, IV. The presence and abundance of arboreal marsupials in

retained linear habitats (wildlife corridors) within logged forest. Biological

Conservation 66, 207-221.

Lindenmayer DB, Cunningham RB, Donnelly CF, Tanton MT, Nix HA, 1993b. The

abundance and development of cavities in eucalyptus trees: a case study in the

montane forests of Victoria, southeastern Australia. Forest Ecology and

Management 60, 77-104.

Lindenmayer DB, Cunningham RB, McCarthy MA, 1999a. The conservation of

arboreal marsupials in the montane ash forests of the central highlands of

Victoria, south-eastern Australia. VIII. Landscape analysis of the occurence of

arboreal marsupials. Biological Conservation 89, 83-92.

Lindenmayer DB, Cunningham RB, Pope ML, Donnelly CF, 1999b. The response of

arboreal marsupials to landscape context: a large-scale fragmentation study.

Ecological Applications 9, 594-611.

Lindenmayer DB, Cunningham RB, Tanton MT, Smith AP, Nix HA, 1990. The

conservation of arboreal marsupials in the montane ash forests of the central

highlands of Victoria, south-west Australia: I. Factors influencing the occupancy

of trees with hollows. Biological Conservation 54, 111-131.

Lindenmayer DB, MacGregor CI, Cunningham RB, Incoll RD, Crane M, Rawlins D,

Michael DR, 2003. The use of nest boxes by arboreal marsupials in the forests

of the central highlands of Victoria. Wildlife Research 30, 259-264.

Lindenmayer DB, McCarthy MA, Parris KM, Pope ML, 2000. Habitat fragmentation.

landscape context, and mammalian assemblages in southeastern Australia.

Journal of Mammalogy 81, 787-797.

Lindenmayer DB, Meggs RA, 1996. Use of den trees by leadbeater's possum.

Australian Journal of Zoology 44, 625-38.

Lindenmayer DB, Welsh A, Donnelly CF, 1997. Use of nest trees by the mountain

brushtail possum (Trichosurus caninus) (Phalangeridae: Marsupialia). III.

Spatial configuration and co-occupancy of nest trees. Wildlife Research 24, 661-

677.

Lott DF, 1984. Intraspecific variation in the social systems of wild vertebrates.

Behaviour 88, 266-325.

Page 143: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

127

Mallick J, Stoddart DM, Jones I, Bradley AJ, 1994. Behavioral and endocrinologic

correlates of social-status in the sale sugar glider Petaurus breviceps

(Marsupialia, Petauridae). Physiology & Behavior 55, 1131-1134.

Mantel N, 1967. The detection of disease clustering and a generalized regression

approach. Cancer Research 27, 209-220.

Marshall TC, Slate J, Kruuk LEB, Pemberton JM, 1998. Statistical confidence for

likelihood-based paternity inference in natural populations. Molecular Ecology

7, 639-655.

Marshall TC, Spalton JA, 2000. Simultaneous inbreeding and outbreeding depression in

reintroduced Arabian oryx. Animal Conservation 3, 241-248.

Martin AP, 1993. Application of mtDNA sequence analysis to the problem of species

identification of Sharks. NOAA Technical report NMFS 115, 53-59.

Maxwell S, Burbidge AA, Morris K, 1996. 'The 1996 Action Plan for australian

Marsupials and Monotremes.' (Wildlife Australia: Canberra)

McAlpine CA, Eyre TJ, 2002. Testing landscape metrics as indicators of habitat loss

and fragmentation in continuous eucalypt forests (Queensland, Australia).

Landscape Ecology 17, 711-728.

McIllroy JC, 1978. The effects of forestry practices on wildlife in Australia: a review.

Australian Forestry 41, 78-94.

McKay GM, 1988. Family Petauridae. In 'Fauna of Australia'. (Eds DW Walton and BJ

Richardson) pp. 665-678. (Australian Government Publishing Service:

Canberra)

Meikle RD, 1957. What is the subspecies? Taxon 6, 102-105.

Menkhorst P, Knight F, 2004. 'A Field Guide to the Mammals of Australia.' (Oxford

University Press: Melbourne)

Menkhorst PW, 1984a. The application of nest boxes in research and management of

possums and gliders. In 'Possums and Gilders'. (Eds AP Smith and ID Hume)

pp. 517-525. (Australian Mammal Society: Sydney)

Menkhorst PW, 1984b. Use of nest boxes by forest vertebrates in Gippsland:

acceptance, preference and demand. Australian Wildlife Research 11, 255-264.

Menkhorst PW, 1995. Squirrel Glider. In 'Mammals of Victoria'. (Ed. PW Menkhorst)

pp. 113-14. (Oxford University Press: Oxford)

Menkhorst PW, Weavers BW, Alexander JSA, 1988. Distribution, habitat and

conservation status of the squirrel glider, Petaurus norfolcensis (Petauridae:

Marsupialia) in Victoria. Australian Wildlife Research 15, 59-71.

Page 144: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

128

Millis AL, 2000. Isolation and characterization of microsatellite loci in marsupial

gliders (Petaurus norfolcensis, P. breviceps and P. gracilis). Molecular Ecology

9, 1681-1683.

Mills LS, Allendorf FW, 1996. The one-migrant-per-generation rule in conservation and

management. Conservation Biology 10, 1509-1518.

Moore WS, 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene

trees versus nuclear gene trees. Evolution 49,718-726.

Moore WS, 1997. Mitochondrial-gene trees versus nuclear-gene trees, a reply to

Hoelzer. Evolution 52, 627-629.

Moritz C, 1994a. Application of mitochondrial DNA analysis in conservatin. Molecular

Ecology 3, 401-411.

Moritz C, 1994b. Defining evolutionary significant units for conservation. Trends in

Ecology and Evolution 9, 373-375.

Moritz C, 1995. Uses of molecular phylogenies for conservation. Philosophical

Transactions of the Royal Society of London Series B-Biological Sciences 349,

113-118.

Moritz C, Heideman A, Geffen E, McRae P, 1997. Genetic population structure of the

greater bilby Macrotis lagotis, a marsupial in decline. Molecular Ecology 6,

925-936.

Moritz C, Patton JL, Schneider CJ, Smith TB, 2000. Diversification of rainforest

faunas: an integrated molecular approach. Annual Review of Ecology and

Systematics 31, 533-563.

Moussalli A, Hugall AF, Moritz C, 2005. A mitochondrial phylogeny of the rainforest

skink genus Saproscincus, Wells and Wellington (1984). Molecular

Phylogenetics and Evolution 34, 190-202.

Nei M, 1978. Estimation of average heterozygosity and genetic distance from a small

number of individuals. Genetics 89, 583-590.

Nicholls JA, Austin JJ, 2005. Phylogeography of an east Australian wet-forest bird, the

satin bowerbird (Ptilonorhynchus violaceus), derived from mtDNA, and its

relationship to morphology. Molecular Ecology 14, 1485-1496.

Nix HA, Kalma JD, 1972. Climate as a dominant control in the biogeography of

northern Australia and New Guinea. In 'Bridge and Barrier: The Natural and

Cultural History of Torres Strait'. (Ed. D Walker) pp. 61–92. (Australian

National University: Canberra)

Osborne MJ, Christidis L, 2001. Molecular phylogenetics of Australo-Papuan possums

and gliders (family Petauridae). Molecular Phylogenetics and Evolution 20, 211-

224.

Page 145: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

129

Osborne MJ, Christidis L, 2002. Molecular relationships of the cuscuses, brushtail and

scaly-tailed possums (Phalangerinae). Australian Journal of Zoology 50, 135-

149.

Osborne MJ, Christidis L, Norman JA, 2002. Molecular phylogenetics of the

Diprotodontia (kangaroos, wombats, koala, possums, and allies). Molecular

Phylogenetics and Evolution 25, 219-228.

Pacheco NM, Congdon BC, Friesen VL, 2002. The utility of nuclear introns for

investigating hybridization and genetic introgression: a case study involving

Brachyramphus murrelets. Conservation Genetics 3, 175-182.

Palumbi S, Baker C, 1994. Contrasting population structure from nuclear intron

sequences and mtDNA of humpback whales. Molecular Biology and Evolution

11, 426-435.

Park SDE,2001.The excel microsatellite toolkit. In. (University of Dublin: Dublin,

Ireland)

Parkhurst B, 2005 The ecology of the sugar glider (Petaurus breviceps) in a fragmented

landscape; does sugar glider ecology vary between different size patches.

Honours thesis, The University of Adelaide.

Peakall R, Smouse PE, 2006. GENALEX 6: genetic analysis in Excel. Population

genetic software for teaching and research. Molecular Ecology Notes 6, 288-

295.

Paetkau D, 1999. Using genetics to identify interspecific conservation units: a critique

of current methods. Conservation Biology 13, 1507-1509.

Petit RJ, El Mousadik A, Pons O, 1998. Identifying populations for conservation on the

basis of genetic markers. Conservation Biology 12, 844-855.

Pol D, 2004. Empirical problems of the hierarchical likelihood ratio test for model

selection. Systematic Biology 53, 949-962.

Poldmaa T, Montgomerie R, Boag P, 1995. Mating system of the cooperatively

breeding noisy miner Manorina melanocephala, as revealed by DNA profiling.

Behavioral Ecology and Sociobiology 37, 137-143.

Pope LC, Estoup A, Moritz C, 2000. Phylogeography and population structure of an

ecotonal marsupial, Bettongia tropica, determined using mtDNA and

microsatellites. Molecular Ecology 9, 2041-2053.

Pope ML, Lindenmayer DB, Cunningham RB, 2004. Patch use by the greater glider

(Petauroides volans) in a fragmented forest ecosystem. I. Home range size and

movements. Wildlife Research 31, 559-568.

Page 146: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

130

Posada D, Buckley TR, 2004. Model selection and model averaging in phylogenetics:

advantages of akaike information criterion and Bayesian approaches over

likelihood ratio tests. Systematic Biology 53, 793-808.

Posada D, Crandall KA, 1998. MODELTEST: testing the model of DNA substitution.

Bioinformatics 14, 817-818.

Posada D, Crandall KA, Templeton AR, 2000. GeoDis: a program for the cladistic

nested analysis of the geographical distribution of genetic haplotypes. Molecular

Ecology 9, 487-488.

Potts R, 1996. Evolution and climate variability. Science 273, 922-923.

Primack RB, 2006. 'Essentials of Conservation Biology.' (Sinauer Associates:

Sunderland, MA)

Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using

multilocus genotype data. Genetics 155, 945-959.

Prychitko TM, Moore WS, 2003. Alignment and phylogenetic analysis of beta-

fibrinogen intron 7 sequences among avian orders reveal conserved regions

within the intron. Molecular Biology and Evolution 20, 762-771.

Purvis A, Gittleman JL, Brooks T, 2005. 'Phylogeny and Conservation.' (New York)

Pusey A, Wolf M, 1996. Inbreeding avoidance in animals. Trends in Ecology &

Evolution 11, 201-206.

Quin D, Goldingay R, Churchill S, Engel D, 1996a. Feeding behaviour and food

availability of the yellow-bellied glider in north Queensland. Wildlife Research

23, 637-646.

Quin DG, 1995. Population ecology of the squirrel glider (Petaurus norfolcensis) and

the sugar glider (P. breviceps) (Marsupialia: Petauridae) at Limeburners Creek,

on the central north coast of New South Wales. Wildlife Research 22, 471-505.

Quin DG, Smith AP, Green SW, Hines HB, 1992. Estimating the home ranges of sugar

gliders (Petaurus breviceps) (Marsupialia: Petauridae), from grid-trapping and

radiotelemetry. Wildlife Research 19, 471-487.

Quin DG, Smith AP, Norton TW, 1996b. Eco-geographic variation in size and sexual

dimorphism in sugar gliders and squirrel gliders (Marsupialia: Petauridae).

Australian Journal of Zoology 44, 19-45.

Rambaut A, Drummond AJ, 2003 Tracer version 1.3. Available at:

http://evolve.zoo.ox.ac.uk/software.html?id=trace.

Randi E, 1996. A mitochondrial cytochrome b phylogeny of the Alectoris partridges.

Molecular Phylogenetics and Evolution 6, 214-227.

Page 147: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

131

Rao CR, 1964. The use and interpretation of Principal Component Analysis in applied

research. Sankhya A 26, 329 -358.

Rawlings LH, Donnellan SC, 2003. Phylogeographic analysis of the green python,

Morelia viridis, reveals cryptic diversity. Molecular Phylogenetics and

Evolution 27, 36-44.

Raymond M, Rousset F, 1995. GENEPOP (Version 1.2): population genetics software

for exact tests and ecumenicism. Journal of Heredity 86, 248-249.

Reed DH, 2004. Extinction risk in fragmented habitats. Animal Conservation 7, 181-

191.

Reed DH, Frankham R, 2003. Correlation between fitness and genetic diversity.

Conservation Biology 17, 230-237.

Rhind SG, 2003. Communal nesting in the usually solitary marsupial, Phascogale

tapoatafa. Journal of Zoology 261, 345-351.

Rice WR, 1989. Analyzing tables of statistical tests. Evolution 43, 223-225.

Rich PV, 1991. Monotremes, placental, and marsupials: their records in Australia and

its biases. In 'Vertebrate palaeontology of Australasia'. (Eds PV Rich, EM

Thompson and C Williams) pp. 893- 1004. (Pioneer Design Studio: Melbourne)

Richardson K, Carthew SM, 2004. Quest for the elusive feathertail glider Acrobates

pygmaeus in South Australia. In 'The Bilogy of Austrlain Possums and Gliders'.

(Eds RL Goldingay and SM Jackson) pp. 306-11. (Surrey Beatty and Sons: New

South Wales, Australia)

Roca AL, Georgiadis N, O'Brien SJ, 2005. Cytonuclear genomic dissociation in African

elephant species. Nature Genetics 37, 96-100.

Ross KG, 2001. Molecular ecology of social behaviour: analyses of breeding systems

and genetic structure. Molecular Ecology 10, 265-284.

Rossmanith E, Grimm V, Blaum N, Jeltsch F, 2006. Behavioural flexibility in the

mating system buffers population extinction: lessons from the lesser spotted

woodpecker Picoides minor. Journal of Animal Ecology 75, 540-548.

Rowston C, Catterall CP, 2004. Habitat segregation, competition and selective

deforestation: effects on the conservation status of two similar Petaurus gliders.

In 'Conservation of Australia’s forest fauna'. (Ed. D Lunney) pp. 741-747.

(Royal Zoological Society of New South Wales: Mossman, New South Wales)

Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R, 2003. DnaSP, DNA

polymorphism analyses by the coalescent and other methods. Bioinformatics 19,

2496-2497.

Page 148: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

132

Ruedi M, Smith MF, Patton JL, 1997. Phylogenetic evidence of mitochondrial DNA

introgression among pocket gophers in New Mexico (family Geomyidae).

Molecular Ecology 6, 453-462.

Russell R, 1984. Social behaviour of the yellow-bellied glider, Petaurus australis in

north Queensland. In 'Possums and Gliders'. (Eds AP Smith and ID Hume) pp.

343-53. (Australian Mammal Society: Sydney)

Rutschmann F, 2006. Molecular dating of phylogenetic trees: a brief review of current

methods that estimate divergence times. Diversity and Distributions 12, 35-48.

Ryder OA, 1986. Species conservation and systematics: the dilemma of subspecies.

Trends in Ecology & Evolution 1, 9-10.

Sadler LM, Ward SJ, 1999. Coalitions in male sugar gliders: are they natural? Journal

of Zoology 248, 91-96.

Sanderson MJ, Kim J, 2000. Parametric phylogenetics? Systematic Biology 49, 817-829.

Saunders DA, Hobbs RJ, Margules CR, 1991. Biological consequences of ecosystem

fragmentation: a review. Conservation Biology 5, 18-32.

Schneider C, Moritz C, 1999. Rainforest refugia and evolution in Australia's Wet

Tropics. Proceedings of the Royal Society of London Series B-Biological

Sciences 266, 191-196.

Schneider CJ, Cunningham M, Moritz C, 1998. Comparative phylogeography and the

history of endemic vertebrates in the Wet Tropics rainforests of Australia.

Molecular Ecology 7, 487-498.

Schneider CJ, Smith TB, Larison B, Moritz C, 1999. A test of alternative models of

diversification in tropical rainforests: ecological gradients vs. rainforest refugia.

Proceedings of the National Academy of Sciences of the United States of

America 96, 13869-13873.

Simons AM, 2002. The continuity of microevolution and macroevolution. Journal of

Evolutionary Biology 15, 688-701.

Slatkin M, 1985. Gene flow in natural populations. Annual Review of Ecology and

Systematics 16, 393-430.

Smith AP, 1982. Diet and feeding strategy of the sugar glider in temperate Australia.

Journal of Animal Ecology 51, 149-166.

Smith AP, Ganzhorn JU, 1996. Convergence in community structure and dietary

adaptation in Australian possums and gliders and Malagasy lemurs. Australian

Journal of Ecology 21, 31-46.

Page 149: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

133

Smith AP, Murray M, 2003. Habitat requirements of the squirrel glider (Petaurus

norfolcensis) and associated possums and gliders on the New South Wales

central coast. Wildlife Research 30, 291-301.

Smith GC, Agnew G, 2002. The value of 'bat boxes' for attracting hollow-dependent

fauna to farm forestry plantations in southeast Queenlsand. Ecological

Management and Restoration 3, 37-46.

Smith MJ, 1973. Petaurus breviceps. Mammalian Species 30, 1-5.

Soderquist T, Lill A, 1995. Natal dispersal and philopatry in the carnivorous marsupial

Phascogale tapoatafa (Dasyuridae). Ethology 99, 297-312.

Soderquist TR, Mac Nally R, 2000. The conservation value of mesic gullies in dry

forest landscapes: mammal populations in the box-ironbark ecosystem of

southern Australia. Biological Conservation 93, 281-291.

Spencer PBS, Adams M, Marsh H, Miller DJ, Eldridge MDB, 1997. High levels of

genetic variability in an isolated colony of rock-wallabies (Petrogale assimilis):

evidence from three classes of molecular markers. Australian Journal of

Zoology 45, 199-210.

SPSS. Inc, 2004.SPSS for windows v.13.0. In. (SPSS Inc: Chicago; IL)

Stephens M, Smith NJ, Donnelly P, 2001. A new statistical method for haplotype

reconstruction from population data. American Journal of Human Genetics 68,

978-989.

Stow AJ, Sunnucks P, 2004. Inbreeding avoidance in Cunningham's skinks (Egernia

cunninghami) in natural and fragmented habitat. Molecular Ecology 13, 443-

447.

Strahan R, 1995a. 'The Mammals of Australia: The National Photographic Index of

Australian Wildlife.' (Reed Books: Sydney)

Strahan R, 1995b. Subfamily Petaurinae; sugar glider (Petaurus breviceps). In. (Ed. R

Strahan) pp. 229-231. (New Holland, Pty.Ltd: Sydney)

Suckling GC, 1982. Value of reserved habitat for mammal conservation in plantations.

Australian Forestry 45, 19-27.

Suckling GC, 1983a. Squirrel glider (Petaurus norfolcensis). In 'The Australian

Museum Complete Book of Australian Mammals'. (Ed. R Strahan) pp. 140-141.

(Angus and Robertson: Sydney)

Suckling GC, 1983b. Sugar glider (Petaurus breviceps). In 'The Australian Museum

Complete Book of Australian Mammals'. (Ed. R Strahan) pp. 138-139. (Angus

and Robertson: Sydney)

Page 150: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

134

Suckling GC, 1984. Population ecology of the sugar glider, Petaurus breviceps, in a

system of fragmented habitats. Australian Wildlife Research 11, 49-75.

Suckling GC, Macfarlane MA, 1983. Introduction of the Sugar Glider, Petaurus-

Breviceps, into Re-Established Forest of the Tower-Hill State Game Reserve,

Vic. Australian Wildlife Research 10, 249-258.

Swihart RK, Lusk JJ, Duchamp JE, Rizkalla CE, Moore JE, 2006. The roles of

landscape context, niche breadth, and range boundaries in predicting species

responses to habitat alteration. Diversity and Distributions 12, 277-287.

Swofford DL,2002. PAUP*. Phylogenetic Analysis using Parsimony and other

methods. Version 4.0b10. In. (Sinauer Associates)

Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF, 1998. Comparative

phylogeography and postglacial colonization routes in Europe. Molecular

Ecology 7, 453-464.

Taylor AC, Sherwin WB, Wayne RK, 1994. Genetic variation of microsatellite loci in a

bottlenecked species, the northern hairy-nosed Wombat Lasiorhinus krefftii.

Molecular Ecology 3, 277-290.

Templeton AR, 1998. Nested clade analyses of phylogeographic data: testing

hypotheses about gene flow and population history. Molecular Ecology 7, 381-

397.

Templeton AR, Boerwinkle E, Sing CF, 1987. A cladistic analysis of phenotypic

associations with haplotypes inferred from restriction endonuclease mapping,

basic theory and an analysis of alcohol-dehydrogenase activity in Drosophila.

Genetics 117, 343-351.

Templeton AR, Crandall KA, Sing CF, 1992. A cladistic analysis of phenotypic

associations with haplotypes inferred from restriction endonuclease mapping

and DNA sequence data .3. cladogram estimation. Genetics 132, 619-633.

Templeton AR, Routman E, Phillips CA, 1995. Separating population structure from

population history; a cladistic analysis of the geographical-distribution of

mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum.

Genetics 140, 767-782.

Theodorou K, Couvet D, 2006. On the expected relationship between inbreeding,

fitness, and extinction. Genetics Selection Evolution 38, 371-387.

Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R,

Goodger B, 2001. The quality and isolation of habitat patches both determine

where butterflies persist in fragmented landscapes. Proceedings of the Royal

Society of London Series B-Biological Sciences 268, 1791-1796.

Thomas O, 1923. On some Queensland Phalangeridae. Annals and Magazine of Natural

History Series 9, 246-249.

Page 151: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

135

Tolley KA, Burger M, Turner AA, Matthee CA, 2006. Biogeographic patterns and

phylogeography of dwarf chameleons (Bradypodion) in an African biodiversity

hotspot. Molecular Ecology 15, 781-793.

Traill BJ, Lill A, 1997. Use of tree hollows by two sympatric gliding possums, the

squirrel glider, Petaurus norfolcensis and the sugar glider, P. breviceps.

Australian Mammalogy 20, 79-88.

Troughton E, 1945. Diagnosis of new mammals from the south-west Pacific. Records of

the Australian Museum, 373–375.

Ulmer FA, 1940. Zoological results of the Denison-Crockett South Pacific expedition

for the Academy of Natural Sciences of Philadelphia,1937-38. Part VI. A new

race of the New Guinea short-headed Flying Phalanger from Biak Island.

Notuale Naturae of the Academy of Natural Science of Philadelphia 52, 1-3.

van der Ree R, 2002. The population ecology of the squirrel glider (Petaurus

norfolcensis) within a network of remnant linear habitats. Wildlife Research 29,

329-340.

van der Ree R, Bennett AE, 2003. Home range of the squirrel glider (Petaurus

norfolcensis) in a network of remnant linear habitats. Journal of Zoology 259,

327-336.

van der Ree R, Soderquist TR, Bennett AF, 2001. Home-range use by the brush-tailed

phascogale (Phascogale tapoatafa) (Marsupialia) in high-quality, spatially

limited habitat. Wildlife Research 28, 517-525.

Van Dyck S, 1990. Belideus gracilis - soaring problems for an old de Vis glider.

Memoirs of the Queensland Museum 28, 329-336.

Van Dyck S, 1993. The taxonomy and distribution of Petaurus gracilis (Marsupialia:

Petauridae), with notes on its ecology and conservation status. Memoirs of the

Queensland Museum 33, 77-122.

Vane-Wright RI, Humphries CJ, Williams PH, 1991. What to protect? systematics and

the agony of choice. Biological Conservation 55, 235-254.

Weins J, 1997. Metapopulation dynamics and landscape ecology. In 'Metapopulation

Biology: Ecology, Genetics, and Evolution'. (Eds I Hanski and ME Gilpin).

(Academic Press: San Diego, CA)

Wheeler D, Hope R, Cooper SJB, Dolman G, Webb GC, Bottema CDK, Gooley AA,

Goodman M, Holland RAB, 2001. An orphaned mammalian [beta]-globin gene

of ancient evolutionary origin. Proceedings of the National Academy of Sciences

of the United States of America 98, 1101-1106.

Wheeler D, Hope RM, Cooper SJB, Gooley AA, Holland RAB, 2004. Linkage of the

[beta]-like [omega]-globin gene to [alpha]-like globin genes in an Australian

Page 152: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

References

136

marsupial supports the chromosome duplication model for separation of globin

gene clusters. Journal of Molecular Evolution 58, 642-652.

Withers PC, Jarvis JUM, 1980. The effect of huddling on thermoregulation and oxygen-

consumption for the naked mole-rat. Comparative Biochemistry and Physiology,

A-Physiology 66, 215-219.

Woinarski JCZ, McCosker JC, Gordon G, Lawrie B, James C, Augusteyn J, Slater L,

Danvers T, 2006. Monitoring change in the vertebrate fauna of central

Queensland, Australia, over a period of broad-scale vegetation clearance, 1973-

2002. Wildlife Research 33, 263-274.

Wolff JO, Lidicker WZ, 1981. Communal winter nesting and food sharing in Taiga

voles. Behavioral Ecology and Sociobiology 9, 237-240.

Wong MYL, Munday PL, Jones GP, 2005. Habitat patch size, facultative monogamy

and sex change in a coral-dwelling fish, Caracanthus unipinna. Environmental

Biology of Fishes 74, 141-150.

Wright S, 1969. 'Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene

Frequencies.' (University of Chicago Press: Chicago)

Yang Z, Goldman N, Friday A, 1994. Comparison of models for nucleotide substitution

used in maximum- likelihood phylogenetic estimation. Molecular Biology and

Evolution 11, 316-324.

Yang ZH, 1996. Among-site rate variation and its impact on phylogenetic analyses.

Trends in Ecology & Evolution 11, 367-372.

Yeh FC, Yang R-C, Boyle T, Ye Z-H, Mao JX,1997. POPGENE, the user-friendly

shareware for population genetic analysis. In. (Molecular Biology and

Biotechnology Centre: University of Alberta, Canada)

Zenger KR, Eldridge MDB, Cooper DW, 2003. Intraspecific variation, sex-biased

dispersal and phylogeography of the eastern grey kangaroo (Macropus

giganteus). Heredity 91, 153-162.

Ziegler AC, 1981. Petaurus abidi, new species of glider (Marsupialia, Petauridae) from

Papua New Guinea. Australian Mammalogy 4, 81-88.

Zink RM, 2004. The role of subspecies in obscuring avian biological diversity and

misleading conservation policy. Proceedings of the Royal Society of London

Series B-Biological Sciences 271, 561-564.

Page 153: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

137

Appendix 1

Sample and locality data for Petaurus specimens sequenced and phylogenetically

analysed in Chapter two.

The samples are listed according to species name and region or nation. Australian DNA

ids are provided from Biological Tissue Collection (ABTC), the South Australian

Museum; Australian Museum registration numbers (M), Queensland Museum

registration numbers(QM), Museum and Art Gallery of the Northern Territory (U) and

field samples (^).

Species Region/

Nation Location DNA Id Latitude Longitude

Namosado ABTC 46098

ABTC 46200

ABTC 45397

ABTC 45398

-5.25 142.70

Tifalmin M 19975

M 19968

-5.11 141.41

Waro ABTC 44768 -6.25 142.78

Karkar Island ABTC 49347

ABTC 49349

-4.7 145.91

Noru ABTC 43395

ABTC 43552

-6.58 144.65

Yuro ABTC 43193

ABTC 43100

ABTC 43068

ABTC 43069

-6.50 144.85

Normanby

Island

M 20224

M 20223

-10.00 151.25

Wigote M 16002 -3.41 142.15

Mt Sulen ABTC 44206 -3.41 142.15

Bundi ABTC 49310

ABTC 49311

-5.75 145.23

Gali ABTC 49016

-5.93 146.6

Solriver ABTC 47131

ABTC 47133

ABTC 47134

-5.1 141.7

New Guinea

Ofekaman ABTC 43650 -5.08 141.5

Irian Jaya M 30682 -4.00 138.2 Indonesia

Kai Besar

Island

M 42882

M 42672

M 42674

-5.62 132.97

Port

Macquarie-

NSW

ABTC 85524 -33.01 150.03

P. breviceps

Australia

North of ABTC 85525 -33.63 151.28

Page 154: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

138

Sydney- NSW

Thornleigh,

Sydney- NSW

ABTC 85531 -33.72 151.07

Lismore- NSW ABTC 85530 -28.82 153.28

Martinsville-

NSW

ABTC 85533 -33.05 151.40

Byron Bay-

NSW

ABTC 85534 -28.63 153.61

Viola St

Redland -QLD

QM JM16138 -27.63 153.25

Carnarvon

National Park-

QLD

QM JM16137 -24.973 147.993

Tumoulin State

Forest-QLD

ABTC 80833

ABTC 80835

-17.61 145.50

Snowgum- SA ABTC 81258 -37.93 140.93

Western Flat-

SA

ABTC 27086

ABTC 27102

-36.52 140.74

Grundys- SA ABTC 81225 -37.70 140.73

Rennick State

Forest-VIC

Ren5^

Ren7^

-37.90 140.99

Euroa- VIC M5^ -36.77 145.50

Candle park -

VIC

CandlP^ -37.73 145.14

Melville

Island- NT

ABTC 29964 -11.558 130.933

Gregory

National Park-

NT

U433 -15.36 131.08

Darwin-NT U434 -12.27 130.5

P. breviceps

Australia

Howard

Springs-NT

U5370 -12.27 131.03

Bordertown-

SA

ABTC 27042

ABTC 27085

-36.31 140.77

Whiteman

creek- NSW

ABTC 85528 -29.58 152.85

Ngawe,- NSW 190^ -35.96 151.74

Lake Lonsdale,

Grampians-Vic

19^ -37.00 142.547

P.

norfolcensis

QLD ABTC 85783

P. gracilis Australia VIC ABTC 76608 (R9)

ABTC 76609 (R10)

-37.90 140.99

QLD ABTC 80840 -17.619 145.506 P. australis

Australia NSW B336^

P. abidi Papua New

Guinea

West of

Wilbeite, West

Sepik province

M 27670

M 21664

M 21350

M 19216

-3.42 142.1

Petauroides

volans

Australia NSW ABTC 13802 -36.53 140.75

Page 155: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

139

Appendix 2

Sequence alignment of combined mitochondrial genes ND2 (1- 695) and ND4 (696-

1393) for 57 individuals of Petaurus species used in Chapter two

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

10 20 30 40 50 60 70

M19216_P.abidi TATTCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ATTATACCAA

M21350_P.abidi TATTCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ATTATACCAA

M27670_P.abidi TATTCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ATTATACCAA

M30682_Irian.jaya ?????????? ?????????? ?????????? AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA

44768PNG_Waro CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

46098PNG_Namosado CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

46200PNG_Namosado CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

45397PNG_Namosado CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

45398PNG_Namosado CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

M19975_Tifalmin CATCCCACTC TCATCTGGCA TAATCCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

M19968_Tifalmin CATCCCACTC TCATCTGGCA TAATCCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

49347PNG_KarkarIS CATCCCACTC TCATCTGGCA TAATCCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

49349PNG_Karkar. CATCCCACTC TCATCTGGCA TAATCCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

43395PNG_Noru CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

43193PNG_Yuro CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

43552PNG_Noru CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

43068PNG_Yuro CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

43069PNG_Yuro CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

43100PNG_Yuro CATCCCACTC TCATCTGGCA TAATTCTATT GACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

M42882_kai.Is CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

M42672_kai.Is CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

M20223_Normanby ?ATCCCACTC TCATCTGGCA TAATCTTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

M20224_Normanby ?ATCCCACTC TCATCTGGCA TAATCTTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

M16002_Wigote CATCCCACTA TCATCTGGCA TAATTCTACT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

44206PMG_Mt.sulen CATCCCACTA TCATCTGGCA TAATCCTACT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

47131PNG_Solriver CATTCCTCTC TCATCTGGCA TAATCCTACT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA

43650PNG_Ofekaman CATTCCTCTC TCATCTGGCA TAATCCTACT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA

47133PNG_Solriver CATTCCTCTC TCATCTGGCA TAATCCTACT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA

47134PNG_Solriver CATTCCTCTC TCATCTGGCA TAATCCTACT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA

49311PNG_Bundi CATTCCTCTC TCATCCGGCA TAATCCTATT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA

49310PNG_Bundi CATTCCTCTC TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA

49016Gali CATTCCTCTC TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCTC CAACAGCATT ACTTTATCAA

27042_P.norfolcensis CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATATCAA

27085_P.norfolcensis CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATATCAA

85528_P.norfolcensisNSW CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATATCAA

P.gracilis_QLD CATCCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATATCAA

29964NT_Melvill.IS CATCCCACTC TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATATCAA

P.brevicep_27086SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

27102_P.breviceps.SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

81258_P.breviceps.SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

Euroa.M5_P.breviceps.Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

Ren5_P.breviceps.Vic CATCCCACTA TCATCTGGCA TTATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

81225_P.breviceps.SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

CandlP_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

80833_P.breviceps.QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

80835_P.breviceps.QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

16137_P.brevicepsQLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA

85533_P.breviceps.NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA

85525_P.brevicepsNSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA

85531_P.breviceps.NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA

85534_P.brevicepsNSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA

16138_P.breviceps.QLD CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA

85530_P.breviceps.NSW CATCCCACTC TCATCTGGCA TAGTTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA

P.australis_R9 AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACTTCGCT ACTATATCAA

P.australis_D3609 AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACCTCGCT GCTATACCAA

P.australis_R10 AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACTTCGCT ACTATATCAA

P.australis_B336 AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACCTCACT GCTATATCAA

Page 156: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

140

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

80 90 100 110 120 130 140

M19216_P.abidi ATCTCACCAT CCCTAAACAT AGAAATTCTA ATCACACTAG CCATTCTATC AACAATATTA GGAGGTTGAG

M21350_P.abidi ATCTCACCAT CCCTAAACAT AGAAATTCTA ATCACACTAG CCATTCTATC AACAATATTA GGAGGTTGAG

M27670_P.abidi ATCTCACCAT CCCTAAACAT AGAAATTCTA ATCACACTAG CCATTCTATC AACAATATTA GGAGGTTGAG

M30682_Irian.jaya ATTTCACCAT CCCTAAATAT AGAAATCTTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG

44768PNG_Waro ATTTCACCAT CCCTGAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

46098PNG_Namosado ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

46200PNG_Namosado ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

45397PNG_Namosado ATTTCACCAT CCCTAAACAT AGAAATTCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

45398PNG_Namosado ATTTCACCAT CCCTAAACAT AGAAATTCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

M19975_Tifalmin ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

M19968_Tifalmin ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

49347PNG_KarkarIS ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

49349PNG_Karkar. ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

43395PNG_Noru ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

43193PNG_Yuro ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

43552PNG_Noru ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTTTGTC AACAGTACTA GGAGGCTGAG

43068PNG_Yuro ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTCTGTC AACAGTACTA GGAGGCTGAG

43069PNG_Yuro ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTCTGTC AACAGTACTA GGAGGCTGAG

43100PNG_Yuro ATTTCACCAT CCCTAAACAT AGAAATCCTA ATTATACTAG CCATTCTGTC AACAGTACTA GGAGGCTGAG

M42882_kai.Is ATCTCACCAT CACTGAATAT AGAAATCCTA ATTATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG

M42672_kai.Is ATCTCACCAT CACTGAATAT AGAAATCCTA ATTATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG

M20223_Normanby ATTTCACCAT CCCTGAACAT AGAAATCCTA ATCATATTAG CCATTTTATC AACTTTACTA GGAGGCTGAG

M20224_Normanby ATTTCACCAT CCCTGAACAT AGAAATCCTA ATCATATTAG CCATTTTATC AACTTTACTA GGAGGCTGAG

M16002_Wigote ATTTCACCGT CCCTAAATAT AGAAATCCTG ATTATACTAG CCATTTTATC AACAATGTTA GGAGGCTGAG

44206PMG_Mt.sulen ATTTCACCAT CCCTAAATAT AGAAATCCTG ATTATACTAG CCATTTTATC AACAATGTTA GGAGGCTGAG

47131PNG_Solriver ATTTCACCAT CCCTAAATAT AGAAATCTTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG

43650PNG_Ofekaman ATTTCACCAT CCCTAAATAT AGAAATCTTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG

47133PNG_Solriver ATTTCACCAT CCCTAAATAT AGAAATCTTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG

47134PNG_Solriver ATTTCACCAT CCCTAAATAT AGAAATCTTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG

49311PNG_Bundi ATTTCACCAT CCCTAAATAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG

49310PNG_Bundi ATTTCACCAT CCCTAAATAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG

49016Gali ATTTCACCAT CCCTAAATAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAGTACTA GGAGGCTGAG

27042_P.norfolcensis ATCTCACCGT CCTTAAACAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAATACTA GGAGGCTGAG

27085_P.norfolcensis ATCTCACCGT CCTTAAACAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAATACTA GGAGGCTGAG

85528_P.norfolcensisNSW ATCTCACCGT CCTTAAACAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAATACTA GGAGGCTGAG

P.gracilis_QLD ATCTCACCGT CCTTAAACAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAATACTT GGAGGCTGAG

29964NT_Melvill.IS ATCTCACCGT CCTTAAATAT AGAAATCCTA ATCATACTAG CCATTTTATC AACAATACTA GGAGGCTGAG

P.brevicep_27086SA ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG

27102_P.breviceps.SA ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG

81258_P.breviceps.SA ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG

Euroa.M5_P.breviceps.Vic ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG

Ren5_P.breviceps.Vic ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG

81225_P.breviceps.SA ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG

CandlP_Vic ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG

80833_P.breviceps.QLD ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG

80835_P.breviceps.QLD ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG

16137_P.brevicepsQLD ATCTCACCAT CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG

85533_P.breviceps.NSW ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG

85525_P.brevicepsNSW ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG

85531_P.breviceps.NSW ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG

85534_P.brevicepsNSW ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG

16138_P.breviceps.QLD ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG

85530_P.breviceps.NSW ATCTCACCAT CCCTAAACAT AGAAATCCTA ATCATACTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG

P.australis_R9 ATCTCTCCAT CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGAG

P.australis_D3609 ATCTCTCCAT CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGGG

P.australis_R10 ATCTCTCCAT CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGAG

P.australis_B336 ATCTCTCCAT CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGAG

Page 157: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

141

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

150 160 170 180 190 200 210

M19216_P.abidi GCGGACTTAA TCAGACCCAC TTACGAAAAA TCCTAGCCTA CTCATCAATC GCTCACATAG GATGAACAAT

M21350_P.abidi GCGGACTTAA TCAGACCCAC TTACGAAAAA TCCTAGCCTA CTCATCAATC GCTCACATAG GATGAACAAT

M27670_P.abidi GCGGACTTAA TCAGACCCAC TTACGAAAAA TCCTAGCCTA CTCATCAATC GCTCACATAG GATGAACAAT

M30682_Irian.jaya GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT

44768PNG_Waro GTGGGCTCAA CCAAACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

46098PNG_Namosado GTGGGCTCAA CCAAACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

46200PNG_Namosado GTGGGCTCAA CCAAACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

45397PNG_Namosado GTGGGCTTAA CCAAACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

45398PNG_Namosado GTGGGCTTAA CCAAACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

M19975_Tifalmin GTGGACTCAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT

M19968_Tifalmin GTGGACTCAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT

49347PNG_KarkarIS GTGGGCTCAA CCAAACCCAA ATACGAAAAA TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT

49349PNG_Karkar. GTGGGCTCAA CCAAACCCAA ATACGAAAAA TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT

43395PNG_Noru GGGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT

43193PNG_Yuro GGGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT

43552PNG_Noru GGGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATC GCCCATATAG GATGAACAGT

43068PNG_Yuro GTGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

43069PNG_Yuro GTGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

43100PNG_Yuro GTGGGCTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

M42882_kai.Is GTGGACTCAA TCAAACCCAA ATGCGAAAAG TCTTAGCTTA TTCATCAATC GCACACATAG GATGAACAGT

M42672_kai.Is GTGGACTCAA TCAAACCCAA ATGCGAAAAG TCTTAGCTTA TTCATCAATC GCACACATAG GATGAACAGT

M20223_Normanby GCGGACTTAA TCAAACCCAA ATACGGAAAA TTTTAGCCTA TTCATCAATT GCCCATATAG GATGGACAGT

M20224_Normanby GCGGACTTAA TCAAACCCAA ATACGGAAAA TTTTAGCCTA TTCATCAATT GCCCATATAG GATGGACAGT

M16002_Wigote GTGGACTTAA TCAAACCCAT ATACGAAAAG TTTTAGCCTA TTCATCAATT GCCCACATGG GATGGACAGT

44206PMG_Mt.sulen GTGGACTTAA TCAAACCCAT ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATGG GATGGACAGT

47131PNG_Solriver GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT

43650PNG_Ofekaman GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT

47133PNG_Solriver GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT

47134PNG_Solriver GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT

49311PNG_Bundi GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT

49310PNG_Bundi GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCCCATATGG GATGGACAGT

49016Gali GTGGACTTAA TCAAACCCAA ATACGAAAAG TTTTAGCCTA TTCATCAATC GCTCATATGG GATGGACAGT

27042_P.norfolcensis GTGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCACATGG GATGAACAAT

27085_P.norfolcensis GTGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCACATGG GATGAACAAT

85528_P.norfolcensisNSW GTGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCACATGG GATGAACAGT

P.gracilis_QLD GTGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCACATGG GATGAACAGT

29964NT_Melvill.IS GTGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCACATAG GATGAACGGT

P.brevicep_27086SA GAGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

27102_P.breviceps.SA GAGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

81258_P.breviceps.SA GAGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

Euroa.M5_P.breviceps.Vic GGGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

Ren5_P.breviceps.Vic GAGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

81225_P.breviceps.SA GAGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

CandlP_Vic GGGGACTTAA CCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT

80833_P.breviceps.QLD GAGGACTTAA TCAAACCCAA ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT

80835_P.breviceps.QLD GAGGACTTAA TCAAACCCAA ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT

16137_P.brevicepsQLD GGGGACTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT

85533_P.breviceps.NSW GTGGCCTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT

85525_P.brevicepsNSW GTGGCCTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT

85531_P.breviceps.NSW GTGGCCTTAA TCAAACCCAA ATACGAAAAA TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT

85534_P.brevicepsNSW GTGGCCTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT

16138_P.breviceps.QLD GTGGCCTTAA TCAAACCCAA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT

85530_P.breviceps.NSW GTGGCCTTAA TCAGACCCAA ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT

P.australis_R9 GGGGCCTAAA CCAAACCCAA TTACGAAAAA TCCTAGCATA CTCCTCTATC GCTCACATAG GCTGAATAAT

P.australis_D3609 GGGGCCTAAA CCAAACCCAA TTACGAAAAA TCCTAGCATA CTCCTCTATC GCCCACATAG GCTGAATAAT

P.australis_R10 GGGGCCTAAA CCAAACCCAA TTACGAAAAA TCCTAGCATA CTCCTCTATC GCTCACATAG GCTGAATAAT

P.australis_B336 GGGGCCTAAA CCAAACCCAA TTACGAAAAA TCCTAGCATA CTCCTCTATC GCCCACATAG GCTGAATAGT

Page 158: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

142

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

220 230 240 250 260 270 280

M19216_P.abidi AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGT CTAGTAATTT ATATCATAAC TACACTAACT

M21350_P.abidi AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGT CTAGTAATTT ATATCATAAC TACACTAACT

M27670_P.abidi AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGT CTAGTAATTT ATATCATAAC TACACTAACT

M30682_Irian.jaya AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC

44768PNG_Waro AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTTAGC CTAATAATCT ACATCATTAC TACTCTAACC

46098PNG_Namosado AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTTAGC CTAATAATCT ACATCATTAC TACTCTAACC

46200PNG_Namosado AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTTAGC CTAATAATCT ACATCATTAC TACTCTAACC

45397PNG_Namosado AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

45398PNG_Namosado AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

M19975_Tifalmin AATTATTGCC CTTGTTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

M19968_Tifalmin AATTATTGCC CTTGTTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

49347PNG_KarkarIS AATTATTGCC CTTATTAACC CAAACCTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

49349PNG_Karkar. AATTATTGCC CTTATTAACC CAAACCTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

43395PNG_Noru AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

43193PNG_Yuro AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

43552PNG_Noru AATTATTGCC CTTATTAACC CAAACTTAAC CATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

43068PNG_Yuro AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

43069PNG_Yuro AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

43100PNG_Yuro AATTATTGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ACATCATTAC TACTCTAACC

M42882_kai.Is GATTATCGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAGTCT ATATCATGAC TACTCTAACC

M42672_kai.Is GATTATCGCC CTTATTAACC CAAACTTAAC TATCCTAAGC CTAATAGTCT ATATCATGAC TACTCTAACC

M20223_Normanby AATTATTGCC CTCATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ATATCATGAC TACACTAACC

M20224_Normanby AATTATTGCC CTCATTAACC CAAACTTAAC TATCCTAAGC CTAATAATCT ATATCATGAC TACACTAACC

M16002_Wigote AATTATTGCC ATTATTAACC CTGACCTAAC TATCCTAAGC CTAATAATCT ATATCATGAC TACCTTAACC

44206PMG_Mt.sulen AATTATTGTC ATTATTAATC CTAACCTAAC TATCCTAAGC CTAATAATCT ACATCATGAC TACCTTAACC

47131PNG_Solriver AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC

43650PNG_Ofekaman AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC

47133PNG_Solriver AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC

47134PNG_Solriver AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC

49311PNG_Bundi AATTATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC

49310PNG_Bundi AATCATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ATATCATGAC TACCCTAACC

49016Gali AATCATTGCC CTTATTAATC CAAACTTAAC TATCCTAAGC CTAATAATTT ACATCATGAC TACCCTAACC

27042_P.norfolcensis AATTATTGCC CTTATCAATC CAAACCTAAC TATCCTAAGC CTAATAATCT ATATTATAAC TACACTAACC

27085_P.norfolcensis AATTATTGCC CTTATCAATC CAAACCTAAC TATCCTAAGC CTAATAATCT ATATTATAAC TACACTAACC

85528_P.norfolcensisNSW AATTATTGCC CTTATCAATC CAAACCTAAC TATCCTAAGC CTAATAATCT ATATTATAAC TACACTAACC

P.gracilis_QLD AATTATTGCC CTTATCAATC CAAACCTAAC TATCCTAAGC CTAATAATTT ATATTATAAC TACACTAACC

29964NT_Melvill.IS AATTATTGCT CTTATCAACC CAAACCTAAC TATCCTAAGC CTAATAATTT ATATTATAAC TACACTAACC

P.brevicep_27086SA AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC

27102_P.breviceps.SA AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC

81258_P.breviceps.SA AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC

Euroa.M5_P.breviceps.Vic AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC

Ren5_P.breviceps.Vic AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC

81225_P.breviceps.SA AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC

CandlP_Vic AATTATTGCC CTAATCAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC

80833_P.breviceps.QLD AATTATTGCC CTAATAAACC CAAACCTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC

80835_P.breviceps.QLD AATTATTGCC CTAATAAACC CAAACCTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC

16137_P.brevicepsQLD AATTATTGCC CTAATAAACC CAAACTTAAT AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC

85533_P.breviceps.NSW AATCATTGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC

85525_P.brevicepsNSW AATCATTGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC

85531_P.breviceps.NSW AATCATTGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC

85534_P.brevicepsNSW AATCATTGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC

16138_P.breviceps.QLD AATCATTGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC

85530_P.breviceps.NSW AATTATCGCC ATAATTAACC CAAACTTAAT AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC

P.australis_R9 AATTATCGTC CTCATCAACC CTGACTTAAC CCTCCTAAGC CTAATAATTT ATATTACAAC CACACTAACC

P.australis_D3609 GATTATCGTC CTAATCAACC CTGACTTAAC CTTCCTAAGC CTAATAATTT ATATTACAAC CACACTAACC

P.australis_R10 AATTATCGTC CTCATCAACC CTGACTTAAC CCTCCTAAGC CTAATAATTT ATATTACAAC CACACTAACC

P.australis_B336 AATTATCGTC CTAATCAACC CTGACTTAAC CTTCCTAAGC CTAATAATTT ATATTACAAC TACACTAACC

Page 159: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

143

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

290 300 310 320 330 340 350

M19216_P.abidi CTATTTATGA CACTTAACTT CTCTTCCACA ACCAAAATTA AATCAATCAG CAACCTATGA AACAAATCAA

M21350_P.abidi CTATTTATGA CACTTAACTT CTCTTCCACA ACCAAAATTA AATCAATCAG CAACCTATGA AACAAATCAA

M27670_P.abidi CTATTTATGA CACTTAACTT CTCTTCCACA ACCAAAATTA AATCAATCAG CAACCTATGA AACAAATCAA

M30682_Irian.jaya CTATTTATAA CACTTAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA

44768PNG_Waro CTATTTATGA CACTAAACTT ATCTTCAACA ACTAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

46098PNG_Namosado CTATTTATGA CACTAAACTT ATCTTCAACA ACTAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

46200PNG_Namosado CTATTTATGA CACTAAACTT ATCTTCAACA ACTAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

45397PNG_Namosado CTATTTATAA CACTAAACTT ATCTTCAACA ACTAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

45398PNG_Namosado CTATTTATAA CACTAAACTT ATCTTCAACA ACTAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

M19975_Tifalmin CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

M19968_Tifalmin CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

49347PNG_KarkarIS CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

49349PNG_Karkar. CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

43395PNG_Noru CTATTTATGA CACTAAACTT ATCTTCAACG ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

43193PNG_Yuro CTATTTATGA CATTAAACTT ATCTTCAACG ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

43552PNG_Noru CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

43068PNG_Yuro CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

43069PNG_Yuro CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

43100PNG_Yuro CTATTTATGA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

M42882_kai.Is CTATTTATGA CACTAAACTT ATCTTCAACA ACAAAAATCA AATCAATTAG CAATTTATGA AACAAATCAA

M42672_kai.Is CTATTTATGA CACTAAACTT ATCTTCAACA ACAAAAATCA AATCAATTAG CAATTTATGA AACAAATCAA

M20223_Normanby CTATTTATAA CACTAAACTT ATCCTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

M20224_Normanby CTATTTATAA CACTAAACTT ATCCTCAACA ACGAAAATCA AATCAATTAG TAATTTATGA AACAAATCAA

M16002_Wigote TTGTTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AATAAGTCAA

44206PMG_Mt.sulen TTGTTTATTA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AATAAATCAA

47131PNG_Solriver CTATTTATAA CACTTAATTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA

43650PNG_Ofekaman CTATTTATAA CACTTAATTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA

47133PNG_Solriver CTATTTATAA CACTTAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA

47134PNG_Solriver CTATTTATAA CACTTAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA

49311PNG_Bundi CTATTTATAA CACTTAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA

49310PNG_Bundi CTATTTATAA CACTCAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA

49016Gali CTATTTATAA CACTTAACTT ATCTTCAACA ACAAAAATTA AATCAATTAG TAACTTATGA AACAAATCAA

27042_P.norfolcensis CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG CAGCTTATGA AATAAATCAA

27085_P.norfolcensis CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG CAGCTTATGA AATAAATCAA

85528_P.norfolcensisNSW CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG CAGCTTATGA AATAAATCAA

P.gracilis_QLD CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATTAG CAGCTTATGA AATAAATCAA

29964NT_Melvill.IS CTATTCATAA CACTAAATTT ATCTTCAACA ACGAAAATCA AATCAATTAG CAGCTTATGA AATAAATCAA

P.brevicep_27086SA CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA

27102_P.breviceps.SA CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA

81258_P.breviceps.SA CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA

Euroa.M5_P.breviceps.Vic CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA

Ren5_P.breviceps.Vic CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA

81225_P.breviceps.SA CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA

CandlP_Vic CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA

80833_P.breviceps.QLD CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA

80835_P.breviceps.QLD CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA

16137_P.brevicepsQLD CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA AATCAATCAG TAATTTATGA AACAAATCAA

85533_P.breviceps.NSW CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG TAATTTATGA AATAAATCAA

85525_P.brevicepsNSW CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG TAATTTATGA AATAAATCAA

85531_P.breviceps.NSW CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG TAATTTATGA AATAAATCAA

85534_P.brevicepsNSW CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG TAATTTATGA AATAAATCAA

16138_P.breviceps.QLD CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG TAATTTATGA AATAAATCAA

85530_P.breviceps.NSW CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA AATCAATTAG CAATTTATGA AATAAATCAA

P.australis_R9 ATATTTATAA CACTAAACCT TTCATCTACA ACCAAAATTA AATCAATTAG CAACCTATGA AGCAAATCAA

P.australis_D3609 ATATTTATAA CACTGAACCT TTCATCTACA ACCAAAATTA AATCAATTAG CAACCTATGA AGCAAATCAA

P.australis_R10 ATATTTATAA CACTAAACCT TTCATCTACA ACCAAAATTA AATCAATTAG CAACCTATGA AGCAAATCAA

P.australis_B336 ATATTTATAA CACTAAACCT CTCATCTACA ACCAAAATTA AATCAATTAG CAACCTATGA AGCAAATCAA

Page 160: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

144

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

360 370 380 390 400 410 420

M19216_P.abidi CCCCCATAAC CATAATCATC TTCCTCACGC TTCTCTCACT AGGAGGACTA CCTCCACTAA CCGGATTTAT

M21350_P.abidi CCCCCATAAC CATAATCATC TTCCTCACGC TTCTCTCACT AGGAGGACTA CCTCCACTAA CCGGATTTAT

M27670_P.abidi CCCCCATAAC CATAATCATC TTCCTCACGC TTCTCTCACT AGGAGGACTA CCTCCACTAA CCGGATTTAT

M30682_Irian.jaya CCCCTATAAC CATAATTGTC TTCCTCACTC TCCTCTCACT AGGAGGATTG CCCCCATTAA CTGGATTCAT

44768PNG_Waro CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTTTA CCTCCATTAA CTGGATTCAT

46098PNG_Namosado CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTTTA CCTCCATTAA CTGGATTCAT

46200PNG_Namosado CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCTTA CCTCCATTAA CTGGATTCAT

45397PNG_Namosado CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTTTA CCCCCATTAA CTGGATTCAT

45398PNG_Namosado CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTTTA CCCCCATTAA CTGGATTCAT

M19975_Tifalmin CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTTAT

M19968_Tifalmin CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTTAT

49347PNG_KarkarIS CTCCCATAAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTCAT

49349PNG_Karkar. CTCCCATAAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTCAT

43395PNG_Noru CTCCCATAAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTCTA CCTCCATTAA CTGGATTTAT

43193PNG_Yuro CTCCCATAAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTCTA CCTCCATTAA CTGGATTTAT

43552PNG_Noru CTCCCATAAC AATAATTGTT TTCCTCACTC TACTCTCACT AGGAGGTCTA CCTCCATTAA CTGGATTTAT

43068PNG_Yuro CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTTAT

43069PNG_Yuro CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGCCTA CCTCCATTAA CTGGATTTAT

43100PNG_Yuro CTCCCATGAC AATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGTCTA CCTCCATTAA CTGGATTTAT

M42882_kai.Is CTCCCATAAC CATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGACTA CCACCATTAA CTGGATTTAT

M42672_kai.Is CTCCCATAAC CATAATTGTC TTCCTCACTC TACTCTCACT AGGAGGACTA CCACCATTAA CTGGATTTAT

M20223_Normanby CCCCTATAAC CATAATTGTC TTCCTCACTC TCCTCTCACT GGGAGGACTA CCTCCATTAA CTGGGTTTAT

M20224_Normanby CCCCTATAAC CATAATTGTC TTCCTCACTC TCCTCTCACT GGGAGGACTA CCTCCATTAA CTGGGTTTAT

M16002_Wigote CTCCTATAAC CATGATTGTC TTCCTCACTC TCCTCTCACT AGGAGGACTG CCCCCATTAA CTGGATTTAT

44206PMG_Mt.sulen CTCCTATAAC AATAATTGTT TTCCTCACTC TCCTCTCACT AGGAGGACTG CCCCCATTAA CTGGATTCAT

47131PNG_Solriver CCACTATAAC CATAATTGTC TTCCTCACTC TCCTTTCACT AGGAGGATTG CCCCCATTAA CTGGATTCAT

43650PNG_Ofekaman CCACTATAAC CATAATTGTC TTCCTCACTC TCCTTTCACT AGGAGGATTG CCCCCATTAA CTGGATTCAT

47133PNG_Solriver CCCCTATAAC CATAATTGTC CTCCTCACTC TCCTTTCACT AGGAGGATTG CCCCCATTAA CTGGATTCAT

47134PNG_Solriver CCCCTATAAC CATAATTGTC CTCCTCACTC TCCTTTCACT AGGAGGATTG CCCCCATTAA CTGGATTCAT

49311PNG_Bundi CCCCTATAAC CATAATTGTT TTCCTCACTC TCCTTTCACT AGGAGGATTA CCCCCATTAA CTGGATTTAT

49310PNG_Bundi CCCCTATAAC CATAATTGTT TTCCTCACTC TCCTTTCACT AGGAGGATTA CCCCCATTAA CTGGATTCAT

49016Gali CTCCTATAAC CATAATTGTT TTCCTCACTC TCCTTTCACT AGGAGGATTA CCCCCATTAA CTGGATTCAT

27042_P.norfolcensis CCCCTATGAC TATAATTGTA TTCCTCACTC TCCTCTCATT AGGAGGATTA CCTCCACTAA CTGGATTCAT

27085_P.norfolcensis CCCCTATGAC TATAATTGTA TTCCTCACTC TCCTCTCATT AGGAGGATTA CCTCCACTAA CTGGATTCAT

85528_P.norfolcensisNSW CCCCCATGAC TATAATTGTA TTCCTCACTC TCCTCTCATT GGGAGGATTA CCTCCACTAA CTGGATTCAT

P.gracilis_QLD CCCCTATGAC TATAATTGTC TTCCTTACTC TCCTCTCATT GGGAGGACTA CCTCCACTAA CTGGATTCAT

29964NT_Melvill.IS CCCCTATAAC TATAATCGTC TTCCTCACTC TCCTCTCATT GGGAGGACTA CCTCCACTAA CTGGATTCAT

P.brevicep_27086SA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT

27102_P.breviceps.SA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT

81258_P.breviceps.SA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT

Euroa.M5_P.breviceps.Vic CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT

Ren5_P.breviceps.Vic CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT

81225_P.breviceps.SA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT

CandlP_Vic CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG CCACCACTAA CTGGATTCAT

80833_P.breviceps.QLD CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA CCACCACTAA CTGGATTCAT

80835_P.breviceps.QLD CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA CCACCACTAA CTGGATTCAT

16137_P.brevicepsQLD CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA CCACCACTAA CTGGATTCAT

85533_P.breviceps.NSW CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA CCACCACTAA CTGGATTCAT

85525_P.brevicepsNSW CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA CCACCACTAA CTGGATTCAT

85531_P.breviceps.NSW CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA CCACCACTAA CTGGATTCAT

85534_P.brevicepsNSW CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA CCACCACTAA CTGGATTCAT

16138_P.breviceps.QLD CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGATTA CCACCACTAA CTGGATTCAT

85530_P.breviceps.NSW CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA CCACCACTAA CTGGATTCAT

P.australis_R9 CCCCTATAAC CATAATCATT TTCCTCGCTC TACTGTCACT AGGAGGCCTA CCCCCGCTAA CCGGATTTAT

P.australis_D3609 CCCCTACAAC CATAATCATT TTCCTAGCTC TACTATCACT AGGAGGCCTA CCCCCACTAA CCGGATTTAT

P.australis_R10 CCCCTATAAC CATAATCATT TTCCTCGCTC TACTGTCACT AGGAGGCCTA CCCCCGCTAA CCGGATTTAT

P.australis_B336 CCCCTATAAC CATAATCATT TTCCTCGCTC TACTATCACT AGGAGGCCTA CCCCCACTAA CCGGATTTAT

Page 161: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

145

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

430 440 450 460 470 480 490

M19216_P.abidi ACCAAAATGA TTAATTCTAC AAGAACTAAT TATTAACAAT AACCCTATCA TAGCTATTAT AATAGCTCTC

M21350_P.abidi ACCAAAATGA TTAATTCTAC AAGAACTAAT TATTAACAAT AACCCTATCA TAGCTATTAT AATAGCTCTC

M27670_P.abidi ACCAAAATGA TTAATTCTAC AAGAACTAAT TATTAACAAT AACCCTATCA TAGCTATTAT AATAGCTCTC

M30682_Irian.jaya ACCAAAATGA CTAATTCTAC AAGAACTAGT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC

44768PNG_Waro GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

46098PNG_Namosado GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

46200PNG_Namosado GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

45397PNG_Namosado GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

45398PNG_Namosado GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

M19975_Tifalmin GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

M19968_Tifalmin GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

49347PNG_KarkarIS GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAT AACCCCACCA TAGCTATTAT TATAGCCCTC

49349PNG_Karkar. GCCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAT AACCCCACCA TAGCTATTAT TATAGCCCTC

43395PNG_Noru GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

43193PNG_Yuro GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

43552PNG_Noru GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

43068PNG_Yuro GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

43069PNG_Yuro GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

43100PNG_Yuro GCCAAAATGA CTAATCCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

M42882_kai.Is ACCAAAATGA CTAATTTTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC

M42672_kai.Is ACCAAAATGA CTAATTTTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC

M20223_Normanby ACCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCAACCA TAGCTATTAT TATAGCCCTC

M20224_Normanby ACCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCAACCA TAGCTATTAT TATAGCCCTC

M16002_Wigote ACCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AATCCCACCA TAGCCATTAT TATAGCCCTC

44206PMG_Mt.sulen ACCAAAATGA CTAATTCTAC AAGAACTAAT TATCAACAAC AACCCCACCA TAGCCATTAT TATAGCCCTC

47131PNG_Solriver ACCAAAATGA CTAATTCTAC AAGAACTAGT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC

43650PNG_Ofekaman ACCAAAATGA CTAATTCTAC AAGAACTAGT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC

47133PNG_Solriver ACCAAAATGA CTAATTCTAC AAGAACTAGT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC

47134PNG_Solriver ACCAAAATGA CTAATTCTAC AAGAACTAGT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC

49311PNG_Bundi ACCAAAATGA CTAATTCTAC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATGGCCCTC

49310PNG_Bundi ACCAAAATGG CTAATTCTAC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCCATTAT TATAGCCCTC

49016Gali GCCAAAATGA CTAATTCTAC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCCATTAT TATGGCCCTC

27042_P.norfolcensis ACCAAAATGA TTAATTCTTC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

27085_P.norfolcensis ACCAAAATGA TTAATTCTTC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

85528_P.norfolcensisNSW ACCAAAATGA TTAATTCTTC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

P.gracilis_QLD ACCAAAATGA TTAATTCTTC AGGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

29964NT_Melvill.IS ACCAAAATGA TTAATTCTTC AAGAACTAAT CATCAACAAC AACCCCACCA TAGCTATTAT TATAGCCCTC

P.brevicep_27086SA ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC

27102_P.breviceps.SA ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC

81258_P.breviceps.SA ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC

Euroa.M5_P.breviceps.Vic ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC

Ren5_P.breviceps.Vic ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC

81225_P.breviceps.SA ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC

CandlP_Vic ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC

80833_P.breviceps.QLD ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC

80835_P.breviceps.QLD ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC

16137_P.brevicepsQLD ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT AATGGCCCTC

85533_P.breviceps.NSW GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCTATTGT AATGGCCCTC

85525_P.brevicepsNSW GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCTATTGT AATGGCCCTC

85531_P.breviceps.NSW GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCAACAA TAGCTATTGT AATGGCCCTC

85534_P.brevicepsNSW GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT AATGGCCCTC

16138_P.breviceps.QLD GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT AATGGCCCTC

85530_P.breviceps.NSW ACCAAAATGA CTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT AATGGCCCTC

P.australis_R9 ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAACAAC AACCCTGCTA TAGCCATTCT AATAGCCCTA

P.australis_D3609 ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAACAAC AACCCTGCTA TAGCCATTCT AATAGCCCTA

P.australis_R10 ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAACAAC AACCCTGCTA TAGCCATTCT AATAGCCCTA

P.australis_B336 ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAATAAC AACCCTGCTA TAGCCACTCT AATAGCCCTA

Page 162: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

146

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

500 510 520 530 540 550 560

M19216_P.abidi TCAGCTCTAC TAAACCTATT TTTCTATATA CGAATTATCT ACGTAACATC ACTAACAATA TTCCCCATTA

M21350_P.abidi TCAGCTCTAC TAAACCTATT CTTCTATATA CGAATTATCT ACGTAACATC ACTAACAATA TTCCCCATTA

M27670_P.abidi TCAGCTCTAC TAAACCTATT TTTCTATATA CGAATTATCT ACGTAACATC ACTAACAATA TTCCCCATTA

M30682_Irian.jaya TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA

44768PNG_Waro TCAGCCCTTC TAAACTTATT TTTTTACATA CGAATTATCT ATGTATCATC ATTAACAATA TTTCCAACTA

46098PNG_Namosado TCAGCCCTTC TAAACTTATT TTTTTACATA CGAATTATCT ATGTATCATC ATTAACAATA TTTCCAACTA

46200PNG_Namosado TCAGCCCTTC TAAACTTATT TTTTTACATA CGAATTATCT ATGTATCATC ATTAACAATA TTTCCAACTA

45397PNG_Namosado TCAGCCCTTC TAAACTTATT TTTTTACATA CGAATTATCT ATGTATCATC ATTAACAATA TTTCCAACTA

45398PNG_Namosado TCAGCCCTTC TAAACTTATT TTTTTACATA CGAATTATCT ATGTATCATC ATTAACAATA TTTCCAACTA

M19975_Tifalmin TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATCATCT ATGTGTCATC ATTAACAATA TTTCCAACCA

M19968_Tifalmin TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATCATCT ATGTGTCATC ATTAACAATA TTTCCAACCA

49347PNG_KarkarIS TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ATGTGTCATC ATTAACAATA TTTCCAACCA

49349PNG_Karkar. TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ATGTGTCATC ATTAACAATA TTTCCAACCA

43395PNG_Noru TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTGACAATA TTTCCAACCA

43193PNG_Yuro TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTAACAATA TTTCCAACCA

43552PNG_Noru TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTAACAATA TTTCCAACCA

43068PNG_Yuro TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTAACAATA TTTCCAACCA

43069PNG_Yuro TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTAACAATA TTTCCAACCA

43100PNG_Yuro TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ATTAACAATA TTTCCAACCA

M42882_kai.Is TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTATCATC ATTAACAATA TTCCCAACCA

M42672_kai.Is TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTATCATC ATTAACAATA TTCCCAACCA

M20223_Normanby TCAGCTCTAC TCAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACTATA TTTCCAACCA

M20224_Normanby TCAGCTCTAC TCAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACTATA TTTCCAACCA

M16002_Wigote TCAGCCCTAC TAAACTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCAACCA

44206PMG_Mt.sulen TCAGCTCTAC TAAACTTATT TTTTTACATA CGAATCATCT ACGTATCATC ACTAACAATA TTTCCAACCA

47131PNG_Solriver TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA

43650PNG_Ofekaman TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA

47133PNG_Solriver TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA

47134PNG_Solriver TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA

49311PNG_Bundi TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCAACCA

49310PNG_Bundi TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA

49016Gali TCAGCCCTAC TAAATTTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATA TTTCCTACCA

27042_P.norfolcensis TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTGTCATC ACTAACAATA TTTCCAACCA

27085_P.norfolcensis TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTGTCATC ACTAACAATA TTTCCAACCA

85528_P.norfolcensisNSW TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTGTCATC ACTAACAATA TTTCCAACCA

P.gracilis_QLD TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ACGTGTCATC ACTAACAATA TTTCCAACCA

29964NT_Melvill.IS TCAGCCCTAC TAAACTTATT TTTTTATATA CGAATTATCT ATGTGTCATC ACTAACAATA TTTCCAACCA

P.brevicep_27086SA TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

27102_P.breviceps.SA TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

81258_P.breviceps.SA TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Euroa.M5_P.breviceps.Vic TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Ren5_P.breviceps.Vic TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

81225_P.breviceps.SA TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

CandlP_Vic TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

80833_P.breviceps.QLD TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

80835_P.breviceps.QLD TCAGCCCTAC TAAACCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

16137_P.brevicepsQLD TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

85533_P.breviceps.NSW TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

85525_P.brevicepsNSW TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

85531_P.breviceps.NSW TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

85534_P.brevicepsNSW TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

16138_P.breviceps.QLD TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

85530_P.breviceps.NSW TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGCATCATC CCTAACAATG TTTCCAACCA

P.australis_R9 TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCCACCA

P.australis_D3609 TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCCACCA

P.australis_R10 TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCCACCA

P.australis_B336 TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCAACCA

Page 163: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

147

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

570 580 590 600 610 620 630

M19216_P.abidi ATAACAACTC AAAACACCAC TGACTCTATA CCCAAACAAA AACCACTAAC ATAATTCCCA CCCTAACCAT

M21350_P.abidi ATAACAACTC AAAACACCAC TGACTCTATA CCCAAACAAA AACCACTAAC ATAATTCCCA CCCTAACCAT

M27670_P.abidi ATAACAACTC AAAACACCAC TGACTCTATA CCCAAACAAA AACCACTAAC ATAATTCCCA CCCTAACCAT

M30682_Irian.jaya ATAATAGCTC AAAACATCAC TGATTCTTCA CAACAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT

44768PNG_Waro GTAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATGATCCCTA CCTTAACTAT

46098PNG_Namosado GTAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATGATCCCTA CCTTAACTAT

46200PNG_Namosado GTAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATGATCCCTA CCTTAACTAT

45397PNG_Namosado GTAATAACTT AAAACACCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATGATCCCTA CCTTAACTAC

45398PNG_Namosado GTAATAACTT AAAACACCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATGATCCCTA CCTTAACTAC

M19975_Tifalmin GTAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC

M19968_Tifalmin GTAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC

49347PNG_KarkarIS GTAATAACTT GAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC

49349PNG_Karkar. GTAATAACTT GAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC

43395PNG_Noru ATAATAACCT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC

43193PNG_Yuro ATAATAACCT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC

43552PNG_Noru ATAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC

43068PNG_Yuro ATAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC

43069PNG_Yuro ATAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC

43100PNG_Yuro ATAATAACTT AAAACATCAC TGATTCTTCA CCCAGACAAA AACCGCTAAT ATAATCCCTA CCTTAACTAC

M42882_kai.Is ATAATAACTT AAAACATCAC TGATTTTTCT CCCAGACAAA AACCACTAAT ATAATCCCTA CCTTAACTAC

M42672_kai.Is ATAATAACTT AAAACATCAC TGATTTTTCT CCCAGACAAA AACCACTAAT ATAATCCCCA CCTTAACTAC

M20223_Normanby ATAACAGCTT AAAACATCAC TGATTCTTCA CCCAAACAAA AACTACTAAC ATTATTCCTA CCTTAACTAC

M20224_Normanby ATAACAGCTT AAAACATCAC TGATTCTTCA CCCAAACAAA AACTACTAAC ATTATTCCTA CCTTAACTAC

M16002_Wigote ATAATAGCTC AAAACACCAC TGATTCTTCA CTCCAACAAA AACTACTAAT ATTATTCCTA CCTTAACTAT

44206PMG_Mt.sulen ATAATAGCTC AAAACACCAC TGATTCTTCA CTCCAACAAA AACCACTAAC ATCATTCCTA CCTTAACTAT

47131PNG_Solriver ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT

43650PNG_Ofekaman ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT

47133PNG_Solriver ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT

47134PNG_Solriver ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT

49311PNG_Bundi ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT

49310PNG_Bundi ATAATAACTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT

49016Gali ATAATAGCTC AAAACATCAC TGATTCTTCA CACCAACAAA AACCACCAAT ATAATTCCTA CCTTAACTAT

27042_P.norfolcensis GTAATAACTC AAAACATCAC TGATTTTTTA CCCAAACAAA AACCATCAAC ATAATCCCTA CTTTAACCAT

27085_P.norfolcensis GTAATAACTC AAAACATCAC TGATTTTTTA CCCAAACAAA AACCATCAAC ATAATCCCTA CTTTAACCAT

85528_P.norfolcensisNSW GTAATAACTC AAAACATCAC TGATTTTTTA CCCAAACAAA AACCATCAAC ATAATCCCTA CTTTAACCAC

P.gracilis_QLD GTAACAACTC AAAACATCAC TGATTCTTTA CCCAAACAAA AACCATCAAC ATAATCCCTA CTTTAACCAC

29964NT_Melvill.IS GTAATAACTC AAAACATCAC TGATTCTTTA CCCAAACAAA AACCATCAAC ATAATCCCTA CTTTAACTAC

P.brevicep_27086SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC

27102_P.breviceps.SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC

81258_P.breviceps.SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC

Euroa.M5_P.breviceps.Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC

Ren5_P.breviceps.Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC

81225_P.breviceps.SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC

CandlP_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC

80833_P.breviceps.QLD ATAATAACTT AAAGCACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC

80835_P.breviceps.QLD ATAATAACTT AAAGCACCAC TGATTCTTTA CCCAAACGAA AGCCACTAAC ATAATCCCAA CCCTAACTAC

16137_P.brevicepsQLD ATAATAACTT AAAACACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC

85533_P.breviceps.NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGGCTAC

85525_P.brevicepsNSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGGCTAC

85531_P.breviceps.NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC

85534_P.brevicepsNSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC

16138_P.breviceps.QLD ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACCAAT TTAATTCCTA TTCTGACTAC

85530_P.breviceps.NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAGTAAA AACCACTAAT TTAATTCCTA CCCTGACTAC

P.australis_R9 ACAACAACAC CAAACACCAC TGACTCAACA CCCAAACCAA ATCAACCCAC ATAATCCCAA CACTAACCAT

P.australis_D3609 ACAACAACAC CAAACACCAC TGACTCAACA CCCAAGCCAA ATCAACTCAC ATAATCCCAA CACTAACCAT

P.australis_R10 ACAACAACAC CAAACACCAC TGACTCAACA CCCAAACCAA ATCAACCCAC ATAATCCCAA CACTAACCAT

P.australis_B336 ACAACAACAC CAAACACCAC TGACTCAACA CCCAAACCAA ATCAACTCAC ATAATTCCAA CACTAACCAT

Page 164: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

148

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

640 650 660 670 680 690 700

M19216_P.abidi CATCTCATCT ATATTACTCC CACTAACCCC TATTACTACC ATTATAACCT AACTAAGAAT TACAT???AC

M21350_P.abidi CATCTCATCT ATATTACTCC CACTAACCCC TATTACTACC ATTATAACCT AACTAAGAAT TACAT???AC

M27670_P.abidi CATCTCATCT ATATTACTCC CACTAACCCC TATTACTACC ATTATAACCT AACTAAGAAT TACAT???AC

M30682_Irian.jaya CATCTCATCC ATATTACTCC CACTAACTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AC

44768PNG_Waro CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT

46098PNG_Namosado CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT

46200PNG_Namosado CATTTCATCA ATATTACTCC CACTAACTCC AATTATCATT ATTATAACCT AACTAAGAAT TACAT???AT

45397PNG_Namosado CATTTCATCG ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT

45398PNG_Namosado CATTTCATCG ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT

M19975_Tifalmin CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT

M19968_Tifalmin CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT

49347PNG_KarkarIS CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT

49349PNG_Karkar. CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT

43395PNG_Noru CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT AATATAACCT AACTAAGAAT TACAT???AT

43193PNG_Yuro CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT AATATAACCT AACTAAGAAT TACAT???AT

43552PNG_Noru CATTTCATCA ATATTACTCC CACTAACTCC AATTCTCATT AATATAACCT AACTAAGAAT TACAT???AT

43068PNG_Yuro CATTTCATCA ATATTACTCC CATTAACTCC AATTCTCATT AACATAACCT AACTAAGAAT TACAT???AT

43069PNG_Yuro CATTTCATCA ATATTACTCC CATTAACTCC AATTCTCATT AACATAACCT AACTAAGAAT TACAT???AT

43100PNG_Yuro CATTTCATCA ATATTACTCC CATTAACTCC AATTCTCATT AACATAACCT AACTAAGAAT TACAT???AT

M42882_kai.Is CATTTCATCC ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT

M42672_kai.Is CATTTCATCC ATATTACTCC CACTAACTCC AATTCTCATT ATTATAACCT AACTAAGAAT TACAT???AT

M20223_Normanby CATTTCATCA ATATTACTCC CACTAACTCC AATCCTCATT ATTATCACCT AACTAAGAAT TACAT???AC

M20224_Normanby CATTTCATCA ATATTACTCC CACTAACTCC AATCCTCATT ATTATCACCT AACTAAGAAT TACAT???AC

M16002_Wigote CATTTCATCC ATACTACTAC CACTAACTCC AATCCTCATT ATTATTACCT AACTAAGAAT TACAT???AT

44206PMG_Mt.sulen CATTTCATCC ATACTTCTAC CACTAACTCC AATCCTTATT ATTATTACCT AACTAAGAAT TACAT???AT

47131PNG_Solriver CATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AT

43650PNG_Ofekaman CATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AT

47133PNG_Solriver CATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATA ATTATAACTT AACTAAGAAT TACAT???AT

47134PNG_Solriver CATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATA ATTATAACTT AACTAAGAAT TACAT???AT

49311PNG_Bundi AATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AT

49310PNG_Bundi CATCTCATCC ATATTACTTC CACTAACTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AT

49016Gali CATCTCATCC ATATTACTTC CACTAATTCC AATCCTCATC ATTATAACTT AACTAAGAAT TACAT???AT

27042_P.norfolcensis CATTTCATCC ATATTACTTC CACTAACTCC AATTCTTATC ATTATAACCT AATTAAGAAT TACAT???AC

27085_P.norfolcensis CATTTCATCC ATATTACTTC CACTAACTCC AATTCTTATC ATTATAACCT AATTAAGAAT TACAT???AT

85528_P.norfolcensisNSW CATTTCATCC ATATTACTTC CACTAACTCC AATTCTTATC ATTATAACCT AACTAAGAAT TACAC???AT

P.gracilis_QLD CATTTCATCC ATATTACTTC CACTAACTCC AATTCTTATC ATTATAACCT AATTAAGAAT TACAT???AT

29964NT_Melvill.IS CATTTCATCC ATATTACTTC CACTAACTCC AATTCTTATC ATTATAACCT AATTAAGAAT TACAT???AT

P.brevicep_27086SA TATTTCATCA ATACTACTCC CATTAACCCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC

27102_P.breviceps.SA TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC

81258_P.breviceps.SA TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ACCATATCCT AAATAAGAAT TACAT???AC

Euroa.M5_P.breviceps.Vic TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC

Ren5_P.breviceps.Vic TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC

81225_P.breviceps.SA TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC

CandlP_Vic TATTTCATCA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACAT???AC

80833_P.breviceps.QLD TATTTCATCT ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACAT???AT

80835_P.breviceps.QLD TATTTCATCT ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACAT???AT

16137_P.brevicepsQLD TATTTCATCT ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACAT???AT

85533_P.breviceps.NSW TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACAC???AC

85525_P.brevicepsNSW TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACAC???AC

85531_P.breviceps.NSW TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACAC???AC

85534_P.brevicepsNSW TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACAC???AC

16138_P.breviceps.QLD TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TAC?C???AC

85530_P.breviceps.NSW TATTTCATCC ATATTACTCC CATTATCTCC AATCCTCATT ACTATAACCT AATTAAGAAT TACAC???AC

P.australis_R9 CATTTCATCA ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACAT???AT

P.australis_D3609 CATTTCATCA ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACAT???AT

P.australis_R10 CATTTCATCA ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACAT???AT

P.australis_B336 CATTTCATCA ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACAT???AT

Page 165: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

149

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

710 720 730 740 750 760 770

M19216_P.abidi TACCCATTCA TCATCCTTTC CATATGAGGC ATAATTATAA CAAGTTCTAT TTGCCTCCGC CAAACAGACT

M21350_P.abidi TACCCATTCA TCATCCTTTC CATATGAGGC ATAATTATAA CAAGTTCTAT TTGCCTCCGC CAAACAGACT

M27670_P.abidi TACCCATTCA TCATCCTTTC CATATGAGGC ATAATTATAA CAAGTTCTAT TTGCCTCCGC CAAACAGACT

M30682_Irian.jaya TACCCATTCA TCATCCTTTC CATATGAGGC ATAATTATAA CAAGTTCTAT TTGCCTCCGC CAAACAGACT

44768PNG_Waro TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

46098PNG_Namosado TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

46200PNG_Namosado TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

45397PNG_Namosado TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

45398PNG_Namosado TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

M19975_Tifalmin TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATCATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

M19968_Tifalmin TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATCATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

49347PNG_KarkarIS TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATCATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

49349PNG_Karkar. TACCCATTTA TTATCCTTTC TATGTGAGGC ATAATCATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

43395PNG_Noru TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

43193PNG_Yuro TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

43552PNG_Noru TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

43068PNG_Yuro TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

43069PNG_Yuro TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

43100PNG_Yuro TACCCATTTA TTATCCTTTC TATATGAGGC ATAATTATAA CAAGCTCCAT CTGTCTTCGC CAAACAGACT

M42882_kai.Is TACCCCTTTA TTATTCTTTC TTTATGAGGC ATGATTATAA CAAGCTCCAT CTGCCTTCGC CAAACAGACT

M42672_kai.Is TACCCCTTTA TTATTCTTTC TTTATGAGGC ATGATTATAA CAAGCTCCAT CTGCCTTCGC CAAACAGACT

M20223_Normanby TATCCATTTA TCATTCTTTC CATATGAGGC ATGGTTATAA CTAGCTCCAT CTGCCTTCGC CAAACAGACT

M20224_Normanby TATCCATTTA TCATTCTTTC CATATGAGGC ATGGTTATAA CTAGCTCCAT CTGCCTTCGC CAAACAGACT

M16002_Wigote TATCCATTTA TTATTCTTTC TATATGAGGC ATAATTATAA CAAGCTCAAT CTGTCTACGC CAAACAGACT

44206PMG_Mt.sulen TATCCGTTTA TTATCCTTTC TATATGAGGT ATAATTATAA CAAGCTCAAT CTGCCTACGC CAAACAGACT

47131PNG_Solriver TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT

43650PNG_Ofekaman TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT

47133PNG_Solriver TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT

47134PNG_Solriver TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT

49311PNG_Bundi TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT

49310PNG_Bundi TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT

49016Gali TATCCGTTTA TTATCCTTTC TATATGAGGC ATAATTATGA CAAGCTCCAT CTGCCTACGC CAGACAGACT

27042_P.norfolcensis TATCCCTTTA TTATTCTTTC TATATGAGGC ATGGTTATAA CAAGCTCCAT TTGCCTACGC CAGACAGACT

27085_P.norfolcensis TATCCCTTTA TTATTCTTTC TATATGAGGC ATGGTTATAA CAAGCTCCAT CTGCTTACGC CAGACAGACT

85528_P.norfolcensisNSW TATCCCTTTA TTATTCTTTC TATATGAGGC ATGGTTATAA CAAGCTCCAT CTGCCTACGC CAGACAGACT

P.gracilis_QLD TATCCCTTTA TTATTCTTTC TATATGAGGC ATGGTTATAA CAAGCTCCAT CTGCCTACGC CAGACAGACT

29964NT_Melvill.IS TATCCCTTTA TTATCCTTTC TATATGAGGC ATGGTTATAA CAAGCTCCAT CTGCCTACGC CAGACAGACT

P.brevicep_27086SA TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT

27102_P.breviceps.SA TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT

81258_P.breviceps.SA TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT

Euroa.M5_P.breviceps.Vic TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT

Ren5_P.breviceps.Vic TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT

81225_P.breviceps.SA TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT

CandlP_Vic TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT

80833_P.breviceps.QLD TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT

80835_P.breviceps.QLD TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT

16137_P.brevicepsQLD TACCCATTTA TTATCCTTTC TATATGAGGG ATAATTATAA CAAGCTCTAT TTGCCTACGT CAAACAGACT

85533_P.breviceps.NSW TACCCATTTA TTATCCTATC TATATGGGGG ATAGTTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT

85525_P.brevicepsNSW TACCCATTTA TTATCCTATC TATATGGGGG ATAGTTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT

85531_P.breviceps.NSW TACCCATTTA TTATCCTATC TATATGGGGG ATAGTTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT

85534_P.brevicepsNSW TACCCATTTA TTATCCTATC TATATGGGGG ATAGTTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT

16138_P.breviceps.QLD TACCCATTTA TTATCCTATC TATATGGGGG ATAATTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT

85530_P.breviceps.NSW TACCCGTTTA TTATCTTATC TATATGGGGG ATAGTTATAA CTAGCTCCAT TTGCCTACGT CAGACAGACT

P.australis_R9 TACCCATTCA TCATCCTATC CATATGGGGC ATGATCATAA CAAGCTCTAT CTGCCTACGC CAAACAGACC

P.australis_D3609 TACCCATTCA TCATCCTATC CATATGGGGC ATGATCATAA CAAGCTCTAT CTGCCTACGC CAAACAGACC

P.australis_R10 TATCCATTTA TCATCCTATC CATATGGGGC ATGATCATAA CAAGCTCTAT CTGCCTACGC CAAACAGACC

P.australis_B336 TATCCATTCA TCATCCTGTC CATATGGGGC ATGATCATAA CAAGCTCTAT CTGCCTACGC CAAACAGACC

Page 166: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

150

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

780 790 800 810 820 830 840

M19216_P.abidi TAAAATCTTT AATCGCCTAC TCTTCAGTAA GCCATATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

M21350_P.abidi TAAAATCTTT AATCGCCTAC TCTTCAGTAA GCCATATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

M27670_P.abidi TAAAATCTTT AATCGCCTAC TCTTCAGTAA GCCATATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

M30682_Irian.jaya TAAAATCTTT AATCGCCTAC TCTTCAGTAA GCCATATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

44768PNG_Waro TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

46098PNG_Namosado TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

46200PNG_Namosado TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

45397PNG_Namosado TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

45398PNG_Namosado TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

M19975_Tifalmin TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

M19968_Tifalmin TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

49347PNG_KarkarIS TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

49349PNG_Karkar. TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

43395PNG_Noru TAAAATCCTT AATTGCTTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

43193PNG_Yuro TAAAATCCTT AATTGCTTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

43552PNG_Noru TAAAATCCTT AATTGCTTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

43068PNG_Yuro TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

43069PNG_Yuro TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

43100PNG_Yuro TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATC GTAGCAGCCC TAATACAATC

M42882_kai.Is TAAAATCCTT AATTGCCTAC TCTTCAGTAA GCCATATAGG GCTAGTAATC GTAGCAGCCC TTATACAATC

M42672_kai.Is TAAAATCCTT AATTGCCTAC TCTTCAGTAA GCCATATAGG GCTAGTAATC GTAGCAGCCC TTATACAATC

M20223_Normanby TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTTATT GTAGCAGCCC TTATACAATC

M20224_Normanby TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTTATT GTAGCAGCCC TTATACAATC

M16002_Wigote TAAAATCCTT AATTGCCTAC TCTTCAGTAA GCCATATAGG ACTAGTAATT GTAGCAGCCC TCATACAATC

44206PMG_Mt.sulen TAAAATCCTT AATCGCTTAC TCTTCAGTAA GCCATATAGG ACTAGTAATT ATAGCAGCTC TTATACAATC

47131PNG_Solriver TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC

43650PNG_Ofekaman TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC

47133PNG_Solriver TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC

47134PNG_Solriver TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC

49311PNG_Bundi TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC

49310PNG_Bundi TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC

49016Gali TAAAATCCTT AATTGCTTAC TCTTCAGTAA GTCATATAGG ACTAGTAATT GTAGCAGCCC TTATACAATC

27042_P.norfolcensis TAAAATCCTT AATTGCCTAC TCCTCAGTAA GTCATATAGG ACTAGTGATC GTAGCTGCCC TTATACAATC

27085_P.norfolcensis TAAAATCCTT AATTGCCTAC TCCTCAGTAA GTCATATAGG ACTAGTGATC GTAGCTGCCC TTATACAGTC

85528_P.norfolcensisNSW TAAAATCCTT AATTGCCTAC TCCTCAGTAA GCCATATAGG ACTAGTAATC GTAGCTGCCC TTATACAGTC

P.gracilis_QLD TAAAATCCTT AATTGCCTAC TCCTCAGTAA GTCATATAGG ATTAGTAATC GTAGCTGCCC TTATACAGTC

29964NT_Melvill.IS TAAAATCCTT AATTGCCTAC TCCTCAGTAA GTCATATAGG ACTAGTAATC GTAGCTGCCC TTATACAGTC

P.brevicep_27086SA TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

27102_P.breviceps.SA TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

81258_P.breviceps.SA TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

Euroa.M5_P.breviceps.Vic TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

Ren5_P.breviceps.Vic TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

81225_P.breviceps.SA TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

CandlP_Vic TAAAATCCTT AATTGCCTAC TCTTCAGTAA GCCATATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

80833_P.breviceps.QLD TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

80835_P.breviceps.QLD TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

16137_P.brevicepsQLD TAAAATCCTT AATTGCCTAC TCTTCAGTAA GTCACATAGG ATTAGTAATT GTAGCAGCCC TTATACAATC

85533_P.breviceps.NSW TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TCTAGTAATT GTGGCAGCCC TTATACAATC

85525_P.brevicepsNSW TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TCTAGTAATT GTGGCAGCCC TTATACAATC

85531_P.breviceps.NSW TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TCTAGTAATT GTGGCAGCCC TTATACAATC

85534_P.brevicepsNSW TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TCTAGTAATT GTGGCAGCCC TTATACAATC

16138_P.breviceps.QLD TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TTTAGTAATT GTGGCAGCCC TTATACAATC

85530_P.breviceps.NSW TAAAATCCCT AATTGCCTAC TCTTCAGTAA GTCACATAGG TCTAGTAATT GTGGCAGCCC TTATACAATC

P.australis_R9 TAAAATCACT AATCGCTTAT TCCTCCGTTA GTCACATGGC TCTAGTAATC ATTGCCGCAC TCATACAAAC

P.australis_D3609 TAAAATCACT AATCGCTTAT TCCTCCGTTA GTCACATGGC TCTAGTAATC ATTGCCGCAC TCATACAAAC

P.australis_R10 TAAAATCACT AATCGCTTAT TCCTCCGTTA GCCACATAGC TCTAGTAATC ATTGCCGCAC TCATACAAAC

P.australis_B336 TAAAATCACT AATCGCTTAT TCCTCCGTTA GCCACATAGC TCTAGTAATC ATTGCCGCAC TCATACAAAC

Page 167: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

151

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

850 860 870 880 890 900 910

M19216_P.abidi AACCCTCAGT TTTATAGGCG CTACAACCCT AATAATCGCC CACGGACTTA CCTCCTCCAT ATTATTTTGC

M21350_P.abidi AACCCTCAGT TTTATAGGCG CTACAACCCT AATAATCGCC CACGGACTTA CCTCCTCCAT ATTATTTTGC

M27670_P.abidi AACCCTCAGT TTTATAGGCG CTACAACCCT AATAATCGCC CACGGACTTA CCTCCTCCAT ATTATTTTGC

M30682_Irian.jaya AACCCTCAGT TTTATAGGCG CTACAACCCT AATAATCGCC CACGGACTTA CCTCCTCCAT ATTATTTTGC

44768PNG_Waro TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATCGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

46098PNG_Namosado TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATCGCA CACGGGCTCA CATCTTCTAT ATTATTTTGT

46200PNG_Namosado TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATCGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

45397PNG_Namosado TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATCGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

45398PNG_Namosado TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATCGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

M19975_Tifalmin TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

M19968_Tifalmin TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

49347PNG_KarkarIS TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

49349PNG_Karkar. TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

43395PNG_Noru TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ACTATTTTGT

43193PNG_Yuro TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ACTATTTTGT

43552PNG_Noru TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTCA CATCTTCTAT ACTATTTTGT

43068PNG_Yuro TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

43069PNG_Yuro TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

43100PNG_Yuro TACTCTTAGC TTCATAGGGG CTACAACCCT AATAATTGCA CACGGGCTTA CATCTTCTAT ATTATTTTGT

M42882_kai.Is AACCCTTAGT TTCATAGGGG CTACAACCCT GATAATTGCA CACGGGCTTA CATCTTCCAT ATTATTTTGT

M42672_kai.Is AACCCTTAGT TTCATAGGGG CTACAACCCT GATAATTGCA CACGGGCTTA CATCTTCCAT ATTATTTTGT

M20223_Normanby AACCCTCAGT TTCATAGGAG CTACAACCCT TATAATCGCT CACGGACTTA CATCTTCTAT ATTATTTTGT

M20224_Normanby AACCCTCAGT TTCATAGGAG CTACAACCCT TATAATCGCT CACGGACTTA CATCTTCTAT ATTATTTTGT

M16002_Wigote TACCCTCAGT TTCATAGGGG CTACAACCCT CATAATCGCC CATGGGCTTA CATCCTCCAT ATTATTTTGT

44206PMG_Mt.sulen TACCCTCAGT TTCATAGGGG CTACAACCCT CATAATTGCC CATGGGCTTA CATCCTCCAT ATTATTTTGT

47131PNG_Solriver CACCCTTAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT

43650PNG_Ofekaman CACCCTTAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT

47133PNG_Solriver CACCCTTAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT

47134PNG_Solriver CACCCTTAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT

49311PNG_Bundi CACCCTCAGT TTCATAGGGG CTACAACTCT GATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT

49310PNG_Bundi CACCCTCAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT

49016Gali CACCCTTAGT TTCATAGGGG CTACAACTCT AATAATTGCT CACGGGCTTA CATCCTCCAT ATTATTTTGT

27042_P.norfolcensis CACTCTCAGC TTCATAGGGG CTACAACCCT AATAATTGCC CACGGACTTA CATCTTCCAT ATTATTTTGT

27085_P.norfolcensis CACTCTCAGC TTCATAGGGG CTACAACCCT AATAATTGCC CACGGACTTA CATCTTCCAT ATTATTTTGT

85528_P.norfolcensisNSW CACTCTCAGC TTCATAGGGG CTACAACCCT AATAATTGCC CACGGACTTA CATCTTCCAT ATTATTTTGT

P.gracilis_QLD CACTCTCAGT TTCATAGGGG CTACAACCCT AATAATTGCC CATGGACTTA CATCTTCCAT ATTATTTTGT

29964NT_Melvill.IS CACTCTCAGT TTCATAGGGG CTACAACCCT AATAATTGCC CATGGACTTA CATCTTCCAT ATTATTTTGT

P.brevicep_27086SA CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT

27102_P.breviceps.SA CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT

81258_P.breviceps.SA CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT

Euroa.M5_P.breviceps.Vic CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT

Ren5_P.breviceps.Vic CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT

81225_P.breviceps.SA CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT

CandlP_Vic CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT

80833_P.breviceps.QLD CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT

80835_P.breviceps.QLD CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT

16137_P.brevicepsQLD CACCCTCAGT TTCATAGGAG CTACTACCCT AATAATTGCC CACGGGCTTA CATCTTCCAT ATTATTCTGT

85533_P.breviceps.NSW CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT

85525_P.brevicepsNSW CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT

85531_P.breviceps.NSW CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT

85534_P.brevicepsNSW CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT

16138_P.breviceps.QLD CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT

85530_P.breviceps.NSW CACCCTCAGT TTCATAGGGG CTTCAACCCT AATAATCGCC CACGGGCTTA CATCTTCCAT ATTATTTTGT

P.australis_R9 AACCCTAAGT TTCATAGGCG CTACAGCTCT GATAATCGCC CACGGACTCA CCTCATCTAT GTTATTCTGC

P.australis_D3609 AACCCTAAGT TTCATAGGCG CTACAGCTCT GATAATCGCC CACGGACTCA CCTCATCTAT GTTATTCTGC

P.australis_R10 AACCCTAAGT TTCATAGGCG CTACAGCCCT GATAATCGCC CACGGACTCA CCTCATCTAT GTTATTCTGC

P.australis_B336 AACCCTAAGT TTCATAGGCG CTACAGCCCT GATAATCGCC CACGGACTCA CCTCATCTAT GTTATTCTGC

Page 168: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

152

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

920 930 940 950 960 970 980

M19216_P.abidi CTAGCTAATA CCAATTACGA ACGCATCCAC AGCCGAACCA TAATATTAGC TCGAGGCCTA CAAACAATTC

M21350_P.abidi CTAGCTAATA CCAATTACGA ACGCATCCAC AGCCGAACCA TAATATTAGC TCGAGGCCTA CAAACAATTC

M27670_P.abidi CTAGCTAATA CCAATTACGA ACGCATCCAC AGCCGAACCA TAATATTAGC TCGAGGCCTA CAAACAATTC

M30682_Irian.jaya CTAGCTAATA CCAATTACGA ACGCATCCAC AGCCGAACCA TAATATTAGC TCGAGGCCTA CAAACAATTC

44768PNG_Waro CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

46098PNG_Namosado CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

46200PNG_Namosado CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

45397PNG_Namosado CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

45398PNG_Namosado CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

M19975_Tifalmin CTTGCCAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

M19968_Tifalmin CTTGCCAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

49347PNG_KarkarIS CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

49349PNG_Karkar. CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

43395PNG_Noru CTTGCTAACA CTAACTATGA ACGTATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

43193PNG_Yuro CTTGCTAACA CTAACTATGA ACGTATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

43552PNG_Noru CTTGCTAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

43068PNG_Yuro CTTGCCAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

43069PNG_Yuro CTTGCCAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

43100PNG_Yuro CTTGCCAACA CTAACTATGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCTTA CAAACAGCCC

M42882_kai.Is CTTGCTAACA CTAACTACG? ?????????? ?????????? ?????????? ?????????? ??????????

M42672_kai.Is CTTGCTAACA CTAACTACGA ACGCATCCAC AGTCGAACAT TAATATTAGC TCGAGGCCTA CAAACAGCCC

M20223_Normanby CTTGCTAACA CTAACTACGA ACGCATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

M20224_Normanby CTTGCTAACA CTAACTACGA ACGCATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

M16002_Wigote CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGGACAA TAATACTAGC TCGAGGCCTA CAAACAGCCC

44206PMG_Mt.sulen CTTGCTAACA CTAACTACGA ACGTATCCAC AGCCGGACAA TAATACTAGC TCGAGGCCTA CAAACAGCCC

47131PNG_Solriver CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC

43650PNG_Ofekaman CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC

47133PNG_Solriver CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC

47134PNG_Solriver CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC

49311PNG_Bundi CTTGCTAACA CTAACTACGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC

49310PNG_Bundi CTTGCTAACA CTAACTATGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC

49016Gali CTTGCTAACA CTAACTATGA ACGCATCCAC AGCCGAACAA TAATTCTAGC TCGAGGCCTA CAAACAGCCC

27042_P.norfolcensis CTTGCTAACA CTAACTATGA ACGTATTCAT AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

27085_P.norfolcensis CTTGCTAACA CTAACTATGA ACGTATTCAT AGTCGAACCA TAATACTAGC CCGAGGCTTA CAAACAGCCC

85528_P.norfolcensisNSW CTTGCTAACA CTAACTATGA ACGCATTCAT AGTCGAACCA TAATACTAGC CCGAGGCTTA CAAACAGCCC

P.gracilis_QLD CTTGCTAACA CTAACTATGA ACGTATTCAC AGTCGAACCA TAATACTAGC CCGAGGCTTA CAAACAGCCC

29964NT_Melvill.IS CTTGCTAACA CTAACTATGA ACGTATTCAC AGTCGAACCA TAATACTAGC CCGAGGCTTA CAAACAGCCC

P.brevicep_27086SA CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

27102_P.breviceps.SA CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

81258_P.breviceps.SA CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

Euroa.M5_P.breviceps.Vic CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

Ren5_P.breviceps.Vic CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

81225_P.breviceps.SA CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

CandlP_Vic CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

80833_P.breviceps.QLD CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

80835_P.breviceps.QLD CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

16137_P.brevicepsQLD CTTGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

85533_P.breviceps.NSW CTCGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

85525_P.brevicepsNSW CTCGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

85531_P.breviceps.NSW CTCGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

85534_P.brevicepsNSW CTCGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

16138_P.breviceps.QLD CTCGCCAACA CCAACTACGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

85530_P.breviceps.NSW CTCGCCAACA CTAACTATGA ACGTATCCAC AGTCGAACCA TAATACTAGC TCGAGGCTTA CAAACAGCCC

P.australis_R9 CTAGCCAATA CTAACTACGA ACGAATTCAC AGTCGAACTA TAATTCTAGC CCGAGGCCTA CAAACAGCCT

P.australis_D3609 CTAGCCAATA CTAACTACGA ACGAATTCAC AGTCGAACTA TAATTCTAGC CCGAGGCCTA CAAACAGCCT

P.australis_R10 CTAGCCAATA CTAACTACGA ACGAATCCAC AGTCGAACTA TAATTCTAGC CCGAGGCCTA CAAACAGCCT

P.australis_B336 CTAGCCAATA CTAACTACGA ACGAATCCAC AGTCGAACTA TAATTCTAGC CCGAGGCCTA CAAACAGCCT

Page 169: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

153

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

990 1000 1010 1020 1030 1040 1050

M19216_P.abidi TACCACTTAT ATGTGCATGA TGACTCATAG CAAGCCTAAC CAACTTAGCT CTCCCTCCAA CAATTAACTT

M21350_P.abidi TACCACTTAT ATGTGCATGA TGACTCATAG CAAGCCTAAC CAACTTAGCT CTCCCTCCAA CAATTAACTT

M27670_P.abidi TACCACTTAT ATGTGCATGA TGACTCATAG CAAGCCTAAC CAACTTAGCT CTCCCTCCAA CAATTAACTT

M30682_Irian.jaya TACCACTTAT ATGTGCATGA TGACTCATAG CAAGCCTAAC CAACTTAGCT CTCCCTCCAA CAATTAACTT

44768PNG_Waro TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

46098PNG_Namosado TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

46200PNG_Namosado TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

45397PNG_Namosado TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

45398PNG_Namosado TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

M19975_Tifalmin TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATTTAGCC CTCCCACCAA CAATTAATCT

M19968_Tifalmin TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATTTAGCC CTCCCACCAA CAATTAATCT

49347PNG_KarkarIS TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATTTAGCC CTCCCACCAA CAATTAATCT

49349PNG_Karkar. TTCCACTTAT ATGCATATGA TGACTTATAG CAAGCCTAAC TAATTTAGCC CTCCCACCAA CAATTAATCT

43395PNG_Noru TTCCACTTAT ATGCATATGG TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

43193PNG_Yuro TTCCACTTAT ATGCATATGG TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

43552PNG_Noru TTCCACTTAT ATGCATATGG TGACTTATAG CGAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

43068PNG_Yuro TTCCACTTAT ATGCATATGG TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACCT

43069PNG_Yuro TTCCACTTAT ATGCATATGG TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACCT

43100PNG_Yuro TTCCACTTAT ATGCATATGG TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACCT

M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

M42672_kai.Is TTCCACTTAT ATGCGTTTGA TGACTAATAG CAAGTCTAAC TAATCTAGCC CTTCCACCAA CAATTAATCT

M20223_Normanby TTCCACTTAT ATGCATGTGA TGACTCATAG CAAGCCTTAC TAATCTAGCC CTGCCACCAA CAATTAACCT

M20224_Normanby TTCCACTTAT ATGCATGTGA TGACTCATAG CAAGCCTTAC TAATCTAGCC CTGCCACCAA CAATTAACCT

M16002_Wigote TTCCACTTAT ATGCATGTGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATTT

44206PMG_Mt.sulen TTCCACTTAT GTGCATGTGA TGACTCATAG CAAGCCTAAC TAATCTAGCT CTCCCACCAA CAATTAATTT

47131PNG_Solriver TTCCACTTAC ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

43650PNG_Ofekaman TTCCACTTAC ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

47133PNG_Solriver TTCCACTTAC ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

47134PNG_Solriver TTCCACTTAC ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

49311PNG_Bundi TTCCACTTAC ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

49310PNG_Bundi TTCCACTTAT ATGTATCTGG TGACTCATAG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

49016Gali TTCCACTTAT ATGTATCTGG TGACTCATGG CAAGTCTAAC TAATCTAGCC CTCCCACCAA CAATTAATCT

27042_P.norfolcensis TCCCACTCAT ATGTATGTGG TGACTCATAG CAAGCCTAAC TAATCTAGCC CTACCACCAA CAATCAATTT

27085_P.norfolcensis TCCCACTCAT ATGTATGTGG TGACTAATAG CAAGCCTAAC TAATCTAGCC CTACCACCAA CAATCAATTT

85528_P.norfolcensisNSW TCCCACTCAT ATGTATGTGG TGACTAATAG CAAGCCTAAC TAATCTAGCC CTACCACCAA CAATCAATTT

P.gracilis_QLD TCCCACTCAT ATGTATGTGG TGACTAATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATCAATTT

29964NT_Melvill.IS TCCCACTCAT GTGTATGTGA TGACTAATAG CAAGCTTAAC TAACCTAGCC CTGCCACCAA CAATCAACTT

P.brevicep_27086SA TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT

27102_P.breviceps.SA TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT

81258_P.breviceps.SA TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT

Euroa.M5_P.breviceps.Vic TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT

Ren5_P.breviceps.Vic TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT

81225_P.breviceps.SA TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT

CandlP_Vic TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAATAT

80833_P.breviceps.QLD TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACAT

80835_P.breviceps.QLD TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACAT

16137_P.brevicepsQLD TTCCACTTAT ATGCGTATGA TGACTTATAG CAAGCCTAAC TAATCTAGCC CTCCCACCAA CAATTAACAT

85533_P.breviceps.NSW TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAT

85525_P.brevicepsNSW TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAT

85531_P.breviceps.NSW TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAC

85534_P.brevicepsNSW TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAT

16138_P.breviceps.QLD TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAT

85530_P.breviceps.NSW TTCCACTTAT ATGCACATGA TGACTCATAG CAAGCCTAAC TAATCTAGCC CTGCCACCAA CAATTAATAT

P.australis_R9 TACCCCTCAT ATGAGCATGA TGACTAATAG CAAGCCTCGC CAACCTAGCC ATTCCCCCAA CAATCAACCT

P.australis_D3609 TACCCCTCAT ATGAGCATGA TGACTAATAG CAAGCCTCGC CAACCTAGCC ATTCCCCCAA CAATCAACCT

P.australis_R10 TACCCCTCAT ATGAGCATGA TGACTAATAG CAAGCCTTGC CAACCTAGCC ATTCCCCCAA CAATCAACCT

P.australis_B336 TACCCCTCAT ATGAGCATGA TGACTAATAG CAAGCCTTGC CAACCTAGCC ATTCCCCCGA CAATCAACCT

Page 170: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

154

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

1060 1070 1080 1090 1100 1110 1120

M19216_P.abidi ACTCGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CCATTATCCT CTTAGGTTTA

M21350_P.abidi ACTCGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CCATTATCCT CTTAGGTTTA

M27670_P.abidi ACTCGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CCATTATCCT CTTAGGTTTA

M30682_Irian.jaya ACTCGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CCATTATCCT CTTAGGTTTA

44768PNG_Waro GCTAGGGGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA

46098PNG_Namosado GCTAGGGGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA

46200PNG_Namosado GCTAGGGGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA

45397PNG_Namosado GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA

45398PNG_Namosado GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA

M19975_Tifalmin GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG

M19968_Tifalmin GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG

49347PNG_KarkarIS GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG

49349PNG_Karkar. GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG

43395PNG_Noru GCTAGGAGAA TTGAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG

43193PNG_Yuro GCTAGGAGAA TTGAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG

43552PNG_Noru GCTAGGAGAA TTGAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTG

43068PNG_Yuro GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA

43069PNG_Yuro GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA

43100PNG_Yuro GCTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA

M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

M42672_kai.Is ACTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAATTTCT CCATCATCCT CCTAGGCCTA

M20223_Normanby ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CTATTATTCT ATTAGGCATA

M20224_Normanby ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CTATTATTCT ATTAGGCATA

M16002_Wigote ACTAGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA

44206PMG_Mt.sulen ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATCATCCT CTTAGGCCTA

47131PNG_Solriver ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATCATCCT ATTAGGCCTA

43650PNG_Ofekaman ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATCATCCT ATTAGGCCTA

47133PNG_Solriver ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATTATCCT ATTAGGCCTA

47134PNG_Solriver ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATTATCCT ATTAGGCCTA

49311PNG_Bundi TCTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATCATCCT ATTAGGCCTA

49310PNG_Bundi ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAGCTTCT CCATTATCCT ATTAGGCCTA

49016Gali ACTAGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAACTTCT CCATCATCCT ATTAGGCCTA

27042_P.norfolcensis ACTAGGAGAA TTAAAAGTAA TCGTTGCTTC TTTCTCGTGA TCTAACTTCT CCATTACTCT ATTAGGCCTA

27085_P.norfolcensis ACTAGGAGAA TTAAAAGTAA TCGTTGCTTC TTTCTCGTGA TCTAACTTCT CCATTACTCT ATTAGGCCTA

85528_P.norfolcensisNSW ACTAGGAGAA TTAAAAGTAA TCGTTGCTTC TTTCTCGTGA TCTAACTTCT CCATTACTCT ATTAGGCCTA

P.gracilis_QLD ACTAGGAGAA TTAAAAGTAA TCGTTGCTTC TTTCTCGTGA TCTAACTTCT CCATTACTCT ATTAGGCCTA

29964NT_Melvill.IS ACTAGGAGAA TTAAAAGTAA TCGTTGCTTC TTTCTCATGA TCTAACTTCT CCATCACCCT ATTAGGCCTA

P.brevicep_27086SA ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA

27102_P.breviceps.SA ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA

81258_P.breviceps.SA ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA

Euroa.M5_P.breviceps.Vic ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA

Ren5_P.breviceps.Vic ACTGGGAGAA TTAAAAGTAA TCGTAGCCTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA

81225_P.breviceps.SA ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA

CandlP_Vic ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCCAATTTCT CCATCATTCT CCTGGGCCTA

80833_P.breviceps.QLD ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAATTTCT CCATCATTCT CCTGGGCCTA

80835_P.breviceps.QLD ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAATTTCT CCATCATTCT CCTGGGACTA

16137_P.brevicepsQLD ACTGGGAGAA TTAAAAGTAA TCGTAGCTTC TTTCTCATGA TCTAATTTCT CCATCATTCT CCTGGGCCTA

85533_P.breviceps.NSW ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGCCTA

85525_P.brevicepsNSW ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGCCTA

85531_P.breviceps.NSW ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGCTTA

85534_P.brevicepsNSW ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGCCTA

16138_P.breviceps.QLD ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGCCTA

85530_P.breviceps.NSW ACTTGGAGAA TTAAAAGTAA TTGTAGCTTC CTTCTCATGA TCTAACTTCT CTATCATCCT CCTAGGGCTA

P.australis_R9 ATTAGGTGAA TTAATAATCA TTGTATCATC ATTCTCATGA TCCAACCTTT CCATCATTCT ACTAGGCCTG

P.australis_D3609 ATTAGGTGAA TTAATAATCA TTGTATCATC ATTCTCATGA TCCAACCTTT CCATCATTCT ACTAGGCCTG

P.australis_R10 ACTAGGCGAA TTAATAATCA TTGTATCATC ATTCTCATGA TCCAACCTTT CCATCATTCT ACTAGGCCTA

P.australis_B336 ACTAGGCGAA TTAATAATCA TTGTATCATC ATTCTCATGA TCCAACCTTT CCATTATTCT ACTAGGCCTG

Page 171: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

155

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

1130 1140 1150 1160 1170 1180 1190

M19216_P.abidi AATACCGTAA TCACAGGCCT CTACTCACTA CACATATTCA TTACATCTCA ACGAGGCAAA TTCACACACC

M21350_P.abidi AATACCGTAA TCACAGGCCT CTACTCACTA CACATATTCA TTACATCTCA ACGAGGCAAA TTCACACACC

M27670_P.abidi AATACCGTAA TCACAGGCCT CTACTCACTA CACATATTCA TTACATCTCA ACGAGGCAAA TTCACACACC

M30682_Irian.jaya AATACCGTAA TCACAGGCCT CTACTCACTA CACATATTCA TTACATCTCA ACGAGGCAAA TTCACACACC

44768PNG_Waro AATACTGTAA TCACAGGTCT CTACTCACTT TATATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC

46098PNG_Namosado AATACTGTAA TCACAGGTCT CTACTCACTT TATATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC

46200PNG_Namosado AATACTGTAA TCACAGGTCT CTACTCACTT TATATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC

45397PNG_Namosado AATACTGTAA TCACAGGTCT CTACTCACTT TATATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC

45398PNG_Namosado AATACTGTAA TCACAGGTCT CTACTCACTT TATATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC

M19975_Tifalmin AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC

M19968_Tifalmin AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC

49347PNG_KarkarIS AATACTGTAA TCACAGGTCT CTACTCGCTT TACATATTTA TTACATCCCA ACGAGGCAAG TTTACACATC

49349PNG_Karkar. AATACTGTAA TCACAGGTCT CTACTCGCTT TACATATTTA TTACATCCCA ACGAGGCAAG TTTACACATC

43395PNG_Noru AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTTACACATC

43193PNG_Yuro AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTTACACATC

43552PNG_Noru AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTTACACATC

43068PNG_Yuro AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC

43069PNG_Yuro AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC

43100PNG_Yuro AATACTGTAA TCACAGGTCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAG TTTACACATC

M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

M42672_kai.Is AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTG TTATATCTCA ACGAGGCAAG TTTACACACC

M20223_Normanby AATACTGTAA TTACAGGCCT CTATTCACTA TATATATTTG TTACATCCCA ACGAGGCAAA TTTACACACC

M20224_Normanby AATACTGTAA TTACAGGCCT CTATTCACTA TATATATTTG TTACATCCCA ACGAGGCAAA TTTACACACC

M16002_Wigote AATACTGTAA TCACTGGCCT CTACTCACTA TACATATTTG TCTCATCCCA ACGAGGCAAA TTTACACACC

44206PMG_Mt.sulen AATACTGTAA TCACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC

47131PNG_Solriver AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTTACACACC

43650PNG_Ofekaman AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTCACACACC

47133PNG_Solriver AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTCACACACC

47134PNG_Solriver AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTCACACACC

49311PNG_Bundi AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTTACACACC

49310PNG_Bundi AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTTACACACC

49016Gali AACACTGTGA TCACAGGCCT CTACTCACTA TACATATTTG TTACATCACA ACGAGGCAAA TTTACACACC

27042_P.norfolcensis AATACTGTCA TTACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC

27085_P.norfolcensis AATACTGTCA TTACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC

85528_P.norfolcensisNSW AATACTGTCA TTACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC

P.gracilis_QLD AATACTGTCA TTACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC

29964NT_Melvill.IS AATACTGTCA TTACTGGCCT CTACTCACTA TACATATTTG TCACATCCCA ACGAGGCAAA TTTACACACC

P.brevicep_27086SA AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC

27102_P.breviceps.SA AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC

81258_P.breviceps.SA AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC

Euroa.M5_P.breviceps.Vic AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC

Ren5_P.breviceps.Vic AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC

81225_P.breviceps.SA AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC

CandlP_Vic AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTA TTACATCCCA ACGAGGCAAA TTCACACACC

80833_P.breviceps.QLD AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTCACACATC

80835_P.breviceps.QLD AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTCACACATC

16137_P.brevicepsQLD AATACTGTGA TCACAGGCCT CTACTCACTT TACATATTTG TTACATCCCA ACGAGGCAAA TTCACACATC

85533_P.breviceps.NSW AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC

85525_P.brevicepsNSW AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC

85531_P.breviceps.NSW AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC

85534_P.brevicepsNSW AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC

16138_P.breviceps.QLD AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC

85530_P.breviceps.NSW AATACTGTTA TTACAGGCCT CTACTCACTA TACATATTCG TTACATCCCA ACGAGGCAAA TTTACACACC

P.australis_R9 AATACCGTTA TTACAAGTAT CTATACACTC TACATACTAA CCACATCCCA ACGAGGAAAA TTCGTACACC

P.australis_D3609 AATACCGTTA TTACAAGTAT CTATACACTC TACATACTAA CCACATCCCA ACGAGGAAAA TTCGTACACC

P.australis_R10 AATACCGTTA TTACAAGTAT CTATACACTC TACATACTAA CCACATCCCA ACGAGGAAAA TTCGTATACC

P.australis_B336 AATACCGTTA TTACAAGTAT CTATACACTC TACATACTAA CCACATCCCA ACGAGGAAAA TTCGTACACC

Page 172: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

156

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

1200 1210 1220 1230 1240 1250 1260

M19216_P.abidi ACTTATATCC AATTAACCCA TCATTCACAC GAGAACATAT ACTTATATCT CTGCACCTAA TTCCCCTCAT

M21350_P.abidi ACTTATATCC AATTAACCCA TCATTCACAC GAGAACATAT ACTTATATCT CTGCACCTAA TTCCCCTCAT

M27670_P.abidi ACTTATATCC AATTAACCCA TCATTCACAC GAGAACATAT ACTTATATCT CTGCACCTAA TTCCCCTCAT

M30682_Irian.jaya ACTTATATCC AATTAACCCA TCATTCACAC GAGAACATAT ACTTATATCT CTGCACCTAA TTCCCCTCAT

44768PNG_Waro ACCTACACCC GATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TTCCCCTTAT

46098PNG_Namosado ACCTACACCC GATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TTCCCCTTAT

46200PNG_Namosado ACCTACACCC GATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TTCCCCTTAT

45397PNG_Namosado ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TTCCCCTTAT

45398PNG_Namosado ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TTCCCCTTAT

M19975_Tifalmin ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

M19968_Tifalmin ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

49347PNG_KarkarIS ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

49349PNG_Karkar. ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

43395PNG_Noru ACCTACACCC AATTAACCCA TCATTTACAC GAGAACATAC CCTTATATCT CTTCACCTAA TCCCCCTTAT

43193PNG_Yuro ACCTACACCC AATTAACCCA TCATTTACAC GAGAACATAC CCTTATATCT CTTCACCTAA TCCCCCTTAT

43552PNG_Noru ACCTACACCC AATTAACCCA TCATTTACAC GAGAACATAT CCTTATATCT CTTCACCTAA TCCCCCTTAT

43068PNG_Yuro ACCTATATCC AATTAACCCA TCATTCACAC GAGAACATAC GCTTATATCT CTTCACCTAA TCCCCCTTAT

43069PNG_Yuro ACCTATATCC AATTAACCCA TCATTCACAC GAGAACATAC GCTTATATCT CTTCACCTAA TCCCCCTTAT

43100PNG_Yuro ACCTATATCC AATTAACCCA TCATTCACAC GAGAACATAC GCTTATATCT CTTCACCTAA TCCCCCTTAT

M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

M42672_kai.Is ACCTACACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTTATATCC CTCCACCTAA TCCCCCTTAC

M20223_Normanby ACCTTCACCC AATTAACCCA TCATTCACAC GAGAGCATAC ACTTATATCT CTTCATCTAA TCCCCCTTAT

M20224_Normanby ACCTTCACCC AATTAACCCA TCATTCACAC GAGAGCATAC ACTTATATCT CTTCATCTAA TCCCCCTTAT

M16002_Wigote ACCTACGCCC AATTAACCCG TCATTCACAC GAGAACACAT ACTTATGTCT CTTCACCTAA TTCCCCTTAT

44206PMG_Mt.sulen ACCTACGCCC AATTAACCCG TCATTCACAC GAGAACACAT ACTTATAACT CTTCACCTAA TTCCCCTTAT

47131PNG_Solriver ACCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAC ACTTATATCC CTTCACCTAA TCCCCCTTAT

43650PNG_Ofekaman ACCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAC ACTTATATCC CTTCACCTAA TCCCCCTTAT

47133PNG_Solriver ACCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAC ACTTATATCC CTTCACCTAA TCCCCCTTAT

47134PNG_Solriver ACCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAC ACTTATATCC CTTCACCTAA TCCCCCTTAT

49311PNG_Bundi ACCTATACCC AATTAACCCA TCATTCACAC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

49310PNG_Bundi ACCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

49016Gali ACCTATACCC AATTAACCCG TCATTCACAC GAGAACATAC ACTTATATCC CTTCACCTAA TCCCCCTTAT

27042_P.norfolcensis ACCTATACCC AATTAACCCA TCATTCACGC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

27085_P.norfolcensis ACCTATACCC AATTAACCCA TCATTCACGC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

85528_P.norfolcensisNSW ACCTATACCC AATTAACCCA TCATTCACGC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

P.gracilis_QLD ACCTATACCC GATTAACCCA TCATTCACAC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

29964NT_Melvill.IS ACCTATACCC AATTAACCCA TCATTCACAC GAGAGCATAC ACTTATATCT CTTCACCTAA TCCCCCTTAT

P.brevicep_27086SA ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT

27102_P.breviceps.SA ATCTGTACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT

81258_P.breviceps.SA ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT

Euroa.M5_P.breviceps.Vic ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT

Ren5_P.breviceps.Vic ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT

81225_P.breviceps.SA ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT

CandlP_Vic ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAC ACTCATATCC CTTCACCTAG TTCCCCTTAT

80833_P.breviceps.QLD ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAT ACTCATATCC CTTCACCTAG TTCCCCTTAT

80835_P.breviceps.QLD ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAT ACTCATATCC CTTCACCTAG TTCCCCTTAT

16137_P.brevicepsQLD ATCTATACCC AATTAACCCA TCATTCACAC GAGAACATAT ACTCATATCC CTTCACCTAG TTCCCCTTAT

85533_P.breviceps.NSW ATCTATACCC AATCAGCCCG TCATTCACAC GAGAGCATAT ACTTATATCT CTTCACCTGG TCCCCCTTAC

85525_P.brevicepsNSW ATCTATACCC AATCAGCCCG TCATTCACAC GAGAGCATAT ACTTATATCT CTTCACCTGG TCCCCCTTAC

85531_P.breviceps.NSW ATCTATACCC AATCAGCCCG TCATTCACAC GAGAGCATAT ACTTATATCT CTTCACCTGG TCCCCCTTAC

85534_P.brevicepsNSW ATCTATACCC AATCAACCCG TCATTCACAC GAGAGCATAT ACTTATATCT CTTCACCTGA TCCCCCTTAC

16138_P.breviceps.QLD ATCTATACCC AATCAACCCG TCATTCACAC GAGAGCATAT ACTTATATCT CTTCACCTGG TCCCCCTTAC

85530_P.breviceps.NSW ATCTATACCC AATTAACCCG TCATTCACAC GAGAGCATAT ACTTATATCC TTTCACCTGG TCCCCCTTAC

P.australis_R9 ACCTATACCC AATCAAACCA TCCTTTACAC GAGAGCACAC ACTCATAGTC CTACACCTCA TACCCCTTAC

P.australis_D3609 ACCTATACCC AATCAAACCA TCCTTTACAC GAGAGCACAC ACTCATAGTC CTACACCTCA TACCCCTTAC

P.australis_R10 ACCTGTACCC AATTAAACCA TCCTTTACAC GAGAGCACAC ACTCATAGTC CTACACCTCA TACCCCTTAC

P.australis_B336 ACCTGTACCC AATCAAACCA TCCTTTACAC GAGAGCACAC ACTCATAGTC CTACACCTCA TACCCCTTAC

Page 173: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

157

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

1270 1280 1290 1300 1310 1320 1330

M19216_P.abidi AATACTATCT ATTAACCCAA AACTCATTAT AGGGATAACA TACTGTAAAT ATAGTTTAAT AAAAACATTA

M21350_P.abidi AATACTATCT ATTAACCCAA AACTCATTAT AGGGATAACA TACTGTAAAT ATAGTTTAAT AAAAACATTA

M27670_P.abidi AATACTATCT ATTAACCCAA AACTCATTAT AGGGATAACA TACTGTAAAT ATAGTTTAAT AAAAACATTA

M30682_Irian.jaya AATACTATCT ATTAACCCAA AACTCATTAT AGGGATAACA TACTGTAAAT ATAGTTTAAT AAAAACATTA

44768PNG_Waro GATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

46098PNG_Namosado GATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

46200PNG_Namosado GATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

45397PNG_Namosado AATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

45398PNG_Namosado AATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

M19975_Tifalmin AATATTATCT ATCAACCCAA AATTTATTCT AGGTATTACA TATTGTAAAT ATAGTTTAAC TAAAACATTA

M19968_Tifalmin AATATTATCT ATCAACCCAA AATTTATTCT AGGTATTACA TATTGTAAAT ATAGTTTAAC TAAAACATTA

49347PNG_KarkarIS AATATTATCT ATCAACCCAA AATTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

49349PNG_Karkar. AATATTATCT ATCAACCCAA AATTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

43395PNG_Noru AATATTATCT ATCAACCCAA AATTTATTTT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

43193PNG_Yuro AATATTATCT ATCAACCCAA AATTTATTTT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

43552PNG_Noru AATATTATCT ATCAACCCAA AATTTATTTT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

43068PNG_Yuro AATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

43069PNG_Yuro AATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

43100PNG_Yuro AATATTATCT ATCAACCCAA AATTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

M42672_kai.Is AATATTATCC ATCAACCCAA AATTTATTTT AGGCATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

M20223_Normanby AATATTATCT ATCAACCCAA AACTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

M20224_Normanby AATATTATCT ATCAACCCAA AACTTATTTT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

M16002_Wigote AATACTATCT ATCAGCCCAA AACTCATTCT AGGTATTACG TACTGTAAAT ATAGTTTAAC TAAAACATTA

44206PMG_Mt.sulen AATACTATCT ATTAGCCCAA AACTCATTCT AGGAATTACA TACTGTAAAT ATAGTTTAAT TAAAACATTA

47131PNG_Solriver TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

43650PNG_Ofekaman TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

47133PNG_Solriver TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

47134PNG_Solriver TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

49311PNG_Bundi TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

49310PNG_Bundi TATACTATCT ATCAATCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

49016Gali TATACTATCT ATCAACCCAA AACTCATTCT AGGGATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

27042_P.norfolcensis AATATTATCT ATCAACCCAA AACTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

27085_P.norfolcensis AATATTATCT ATCAACCCAA AACTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

85528_P.norfolcensisNSW AATATTATCT ATCAACCCAA AACTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

P.gracilis_QLD AATATTATCT ATCAACCCAA AACTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

29964NT_Melvill.IS AATATTATCT ATTAACCCAA AACTTATTCT AGGTATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

P.brevicep_27086SA AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

27102_P.breviceps.SA AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

81258_P.breviceps.SA AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

Euroa.M5_P.breviceps.Vic AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

Ren5_P.breviceps.Vic AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

81225_P.breviceps.SA AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

CandlP_Vic AATACTATCT ATCAACCCAA AACTTATTCT AGGCATCACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

80833_P.breviceps.QLD AATATTATCT ATCAACCCAA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

80835_P.breviceps.QLD AATATTATCT ATCAACCCAA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

16137_P.brevicepsQLD AATATTATCT ATCAACCCAA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC CAAAACATTA

85533_P.breviceps.NSW AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

85525_P.brevicepsNSW AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

85531_P.breviceps.NSW AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

85534_P.brevicepsNSW AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

16138_P.breviceps.QLD AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

85530_P.breviceps.NSW AATATTATCT ATCAACCCTA AACTTATTCT AGGCATTACA TACTGTAAAT ATAGTTTAAC TAAAACATTA

P.australis_R9 CATTATTTCC ATCAACCCAA AATTCATCCT AGGAACCACA TACTGCAAAT ATAGTTTAAC CAAAACATTA

P.australis_D3609 CATTATTTCC ATCAACCCAA AATTCATCCT AGGAACCACA TACTGCAAAT ATAGTTTAAC CAAAACATTA

P.australis_R10 CATTATTTCC ATCAACCCAA AATTCATCCT AGGAACCACA TACTGCAAAT ATAGTTTAAC CAAAACATTA

P.australis_B336 CATTATTTCC ATCAACCCAA AATTCATCCT AGGAACCACA TACTGCAAAT ATAGTTTAAC CAAAACATTA

Page 174: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

158

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....

1340 1350 1360 1370 1380 1390

M19216_P.abidi GATTGTGAAT CTAAAAACAG AAGTTTAACC CTTCTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

M21350_P.abidi GATTGTGAAT CTAAAAACAG AAGTTTAACC CTTCTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

M27670_P.abidi GATTGTGAAT CTAAAAACAG AAGTTTAACC CTTCTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

M30682_Irian.jaya GATTGTGAAT CTAAAAACAG AAGTTTAACC CTTCTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

44768PNG_Waro GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

46098PNG_Namosado GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

46200PNG_Namosado GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

45397PNG_Namosado GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

45398PNG_Namosado GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

M19975_Tifalmin GATTGTGGAT CTAAAATTAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCTAAGAAC TGCTA

M19968_Tifalmin GATTGTGGAT CTAAAATTAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCTAAGAAC TGCTA

49347PNG_KarkarIS GATTGTGGAT CTAAAATTAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

49349PNG_Karkar. GATTGTGGAT CTAAAATTAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

43395PNG_Noru GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

43193PNG_Yuro GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

43552PNG_Noru GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

43068PNG_Yuro GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

43069PNG_Yuro GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

43100PNG_Yuro GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

M42882_kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????

M42672_kai.Is GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

M20223_Normanby GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

M20224_Normanby GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

M16002_Wigote GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

44206PMG_Mt.sulen GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

47131PNG_Solriver GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA

43650PNG_Ofekaman GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA

47133PNG_Solriver GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA

47134PNG_Solriver GATTGTGGAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA

49311PNG_Bundi GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA

49310PNG_Bundi GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA

49016Gali GATTGTGAAT CTAAAAATAT GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ACCAAAGAAC TGCTA

27042_P.norfolcensis GATTGTGAAT CTAAAAATAG GAGTTTAAAC CCCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

27085_P.norfolcensis GATTGTGAAT CTAAAAATAG GAGTTTAAAC CCCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

85528_P.norfolcensisNSW GATTGTGAAT CTAAAAATAG GAGTTTAAAC CCCCTTATAT ACCAAGAAAG ACCCAAGAAC TGCTA

P.gracilis_QLD GATTGTGAAT CTAAAAATAG GAGTTCAAAC CTCCTTGTAA CCCAAGAAAG ACCCAAGAAC TGCTA

29964NT_Melvill.IS GATTGTGGAT CTAAAAATAG GAGTTTAAAC CTCCTTATAT ACC??????? ?????????? ?????

P.brevicep_27086SA GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

27102_P.breviceps.SA GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCA?????? ?????????? ?????

81258_P.breviceps.SA GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

Euroa.M5_P.breviceps.Vic GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

Ren5_P.breviceps.Vic GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

81225_P.breviceps.SA GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

CandlP_Vic GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

80833_P.breviceps.QLD GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACC??????? ?????????? ?????

80835_P.breviceps.QLD GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

16137_P.brevicepsQLD GATTGTGAAT CTAAAAATAG GAGTTTAAAT CTCTTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

85533_P.breviceps.NSW GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATGT ACCAAGAAAG ATCCAAGAAC TGCTA

85525_P.brevicepsNSW GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATGT ACCAAGAAAG ATCCAAGAAC TGCTA

85531_P.breviceps.NSW GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATGT ACCAAGAAAG ATCCAAGAAC TGCTA

85534_P.brevicepsNSW GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATGT ACCAAGAAAG ATCCAAGAAC TGCTA

16138_P.breviceps.QLD GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATGT AC???????? ?????????? ?????

85530_P.breviceps.NSW GATTGTGAAT CTAAAAATAA GAGTTTAAAT CTCCTTATAT ACCAAGAAAG ATCCAAGAAC TGCTA

P.australis_R9 GATTGTGAAT CTAAAAATAA GAGTTTAACC CTCCTTATAT GCCAAGAAAG AACCAAGAAC TGCTA

P.australis_D3609 GATTGTGAAT CTAAAAATAA GAGTTTAACC CTCCTTATAT GCCAAGAAAG AACCAAGAAC TGCTA

P.australis_R10 GATTGTGAAT CTAAAAATAA GAGTTTAACC CTCCTTATAT GCCAAGAAAG AACCAAGAAC TGCTA

Page 175: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

159

Appendix 3

The ω-globin sequence alignment of Petaurus samples used in Chapter two, consisting

of Exon2 (1-67), Intron2 (68-596) and Exon3 (597-705)

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

10 20 30 40 50 60 70 80

M19216_P.abidi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

M21350_P.abidi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

M21664_P.abidi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

M27670_P.abidi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

85534_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

85531_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

85525_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

16138_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

M30682_IrianJaya ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

M19968_NG_Tifalmin ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?TTCAGAGTG AGTACCCCTC

M19975_NG_Tifalmin ?????????? ?????????? ?????????? ?????????? ?????????? ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

44206_NG_Mt.sulen GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

M16002_NG_Wigote GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

M20223_Normanby.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

49347_NG_Karkar.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

49310_NG_Bundi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

43100_NG_Yuro GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC

44068_NG_Yuro GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC

46200_NG_Namosado GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC

43552_NG_Noru GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC

44768_NG_Waro GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC

46098_NG_Namosado GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCC-TC

29964_NT GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

49016_NG_Gali GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

43193_NG_Yuro GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

43650_NG_Ofekaman GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

49311_NG_Bundi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

81225_P.brevicepsSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

REN5_P.brevicepsVic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

EuroaM5_P.brevicepsVic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

CandlP_P.brevicepsVic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCTCAGAA CTTCAGAGTG AGTACCCCTC

27102_P.brevicepsSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

27086_P.brevicepsSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

81258_P.brevicepsSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

27085_P.norfolcensisSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

27042_P.norfolcensisSA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

P.gracilisQLD GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

16137_P.brevicepsQLD GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

M42672_Kai.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

M20224_Normanby.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

49349_NG_Karkar.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

47134_NG_Solriver GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

47131_NG_Solriver GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

47133_NG_Solriver GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

85533_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

42674_Kai.Is GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

85530_P.brevicepsNSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

80833_P.brevicepsQLD GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

80835_P.brevicepsQLD GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC

R9_P.australis GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCATAGTG AGTACCCCTC

R10_P.australis GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCATAGTG AGTACCCCTC

Page 176: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

160

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

90 100 110 120 130 140 150 160

M19216_P.abidi TGTCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

M21350_P.abidi TGTCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

M21664_P.abidi TGTCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

M27670_P.abidi TGTCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

85534_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

85531_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

85525_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

16138_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

M30682_IrianJaya ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

M19968_NG_Tifalmin TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

M19975_NG_Tifalmin TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

44206_NG_Mt.sulen TGCCATTTCC CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

M16002_NG_Wigote TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

M20223_Normanby.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

49347_NG_Karkar.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

49310_NG_Bundi TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

43100_NG_Yuro TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

44068_NG_Yuro TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

46200_NG_Namosado TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

43552_NG_Noru TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

44768_NG_Waro TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

46098_NG_Namosado TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

29964_NT TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

49016_NG_Gali TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

43193_NG_Yuro TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

43650_NG_Ofekaman TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

49311_NG_Bundi TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

81225_P.brevicepsSA TGCCATTTCT CTGGAGCCTA GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

REN5_P.brevicepsVic TGCCATTTCT CTGGAGCCTA GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

EuroaM5_P.brevicepsVic TGCCATTTCT CTGGAGCCTA GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

CandlP_P.brevicepsVic TGCCATTTCT CTGGAGCCTA GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

27102_P.brevicepsSA TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

27086_P.brevicepsSA TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

81258_P.brevicepsSA TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

27085_P.norfolcensisSA TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

27042_P.norfolcensisSA TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

P.gracilisQLD TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

16137_P.brevicepsQLD TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

M42672_Kai.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

M20224_Normanby.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

49349_NG_Karkar.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

47134_NG_Solriver TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

47131_NG_Solriver TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

47133_NG_Solriver TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

85533_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

42674_Kai.Is TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

85530_P.brevicepsNSW TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

80833_P.brevicepsQLD TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

80835_P.brevicepsQLD TGCCATTTCT CTGGAGCCTA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

R9_P.australis TGCCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTACAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

R10_P.australis TGCCATTTCT CTGGGGCCTA GGGGG-ACAA GGCTTACAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA

Page 177: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

161

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

170 180 190 200 210 220 230 240

M19216_P.abidi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

M21350_P.abidi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

M21664_P.abidi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

M27670_P.abidi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

85534_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

85531_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

85525_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

16138_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

M30682_IrianJaya -CCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

M19968_NG_Tifalmin ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

M19975_NG_Tifalmin ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

44206_NG_Mt.sulen ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

M16002_NG_Wigote ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

M20223_Normanby.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

49347_NG_Karkar.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

49310_NG_Bundi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

43100_NG_Yuro ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

44068_NG_Yuro ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

46200_NG_Namosado ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

43552_NG_Noru ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

44768_NG_Waro ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

46098_NG_Namosado ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

29964_NT ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

49016_NG_Gali ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

43193_NG_Yuro ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

43650_NG_Ofekaman ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

49311_NG_Bundi ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

81225_P.brevicepsSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

REN5_P.brevicepsVic ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

EuroaM5_P.brevicepsVic ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

CandlP_P.brevicepsVic ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

27102_P.brevicepsSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

27086_P.brevicepsSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

81258_P.brevicepsSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

27085_P.norfolcensisSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

27042_P.norfolcensisSA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

P.gracilisQLD ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

16137_P.brevicepsQLD ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

M42672_Kai.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

M20224_Normanby.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

49349_NG_Karkar.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

47134_NG_Solriver ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

47131_NG_Solriver ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

47133_NG_Solriver ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

85533_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

42674_Kai.Is ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

85530_P.brevicepsNSW ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACTT

80833_P.brevicepsQLD ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

80835_P.brevicepsQLD ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT

R9_P.australis ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCATT-???T CCTTTTCCCT CCTTCAACCT

R10_P.australis ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC TTTTACAGGC TCATT-???T CCTTTTCCCT CCTTCAACCT

Page 178: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

162

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

250 260 270 280 290 300 310 320

M19216_P.abidi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

M21350_P.abidi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

M21664_P.abidi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

M27670_P.abidi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

85534_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

85531_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

85525_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

16138_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

M30682_IrianJaya CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

M19968_NG_Tifalmin CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

M19975_NG_Tifalmin CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

44206_NG_Mt.sulen CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

M16002_NG_Wigote CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

M20223_Normanby.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

49347_NG_Karkar.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

49310_NG_Bundi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

43100_NG_Yuro CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

44068_NG_Yuro CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

46200_NG_Namosado CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

43552_NG_Noru CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

44768_NG_Waro CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

46098_NG_Namosado CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

29964_NT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

49016_NG_Gali CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

43193_NG_Yuro CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

43650_NG_Ofekaman CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

49311_NG_Bundi CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

81225_P.brevicepsSA CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

REN5_P.brevicepsVic CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

EuroaM5_P.brevicepsVic CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

CandlP_P.brevicepsVic CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

27102_P.brevicepsSA CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

27086_P.brevicepsSA CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

81258_P.brevicepsSA CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

27085_P.norfolcensisSA CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

27042_P.norfolcensisSA CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

P.gracilisQLD CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

16137_P.brevicepsQLD CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

M42672_Kai.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

M20224_Normanby.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

49349_NG_Karkar.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

47134_NG_Solriver CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTATTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

47131_NG_Solriver CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTATTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

47133_NG_Solriver CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTATTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

85533_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

42674_Kai.Is CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

85530_P.brevicepsNSW CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

80833_P.brevicepsQLD CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

80835_P.brevicepsQLD CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC- TTTTACTCCC TGGGAATGTT

R9_P.australis CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCCC TTTTGCTCCC TGGGAATGTT

R10_P.australis CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCCC TTTTGCTCCC TGGGAATGTT

Page 179: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

163

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

330 340 350 360 370 380 390 400

M19216_P.abidi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M21350_P.abidi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M21664_P.abidi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M27670_P.abidi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85534_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85531_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85525_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

16138_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M30682_IrianJaya GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M19968_NG_Tifalmin GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M19975_NG_Tifalmin GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

44206_NG_Mt.sulen GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M16002_NG_Wigote GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M20223_Normanby.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

49347_NG_Karkar.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

49310_NG_Bundi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

43100_NG_Yuro GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

44068_NG_Yuro GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

46200_NG_Namosado GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

43552_NG_Noru GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

44768_NG_Waro GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

46098_NG_Namosado GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

29964_NT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

49016_NG_Gali GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

43193_NG_Yuro GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

43650_NG_Ofekaman GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

49311_NG_Bundi GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

81225_P.brevicepsSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

REN5_P.brevicepsVic GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

EuroaM5_P.brevicepsVic GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

CandlP_P.brevicepsVic GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

27102_P.brevicepsSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

27086_P.brevicepsSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

81258_P.brevicepsSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

27085_P.norfolcensisSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

27042_P.norfolcensisSA GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

P.gracilisQLD GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

16137_P.brevicepsQLD GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M42672_Kai.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M20224_Normanby.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

49349_NG_Karkar.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

47134_NG_Solriver GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

47131_NG_Solriver GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

47133_NG_Solriver GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85533_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

42674_Kai.Is GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85530_P.brevicepsNSW GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

80833_P.brevicepsQLD GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

80835_P.brevicepsQLD GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

R9_P.australis GTTTTAAACT CCTAAGAGTG CCAGAGTCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

R10_P.australis GTTTTAAACT CCTAAGAGTG CCAGAGTCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

Page 180: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

164

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

410 420 430 440 450 460 470 480

M19216_P.abidi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

M21350_P.abidi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

M21664_P.abidi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

M27670_P.abidi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

85534_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

85531_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

85525_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

16138_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

M30682_IrianJaya AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

M19968_NG_Tifalmin AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

M19975_NG_Tifalmin AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

44206_NG_Mt.sulen AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

M16002_NG_Wigote AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

M20223_Normanby.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

49347_NG_Karkar.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

49310_NG_Bundi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

43100_NG_Yuro AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

44068_NG_Yuro AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

46200_NG_Namosado AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

43552_NG_Noru AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

44768_NG_Waro AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

46098_NG_Namosado AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

29964_NT AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

49016_NG_Gali AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

43193_NG_Yuro AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

43650_NG_Ofekaman AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

49311_NG_Bundi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

81225_P.brevicepsSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

REN5_P.brevicepsVic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

EuroaM5_P.brevicepsVic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

CandlP_P.brevicepsVic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

27102_P.brevicepsSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

27086_P.brevicepsSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

81258_P.brevicepsSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

27085_P.norfolcensisSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

27042_P.norfolcensisSA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

P.gracilisQLD AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

16137_P.brevicepsQLD AAAAC-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

M42672_Kai.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

M20224_Normanby.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

49349_NG_Karkar.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

47134_NG_Solriver AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

47131_NG_Solriver AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

47133_NG_Solriver AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

85533_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

42674_Kai.Is AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

85530_P.brevicepsNSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

80833_P.brevicepsQLD AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

80835_P.brevicepsQLD AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA

R9_P.australis AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTAT TTTTCCAAAG CTCACTATTA

R10_P.australis AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTAT TTTTCCAAAG CTCACTATTA

Page 181: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

165

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

490 500 510 520 530 540 550 560

M19216_P.abidi GTCCAGCCCT CAGCTTCTCC CAGGGGCACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

M21350_P.abidi GTCCAGCCCT CAGCTTCTCC CAGGGGCACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

M21664_P.abidi GTCCAGCCCT CAGCTTCTCC CAGGGGCACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

M27670_P.abidi GTCCAGCCCT CAGCTTCTCC CAGGGGCACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

85534_P.brevicepsNSW GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

85531_P.brevicepsNSW GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

85525_P.brevicepsNSW GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

16138_P.brevicepsNSW GTCCAGCCCT CAGCCTCCCC CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA

M30682_IrianJaya GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

M19968_NG_Tifalmin GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

M19975_NG_Tifalmin GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

44206_NG_Mt.sulen GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

M16002_NG_Wigote GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

M20223_Normanby.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

49347_NG_Karkar.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

49310_NG_Bundi GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

43100_NG_Yuro GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

44068_NG_Yuro GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

46200_NG_Namosado GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

43552_NG_Noru GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

44768_NG_Waro GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

46098_NG_Namosado GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

29964_NT GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

49016_NG_Gali GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

43193_NG_Yuro GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

43650_NG_Ofekaman GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

49311_NG_Bundi GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

81225_P.brevicepsSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

REN5_P.brevicepsVic GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

EuroaM5_P.brevicepsVic GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

CandlP_P.brevicepsVic GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

27102_P.brevicepsSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

27086_P.brevicepsSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

81258_P.brevicepsSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

27085_P.norfolcensisSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

27042_P.norfolcensisSA GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

P.gracilisQLD GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

16137_P.brevicepsQLD GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

M42672_Kai.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

M20224_Normanby.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

49349_NG_Karkar.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

47134_NG_Solriver GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

47131_NG_Solriver GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

47133_NG_Solriver GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

85533_P.brevicepsNSW GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA

42674_Kai.Is GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG C????????? ?????????? ?????????? ??????????

85530_P.brevicepsNSW GTCCAGCCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA

80833_P.brevicepsQLD GTCCAACCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA

80835_P.brevicepsQLD GTCCAACCCT CAGCTTCCCC CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA

R9_P.australis GTCCAGCCCT CAGGTTCCCC CAGGGGTACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

R10_P.australis GTCCAGCCCT CAGGTTCCCC CAGGGGTACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA

Page 182: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

166

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

570 580 590 600 610 620 630 640

M19216_P.abidi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

M21350_P.abidi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

M21664_P.abidi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

M27670_P.abidi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

85534_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

85531_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

85525_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

16138_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

M30682_IrianJaya GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

M19968_NG_Tifalmin GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

M19975_NG_Tifalmin GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

44206_NG_Mt.sulen GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

M16002_NG_Wigote GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

M20223_Normanby.Is GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

49347_NG_Karkar.Is GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

49310_NG_Bundi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

43100_NG_Yuro GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

44068_NG_Yuro GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

46200_NG_Namosado GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

43552_NG_Noru GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

44768_NG_Waro GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

46098_NG_Namosado GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

29964_NT GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

49016_NG_Gali GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

43193_NG_Yuro GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

43650_NG_Ofekaman GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

49311_NG_Bundi GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

81225_P.brevicepsSA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

REN5_P.brevicepsVic GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

EuroaM5_P.brevicepsVic GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

CandlP_P.brevicepsVic GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

27102_P.brevicepsSA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

27086_P.brevicepsSA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

81258_P.brevicepsSA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

27085_P.norfolcensisSA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

27042_P.norfolcensisSA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

P.gracilisQLD GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

16137_P.brevicepsQLD GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

M42672_Kai.Is GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

M20224_Normanby.Is GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

49349_NG_Karkar.Is GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

47134_NG_Solriver GTTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

47131_NG_Solriver GTTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

47133_NG_Solriver GTTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

85533_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

42674_Kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

85530_P.brevicepsNSW GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

80833_P.brevicepsQLD GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

80835_P.brevicepsQLD GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG

R9_P.australis GCTTGGGGTT GACCCTCTGC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GTCCTGGCAG CTGCCTTGGG

R10_P.australis GCTTGGGGTT GACCCTCTGC TCTCTCTTCC TTCTAGCTCC TTGGAGACAA CCTGATCATA GTCCTGGCAG CTGCCTTGGG

Page 183: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

167

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ..

650 660 670 680 690 700

M19216_P.abidi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M21350_P.abidi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M21664_P.abidi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M27670_P.abidi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85534_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85531_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85525_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

16138_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M30682_IrianJaya CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M19968_NG_Tifalmin CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M19975_NG_Tifalmin CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

44206_NG_Mt.sulen CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M16002_NG_Wigote CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M20223_Normanby.Is CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

49347_NG_Karkar.Is CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

49310_NG_Bundi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

43100_NG_Yuro CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

44068_NG_Yuro CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

46200_NG_Namosado CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

43552_NG_Noru CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

44768_NG_Waro CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

46098_NG_Namosado CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

29964_NT CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

49016_NG_Gali CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

43193_NG_Yuro CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

43650_NG_Ofekaman CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

49311_NG_Bundi CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

81225_P.brevicepsSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

REN5_P.brevicepsVic CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

EuroaM5_P.brevicepsVic CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

CandlP_P.brevicepsVic CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

27102_P.brevicepsSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

27086_P.brevicepsSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

81258_P.brevicepsSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

27085_P.norfolcensisSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

27042_P.norfolcensisSA CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGG?????????? ?????????? ????????????

P.gracilisQLD CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

16137_P.brevicepsQLD CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M42672_Kai.Is CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M20224_Normanby.Is CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

49349_NG_Karkar.Is CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

47134_NG_Solriver CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

47131_NG_Solriver CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

47133_NG_Solriver CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85533_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

42674_Kai.Is ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????

85530_P.brevicepsNSW CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

80833_P.brevicepsQLD CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

80835_P.brevicepsQLD CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

R9_P.australis CAAGGAATTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

R10_P.australis CAAGGAATTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

Page 184: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

168

Appendix 4

Sample and locality data for P. breviceps and outgroup specimens sequenced and

phylogenetically analysed in Chapter three. DNA Ids are provided from Biological

Tissue Collection (ABTC), the South Australian Museum; Australian Museum

registration numbers (M), Queensland Museum registration numbers (QM), and field

numbers (^).

Species Location DNA Id Latitude Longitude

North of Armidale- NSW ABTC 85523 -30.544 151.62

Port Macquarie-NSW ABTC 85524 -33.01 150.03

North of Sydney- NSW ABTC 85525 -33.63 151.28

Bulahdelah State Forest-

NSW ABTC 85526 -32.41 152.23

North of Sydney- NSW ABTC 85527 -33.45 151.44

Burrel Creek west of

Taree- NSW ABTC 85529 -29.467 150.167

Lismore- NSW ABTC 85530 -28.82 153.28

Thornleigh, Sydney- NSW ABTC 85531 -33.72 151.07

Yarramalong- NSW ABTC 85532 -33.22 151.28

Martinsville- NSW ABTC 85533 -33.05 151.40

Byron Bay- NSW ABTC 85534 -28.63 153.61

Jingellic Nature Reserve-

NSW

JF8^

JF9^

JF72^

-35.91 147.77

Bombala, southern NSW W -36.91 149.23

Viola St Redland -QLD QM JM 16138 -27.63 153.25

Carnarvon National Park-

QLD QM JM 16137 -24.973 147.99

Tumoulin State Forest-QLD

ABTC 80833

ABTC 80834

ABTC 80835

ABTC 80836

ABTC 80837

-17.61 145.50

Mulgrave State Forest-QLD ABTC 7688 (M16) -19.85 147.167

Mullers Creek-QLD 159/160^

419/420^ -18.43 146.15

Porters Creek-QLD 343/344^ -18.44 146.12

Penola- SA ABTC 27028 -37.3521 140.69

Western Flat- SA

ABTC 27205

ABTC 27102

ABTC 27086

-36.522 140.74

Grundys- SA ABTC 81225 -37.70 140.73

Snowgum- SA ABTC 81258

-37.93 140.93

Yangery-SA ABTC 81260 -37.58 140.89

Paltridges- SA ABTC 81261

ABTC 83887 -37.61 140.92

Bourne- SA ABTC 81265 -37.41 140.68

P.

breviceps

Topperwiens- SA

ABTC 83889

-37.53

140.96

Page 185: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

169

Location DNA Id Latitude Longitude

The Heath- SA ABTC 83890

-37.58 140.91

Mt Meredith- SA ABTC 83896 -37.67 140.87

Nangwarry- SA N1^ -37.47 140.88

Alaman –SA ABTC 73656 -36.72 140.32

Bordertown-SA Dead-BT^

Casterton Rd –SA C9^ -37.76 140.93

Deadmans Swamp-SA DS24^ -37.15 140.84

Warrenbayne-VIC WF2^

WF3^ -36.64 145.83

Rennick State Forest-VIC

Ren5^

Ren3^

Ren2^

Ren6^

-37.90 140.99

Erskines Bushland

Reserve1- VIC

M65^

F25^

M57^

alive^

-36.86 143.59

Erskines Bushland

Reserve2- VIC Dead3^ -36.87 143.61

Bet Bet Creek Bushland

Reserve- VIC

F76^

M50^

M52^

-36.917 143.76

Gladstones Bushland

Reserve- VIC GoldstoneDead3^ -37.005 143.62

Paddy Ranges Sate Forest-

VIC

FY2^

MZ2^ -37.08 143.7

Euroa- VIC

M5^

M1^

F1^

-36.775 145.5

Wareek- VIC

F12^

F13^

F72^

-37.07 143.61

P.

breviceps

Glenelg River- VIC ABTC7606 -38.052 141.00

P.

australis

Rennick State Forest-VIC ABTC76608 (R9)

ABTC76609 (R10) -37.90 140.99

P. abidi Papua New Guinea M 19216 -3.42 142.1

Page 186: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

170

Appendix 5

Sequence alignment of combined mitochondrial genes ND2 (1- 695) and ND4 (696-

1393) for 63 individuals of Petaurus breviceps used in Chapter three

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

10 20 30 40 50 60 70 80 85525_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT

85526 NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT

85533_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT

26718_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT

85531_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT

85529_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT

85534_NSW CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT

16138_Qld CATCCCACTA TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT

85530_NSW CATCCCACTC TCATCTGGCA TAGTTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTTTACCAA ATCTCACCAT

M116_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

85527_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

16137_Qld CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

80833_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

80837_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

80835_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

343.344_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

80834_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

80836_QLD CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

85523_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Jf8_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Jf72_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

W_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Jf9_NSW CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

73656_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATTTCACCAT

83890_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

27086_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

81258_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

83896_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

N1_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

83889_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

83887_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Ren3_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

7606_VIC CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

27028_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

81265_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

81261_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

81260_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

27102_SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

DS24_SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Ren2_SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

C9_SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Reserve1.F25_Vic CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

PaddyR.MZ2_Vic CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Reserve2.dead3_Vic CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Ren5_SA CATCCCACTA TCATCTGGCA TTATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Ren6_SA CATCCCACTA TCATCTGGCA TAATTCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Wf2_VIC CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Wf3_VIC CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

27205_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Wareek.F13_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Reserve1.M65_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Wareek.F72_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

CandlP_VIC CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

81225_SA CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Euroa.M5_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Euroa.M1_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

PaddyR.FY2_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

BetBet.M50_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Goldstone.dead3_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Euroa.F1_Vic CATCCCACTA TCATCTGGCA TAATCTTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Betbet.F76_Vic CATCCCACTA TCATCAGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Betbet.M52_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACATGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Wareek.F12_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

Reserve1.M57_Vic CATCCCACTA TCATCTGGCA TAATCCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ACTATACCAA ATCTCACCAT

M19216_P.abidi TATTCCACTC TCATCTGGCA TAATTCTATT AACCTGACAA AAAATTGCCC CAACAGCATT ATTATACCAA ATCTCACCAT

R9_P.australis AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACTTCGCT ACTATATCAA ATCTCTCCAT

R10_P.australis AATCCCACTA TCATCCGGCA TAATCCTGCT AACCTGACAA AAAATTGCCC CTACTTCGCT ACTATATCAA ATCTCTCCAT

Page 187: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

171

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

90 100 110 120 130 140 150 160

85525_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA

85526 NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GTGGACTTAA TCAAACCCAA

85533_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA

26718_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA

85531_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTATAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA

85529_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA

85534_NSW CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA

16138_Qld CCCTAAACAT AGAAATCCTA ATCATATTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG GTGGCCTTAA TCAAACCCAA

85530_NSW CCCTAAACAT AGAAATCCTA ATCATACTAG CAATTTTATC AACTGTAGTA GGAGGCTGAG GTGGCCTTAA TCAGACCCAA

M116_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

85527_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

16137_Qld CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

80833_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA TCAAACCCAA

80837_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA TCAAACCCAA

80835_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA TCAAACCCAA

343.344_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA TCAAACCCAA

80834_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

80836_QLD CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

85523_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

Jf8_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

Jf72_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

W_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

Jf9_NSW CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

73656_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

83890_SA CTCTAAACAT AAAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

27086_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

81258_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

83896_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

N1_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

83889_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

83887_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Ren3_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

7606_VIC CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

27028_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

81265_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

81261_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

81260_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

27102_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

DS24_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Ren2_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

C9_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Reserve1.F25_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

PaddyR.MZ2_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Reserve2.dead3_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Ren5_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Ren6_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Wf2_VIC CTCTAAACAT AGAAATCCTA ATTATGTTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Wf3_VIC CTCTAAACAT AGAAATCCTA ATTATGTTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

27205_SA CTCTAAACAT AGAAATCCTA ATTATGTTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Wareek.F13_Vic CTCTAAACAT AGAAATCCTA ATTATGTTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Reserve1.M65_Vic CTCTAAACAT AGAAATCCTA ATTATGTTAG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Wareek.F72_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

CandlP_VIC CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA

81225_SA CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GAGGACTTAA CCAAACCCAA

Euroa.M5_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA

Euroa.M1_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA

PaddyR.FY2_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA

BetBet.M50_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA

Goldstone.dead3_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA

Euroa.F1_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA

Betbet.F76_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

Betbet.M52_Vic CTCTAAACAT AGAAATCCTA ATTATGTTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA CCAAACCCAA

Wareek.F12_Vic CTCTAAACAT AGAAATTCTA ATTATATTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

Reserve1.M57_Vic CTCTAAACAT AGAAATTCTA ATTATATTGG CCATTTTATC AACTGTACTA GGAGGCTGAG GGGGACTTAA TCAAACCCAA

M19216_P.abidi CCCTAAACAT AGAAATTCTA ATCACACTAG CCATTCTATC AACAATATTA GGAGGTTGAG GCGGACTTAA TCAGACCCAC

R9_P.australis CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGAG GGGGCCTAAA CCAAACCCAA

R10_P.australis CCCTAAACAT AAATATACTA GTTACACTAG CACTACTATC AACCATACTA GGAGGATGAG GGGGCCTAAA CCAAACCCAA

Page 188: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

172

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

170 180 190 200 210 220 230 240

85525_NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT

85526 NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC CTAATTAACC CAAACTTAAT

85533_NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT

26718_NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT

85531_NSW ATACGAAAAA TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT

85529_NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT

85534_NSW ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT

16138_Qld ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATCATTGCC ATAATTAACC CAAACTTAAT

85530_NSW ATACGAAAAG TCCTAGCCTA TTCATCAATT GCCCACATAG GATGAACAGT AATTATCGCC ATAATTAACC CAAACTTAAT

M116_QLD ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT

85527_NSW ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT

16137_Qld ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT

80833_QLD ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACCTAAT

80837_QLD ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACCTAAT

80835_QLD ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACCTAAT

343.344_QLD ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT

80834_QLD ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT

80836_QLD ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATAAACC CAAACTTAAT

85523_NSW ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Jf8_NSW ATACGAAAAA TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Jf72_NSW ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

W_NSW ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Jf9_NSW ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

73656_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

83890_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

27086_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

81258_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

83896_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

N1_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

83889_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

83887_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Ren3_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

7606_VIC ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

27028_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

81265_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

81261_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

81260_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

27102_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

DS24_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Ren2_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

C9_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Reserve1.F25_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

PaddyR.MZ2_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAATC CAAACTTAAT

Reserve2.dead3_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAATC CAAACTTAAT

Ren5_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Ren6_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Wf2_VIC ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTTTTGCC CTAATCAACC CAAACTTAAT

Wf3_VIC ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTTTTGCC CTAATCAACC CAAACTTAAT

27205_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Wareek.F13_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Reserve1.M65_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Wareek.F72_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

CandlP_VIC ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

81225_SA ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Euroa.M5_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Euroa.M1_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

PaddyR.FY2_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

BetBet.M50_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Goldstone.dead3_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Euroa.F1_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Betbet.F76_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Betbet.M52_Vic ATACGAAAAG TCTTAGCCTA TTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACCTAAT

Wareek.F12_Vic ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

Reserve1.M57_Vic ATACGAAAAG TCTTAGCCTA CTCATCAATT GCCCATATAG GATGAACAGT AATTATTGCC CTAATCAACC CAAACTTAAT

M19216_P.abidi TTACGAAAAA TCCTAGCCTA CTCATCAATC GCTCACATAG GATGAACAAT AATTATTGCC CTTATTAACC CAAACTTAAC

R9_P.australis TTACGAAAAA TCCTAGCATA CTCCTCTATC GCTCACATAG GCTGAATAAT AATTATCGTC CTCATCAACC CTGACTTAAC

R10_P.australis TTACGAAAAA TCCTAGCATA CTCCTCTATC GCTCACATAG GCTGAATAAT AATTATCGTC CTCATCAACC CTGACTTAAC

Page 189: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

173

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

250 260 270 280 290 300 310 320

85525_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA

85526 NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACGAAAATTA

85533_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA

26718_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA

85531_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA

85529_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA

85534_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA

16138_Qld AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA

85530_NSW AATCCTAAGC TTAATAATCT ACATCATAAC TACACTAGCC CTATTTATAA CACTAAACTT ATCTTCAACG ACAAAAATTA

M116_QLD AATTCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

85527_NSW AATTCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

16137_Qld AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

80833_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

80837_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

80835_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

343.344_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

80834_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

80836_QLD AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

85523_NSW AATCCTAAGC CTAATAATTT ATATCATAAC TACATTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACAAAAATCA

Jf8_NSW AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA

Jf72_NSW AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA

W_NSW AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Jf9_NSW AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA

73656_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

83890_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

27086_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

81258_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

83896_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

N1_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

83889_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

83887_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Ren3_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

7606_VIC AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

27028_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

81265_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

81261_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

81260_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

27102_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

DS24_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Ren2_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

C9_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Reserve1.F25_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

PaddyR.MZ2_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATATTCAACA ACGAAAATCA

Reserve2.dead3_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATATTCAACA ACGAAAATCA

Ren5_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Ren6_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Wf2_VIC AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA

Wf3_VIC AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA

27205_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Wareek.F13_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Reserve1.M65_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Wareek.F72_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

CandlP_VIC AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA

81225_SA AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACTT ATCTTCAACA ACGAAAATCA

Euroa.M5_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Euroa.M1_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

PaddyR.FY2_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

BetBet.M50_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Goldstone.dead3_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Euroa.F1_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Betbet.F76_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACGCTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Betbet.M52_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Wareek.F12_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

Reserve1.M57_Vic AATCCTAAGC CTAATAATTT ATATCATAAC TACACTAACC CTATTTATAA CACTAAACCT ATCTTCAACA ACGAAAATCA

M19216_P.abidi CATCCTAAGT CTAGTAATTT ATATCATAAC TACACTAACT CTATTTATGA CACTTAACTT CTCTTCCACA ACCAAAATTA

R9_P.australis CCTCCTAAGC CTAATAATTT ATATTACAAC CACACTAACC ATATTTATAA CACTAAACCT TTCATCTACA ACCAAAATTA

R10_P.australis CCTCCTAAGC CTAATAATTT ATATTACAAC CACACTAACC ATATTTATAA CACTAAACCT TTCATCTACA ACCAAAATTA

Page 190: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

174

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

330 340 350 360 370 380 390 400

85525_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA

85526 NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA

85533_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA

26718_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA

85531_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA

85529_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA

85534_NSW AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA

16138_Qld AATCAATTAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGATTA

85530_NSW AATCAATTAG CAATTTATGA AATAAATCAA CCCCTATAAC CATAATCGTT TTCCTCACAC TCCTCTCACT AGGAGGGTTA

M116_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCTCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

85527_NSW AATCAATCAG TAATTTATGA AACAAATCAA CCTCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

16137_Qld AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

80833_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

80837_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

80835_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

343.344_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

80834_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

80836_QLD AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC AATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

85523_NSW AATCAATCAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATTATT TTCCTTACCC TCCTCTCATT AGGAGGACTA

Jf8_NSW AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATC TTCCTCACCC TCCTCTCATT AGGAGGACTA

Jf72_NSW AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATC TTCCTCACCC TCCTCTCATT AGGAGGGCTA

W_NSW AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATC TTCCTCACCC TCCTCTCATT AGGAGGACTA

Jf9_NSW AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATC TTCCTCACCC TCCTCTCATT AGGAGGGCTA

73656_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

83890_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

27086_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

81258_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

83896_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

N1_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

83889_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

83887_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Ren3_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

7606_VIC AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

27028_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

81265_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

81261_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

81260_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

27102_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

DS24_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Ren2_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

C9_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Reserve1.F25_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

PaddyR.MZ2_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Reserve2.dead3_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Ren5_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Ren6_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Wf2_VIC AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Wf3_VIC AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

27205_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Wareek.F13_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Reserve1.M65_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Wareek.F72_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

CandlP_VIC AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

81225_SA AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Euroa.M5_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Euroa.M1_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

PaddyR.FY2_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

BetBet.M50_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Goldstone.dead3_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Euroa.F1_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Betbet.F76_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTG

Betbet.M52_Vic AATCAATCAG TAATTTATGA AACAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

Wareek.F12_Vic AATCAATCAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

Reserve1.M57_Vic AATCAATCAG TAATTTATGA AATAAATCAA CCCCTATAAC CATAATTATT TTCCTCACCC TCCTCTCATT AGGAGGGCTA

M19216_P.abidi AATCAATCAG CAACCTATGA AACAAATCAA CCCCCATAAC CATAATCATC TTCCTCACGC TTCTCTCACT AGGAGGACTA

R9_P.australis AATCAATTAG CAACCTATGA AGCAAATCAA CCCCTATAAC CATAATCATT TTCCTCGCTC TACTGTCACT AGGAGGCCTA

R10_P.australis AATCAATTAG CAACCTATGA AGCAAATCAA CCCCTATAAC CATAATCATT TTCCTCGCTC TACTGTCACT AGGAGGCCTA

Page 191: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

175

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

410 420 430 440 450 460 470 480

85525_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCTATTGT

85526 NSW CCACCACTAA CTGGATTCAT GCCAAAATGA CTAATTCTAC AAGAACTAAT CATTAACAAC AATCCCACAA TAGCCATTGT

85533_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCTATTGT

26718_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCTATTGT

85531_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCAACAA TAGCTATTGT

85529_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT

85534_NSW CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT

16138_Qld CCACCACTAA CTGGATTCAT GCCAAAATGA TTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT

85530_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATTCTAC AAGAACTAAT CATTAACAAT AATCCCACAA TAGCCATTGT

M116_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

85527_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

16137_Qld CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

80833_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

80837_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

80835_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

343.344_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTAT

80834_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCGCCA TAGCCATTGT

80836_QLD CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

85523_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Jf8_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Jf72_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

W_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Jf9_NSW CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

73656_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

83890_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

27086_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

81258_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

83896_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

N1_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

83889_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

83887_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Ren3_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

7606_VIC CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

27028_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

81265_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

81261_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

81260_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

27102_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

DS24_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Ren2_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

C9_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Reserve1.F25_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

PaddyR.MZ2_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Reserve2.dead3_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Ren5_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Ren6_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Wf2_VIC CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Wf3_VIC CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

27205_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Wareek.F13_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Reserve1.M65_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Wareek.F72_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

CandlP_VIC CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

81225_SA CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Euroa.M5_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Euroa.M1_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

PaddyR.FY2_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

BetBet.M50_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACTA TAGCCATTGT

Goldstone.dead3_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Euroa.F1_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Betbet.F76_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Betbet.M52_Vic CCACCACTAA CTGGATTCAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCCACCA TAGCCATTGT

Wareek.F12_Vic CCACCACTAA CTGGATTTAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCTACCA TAGCCATTGT

Reserve1.M57_Vic CCACCACTAA CTGGATTTAT ACCAAAATGA CTAATCCTAC AAGAACTAAT TATTAATAAT AACCCTACCA TAGCCATTGT

M19216_P.abidi CCTCCACTAA CCGGATTTAT ACCAAAATGA TTAATTCTAC AAGAACTAAT TATTAACAAT AACCCTATCA TAGCTATTAT

R9_P.australis CCCCCGCTAA CCGGATTTAT ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAACAAC AACCCTGCTA TAGCCATTCT

R10_P.australis CCCCCGCTAA CCGGATTTAT ACCAAAATGA CTTATCCTTC AAGAACTAAT TATCAACAAC AACCCTGCTA TAGCCATTCT

Page 192: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

176

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

490 500 510 520 530 540 550 560

85525_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

85526 NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

85533_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

26718_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

85531_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

85529_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

85534_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

16138_Qld AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGTATCATC CCTAACAATG TTTCCAACCA

85530_NSW AATGGCCCTC TCGGCCTTAC TAAGCCTATT TTTTTACATA CGAATTATCT ATGCATCATC CCTAACAATG TTTCCAACCA

M116_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

85527_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

16137_Qld AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

80833_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

80837_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

80835_QLD AATGGCCCTC TCAGCCCTAC TAAACCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

343.344_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

80834_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

80836_QLD AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

85523_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Jf8_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Jf72_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

W_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Jf9_NSW AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

73656_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

83890_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

27086_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

81258_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

83896_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

N1_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

83889_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

83887_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Ren3_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

7606_VIC AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

27028_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

81265_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

81261_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

81260_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

27102_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

DS24_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Ren2_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

C9_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Reserve1.F25_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

PaddyR.MZ2_Vic AATAGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Reserve2.dead3_Vic AATAGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Ren5_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Ren6_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Wf2_VIC AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Wf3_VIC AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

27205_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Wareek.F13_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Reserve1.M65_Vic AATAGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Wareek.F72_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

CandlP_VIC AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

81225_SA AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Euroa.M5_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Euroa.M1_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

PaddyR.FY2_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

BetBet.M50_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Goldstone.dead3_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Euroa.F1_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Betbet.F76_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Betbet.M52_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATCT ACGTATCATC ACTAACAATG TTTCCAACCA

Wareek.F12_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATTT ACGTATCATC ACTAACAATG TTTCCAACCA

Reserve1.M57_Vic AATGGCCCTC TCAGCCCTAC TAAGCCTATT TTTTTACATA CGAATTATTT ACGTATCATC ACTAACAATG TTTCCAACCA

M19216_P.abidi AATAGCTCTC TCAGCTCTAC TAAACCTATT TTTCTATATA CGAATTATCT ACGTAACATC ACTAACAATA TTCCCCATTA

R9_P.australis AATAGCCCTA TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCCACCA

R10_P.australis AATAGCCCTA TCAGCCCTTT TAAACCTATT TTTTTACATA CGAATTATCT ATACTACTTC TCTAACAACA TTTCCCACCA

Page 193: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

177

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

570 580 590 600 610 620 630 640

85525_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGGCTAC TATTTCATCC

85526 NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC TATTTCATCC

85533_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGGCTAC TATTTCATCC

26718_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC TATTTCATCC

85531_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC TATTTCATCC

85529_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA ATCCACTAAT TTAATTCCTA TTCTGACTAC TATTTCATCC

85534_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACTAAT TTAATTCCTA TTCTGACTAC TATTTCATCC

16138_Qld ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAATAAA AACCACCAAT TTAATTCCTA TTCTGACTAC TATTTCATCC

85530_NSW ATAATAACTT AAAACTCCAC TGATTCTTTA CCCAAGTAAA AACCACTAAT TTAATTCCTA CCCTGACTAC TATTTCATCC

M116_QLD ATAATAACTT AAAACACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT

85527_NSW ATAATAACTT AAAACACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT

16137_Qld ATAATAACTT AAAACACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT

80833_QLD ATAATAACTT AAAGCACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT

80837_QLD ATAATAACTT AAAGCACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT

80835_QLD ATAATAACTT AAAGCACCAC TGATTCTTTA CCCAAACGAA AGCCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT

343.344_QLD ATAATAACTT AAAACACCAC TGATTCTTTA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT

80834_QLD ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT

80836_QLD ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT

85523_NSW ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAC ATAATCCCAA CCCTAACTAC TATTTCATCT

Jf8_NSW ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAT ATAATCCCAA CCCTAACTAC TATTTCATCT

Jf72_NSW ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAT ATAATCCCAA CCCTAACTAC TATTTCATCT

W_NSW ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAT ATAATCCCAA CCCTAACTAC TATTTCATCT

Jf9_NSW ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACTAAT ATAATCCCAA CCCTAACTAC TATTTCATCT

73656_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

83890_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

27086_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

81258_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

83896_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

N1_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

83889_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

83887_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Ren3_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

7606_VIC ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

27028_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

81265_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

81261_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

81260_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

27102_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

DS24_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Ren2_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

C9_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Reserve1.F25_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

PaddyR.MZ2_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Reserve2.dead3_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Ren5_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Ren6_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Wf2_VIC ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Wf3_VIC ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

27205_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Wareek.F13_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Reserve1.M65_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Wareek.F72_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

CandlP_VIC ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

81225_SA ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Euroa.M5_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Euroa.M1_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

PaddyR.FY2_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

BetBet.M50_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Goldstone.dead3_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Euroa.F1_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Betbet.F76_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Betbet.M52_Vic ATAATAACTT AAAACACCAC TGATTCTTCA CCCAAACGAA AACCACCAAT ATAATCCCCA CCCTAACTAC TATTTCATCA

Wareek.F12_Vic ACAATAACTT AAAACACCAC TGATTCTTCA CCCAAACAAA AACCACTAAT ATAATCCCCA CCCTAACTAC TATTTCATCT

Reserve1.M57_Vic ACAATAACTT AAAACACCAC TGATTCTTCA CCCAAACAAA AACCACTAAT ATAATCCCCA CCCTAACTAC TATTTCATCT

M19216_P.abidi ATAACAACTC AAAACACCAC TGACTCTATA CCCAAACAAA AACCACTAAC ATAATTCCCA CCCTAACCAT CATCTCATCT

R9_P.australis ACAACAACAC CAAACACCAC TGACTCAACA CCCAAACCAA ATCAACCCAC ATAATCCCAA CACTAACCAT CATTTCATCA

R10_P.australis ACAACAACAC CAAACACCAC TGACTCAACA CCCAAACCAA ATCAACCCAC ATAATCCCAA CACTAACCAT CATTTCATCA

Page 194: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

178

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

650 660 670 680 690 700 710 720

85525_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT

85526 NSW ATATTACTCC CATTATCTCC AATCCTCATT ACTATAACCT AATTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

85533_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT

26718_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AACTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT

85531_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT

85529_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT

85534_NSW ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TACACACTAC CCATTTATTA TCCTATCTAT

16138_Qld ATATTACTCC CATTATCTCC AATCCTCATC ACTATAACCT AATTAAGAAT TAC?CACTAC CCATTTATTA TCCTATCTAT

85530_NSW ATATTACTCC CATTATCTCC AATCCTCATT ACTATAACCT AATTAAGAAT TACACACTAC CCGTTTATTA TCTTATCTAT

M116_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

85527_NSW ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

16137_Qld ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

80833_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

80837_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

80835_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

343.344_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

80834_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

80836_QLD ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

85523_NSW ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATATTAC CCATTTATTA TCCTTTCTAT

Jf8_NSW ATACTACTCC CACTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Jf72_NSW ATACTACTCC CACTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACA??CTAC CCATTTATTA TCCTTTCTAT

W_NSW ATACTACTTC CACTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Jf9_NSW ATACTACTCC CACTAACTCC AATCCTCATT ATCATATCCT AACTAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

73656_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

83890_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

27086_SA ATACTACTCC CATTAACCCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

81258_SA ATACTACTCC CATTAACTCC AATCCTCATT ACCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

83896_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

N1_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

83889_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

83887_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Ren3_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

7606_VIC ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

27028_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

81265_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

81261_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

81260_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

27102_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

DS24_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Ren2_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

C9_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Reserve1.F25_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

PaddyR.MZ2_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Reserve2.dead3_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACA?ACTAC CCATTTATTA TCCTTTCTAT

Ren5_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Ren6_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Wf2_VIC ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Wf3_VIC ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

27205_SA ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Wareek.F13_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Reserve1.M65_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Wareek.F72_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATGATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

CandlP_VIC ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

81225_SA ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Euroa.M5_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Euroa.M1_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

PaddyR.FY2_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

BetBet.M50_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Goldstone.dead3_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Euroa.F1_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Betbet.F76_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Betbet.M52_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATCATATCCT AAATAAGAAT TACATACTAC CCATTTATTA TCCTTTCTAT

Wareek.F12_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATTATATCCT AACTAAGAAT TACATACTAC CCATTTATTA TCCTTTCAAT

Reserve1.M57_Vic ATACTACTCC CATTAACTCC AATCCTCATT ATTATATCCT AACTAAGAAT TACATACTAC CCATTTATTA TCCTTTCAAT

M19216_P.abidi ATATTACTCC CACTAACCCC TATTACTACC ATTATAACCT AACTAAGAAT TACATACTAC CCATTCATCA TCCTTTCCAT

R9_P.australis ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACATATTAC CCATTCATCA TCCTATCCAT

R10_P.australis ATACTCCTCC CTCTAACCCC TATACTAATT ACCCTAATTT AACTAAGAAT TACATATTAT CCATTTATCA TCCTATCCAT

Page 195: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

179

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

730 740 750 760 770 780 790 800

85525_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC

85526 NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

85533_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC

26718_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC

85531_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC

85529_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC

85534_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC

16138_Qld ATGGGGGATA ATTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC

85530_NSW ATGGGGGATA GTTATAACTA GCTCCATTTG CCTACGTCAG ACAGACTTAA AATCCCTAAT TGCCTACTCT TCAGTAAGTC

M116_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

85527_NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

16137_Qld ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

80833_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

80837_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

80835_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

343.344_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

80834_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

80836_QLD ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

85523_NSW ATGAGGAATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Jf8_NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCTTACTCT TCAGTAAGTC

Jf72_NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

W_NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Jf9_NSW ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

73656_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

83890_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

27086_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

81258_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

83896_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

N1_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

83889_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

83887_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Ren3_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

7606_VIC ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

27028_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

81265_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

81261_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

81260_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

27102_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

DS24_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Ren2_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

C9_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Reserve1.F25_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

PaddyR.MZ2_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Reserve2.dead3_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Ren5_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Ren6_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Wf2_VIC ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Wf3_VIC ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

27205_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Wareek.F13_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Reserve1.M65_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Wareek.F72_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

CandlP_VIC ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGCC

81225_SA ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Euroa.M5_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Euroa.M1_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

PaddyR.FY2_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

BetBet.M50_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Goldstone.dead3_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Euroa.F1_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Betbet.F76_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Betbet.M52_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Wareek.F12_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

Reserve1.M57_Vic ATGAGGGATA ATTATAACAA GCTCTATTTG CCTACGTCAA ACAGACTTAA AATCCTTAAT TGCCTACTCT TCAGTAAGTC

M19216_P.abidi ATGAGGCATA ATTATAACAA GTTCTATTTG CCTCCGCCAA ACAGACTTAA AATCTTTAAT CGCCTACTCT TCAGTAAGCC

R9_P.australis ATGGGGCATG ATCATAACAA GCTCTATCTG CCTACGCCAA ACAGACCTAA AATCACTAAT CGCTTATTCC TCCGTTAGTC

R10_P.australis ATGGGGCATG ATCATAACAA GCTCTATCTG CCTACGCCAA ACAGACCTAA AATCACTAAT CGCTTATTCC TCCGTTAGCC

Page 196: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

180

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

810 820 830 840 850 860 870 880

85525_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC

85526 NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

85533_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC

26718_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC

85531_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC

85529_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC

85534_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC

16138_Qld ACATAGGTTT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC

85530_NSW ACATAGGTCT AGTAATTGTG GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGGGCTT CAACCCTAAT AATCGCCCAC

M116_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

85527_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

16137_Qld ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

80833_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

80837_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATCGCCCAC

80835_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

343.344_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

80834_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

80836_QLD ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

85523_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Jf8_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACTCTAAT AATTGCCCAC

Jf72_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACTCTAAT AATTGCCCAC

W_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACTCTAAT AATTGCCCAC

Jf9_NSW ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCTAC CCTCAGTTTC ATAGGAGCTA CTACTCTAAT AATTGCCCAC

73656_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

83890_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

27086_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

81258_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

83896_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

N1_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

83889_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

83887_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Ren3_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

7606_VIC ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

27028_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

81265_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

81261_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

81260_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

27102_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

DS24_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Ren2_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCTAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

C9_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCTAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Reserve1.F25_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCTAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

PaddyR.MZ2_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Reserve2.dead3_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Ren5_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Ren6_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Wf2_VIC ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Wf3_VIC ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

27205_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Wareek.F13_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Reserve1.M65_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Wareek.F72_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

CandlP_VIC ATATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

81225_SA ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Euroa.M5_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Euroa.M1_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

PaddyR.FY2_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

BetBet.M50_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Goldstone.dead3_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Euroa.F1_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Betbet.F76_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTT ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Betbet.M52_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Wareek.F12_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

Reserve1.M57_Vic ACATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCCAC CCTCAGTTTC ATAGGAGCTA CTACCCTAAT AATTGCCCAC

M19216_P.abidi ATATAGGATT AGTAATTGTA GCAGCCCTTA TACAATCAAC CCTCAGTTTT ATAGGCGCTA CAACCCTAAT AATCGCCCAC

R9_P.australis ACATGGCTCT AGTAATCATT GCCGCACTCA TACAAACAAC CCTAAGTTTC ATAGGCGCTA CAGCTCTGAT AATCGCCCAC

R10_P.australis ACATAGCTCT AGTAATCATT GCCGCACTCA TACAAACAAC CCTAAGTTTC ATAGGCGCTA CAGCCCTGAT AATCGCCCAC

Page 197: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

181

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

890 900 910 920 930 940 950 960

85525_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

85526 NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

85533_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

26718_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

85531_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

85529_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

85534_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

16138_Qld GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

85530_NSW GGGCTTACAT CTTCCATATT ATTTTGTCTC GCCAACACTA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

M116_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

85527_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

16137_Qld GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

80833_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

80837_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

80835_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

343.344_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

80834_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

80836_QLD GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

85523_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Jf8_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Jf72_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

W_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Jf9_NSW GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

73656_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

83890_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTATGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

27086_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

81258_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

83896_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

N1_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

83889_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

83887_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Ren3_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

7606_VIC GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

27028_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

81265_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

81261_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

81260_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

27102_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

DS24_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Ren2_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

C9_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Reserve1.F25_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

PaddyR.MZ2_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Reserve2.dead3_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Ren5_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Ren6_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Wf2_VIC GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Wf3_VIC GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

27205_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Wareek.F13_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Reserve1.M65_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Wareek.F72_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

CandlP_VIC GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

81225_SA GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Euroa.M5_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Euroa.M1_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

PaddyR.FY2_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

BetBet.M50_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Goldstone.dead3_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Euroa.F1_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Betbet.F76_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Betbet.M52_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Wareek.F12_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

Reserve1.M57_Vic GGGCTTACAT CTTCCATATT ATTCTGTCTT GCCAACACCA ACTACGAACG TATCCACAGT CGAACCATAA TACTAGCTCG

M19216_P.abidi GGACTTACCT CCTCCATATT ATTTTGCCTA GCTAATACCA ATTACGAACG CATCCACAGC CGAACCATAA TATTAGCTCG

R9_P.australis GGACTCACCT CATCTATGTT ATTCTGCCTA GCCAATACTA ACTACGAACG AATTCACAGT CGAACTATAA TTCTAGCCCG

R10_P.australis GGACTCACCT CATCTATGTT ATTCTGCCTA GCCAATACTA ACTACGAACG AATCCACAGT CGAACTATAA TTCTAGCCCG

Page 198: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

182

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

970 980 990 1000 1010 1020 1030 1040

85525_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA

85526 NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

85533_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA

26718_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA

85531_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA

85529_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA

85534_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA

16138_Qld AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA

85530_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CACATGATGA CTCATAGCAA GCCTAACTAA TCTAGCCCTG CCACCAACAA

M116_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

85527_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

16137_Qld AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

80833_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

80837_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

80835_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

343.344_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CATATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

80834_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

80836_QLD AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

85523_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTT CCACCAACAA

Jf8_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTGACTAA TCTAGCCCTC CCACCAACAA

Jf72_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

W_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Jf9_NSW AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

73656_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

83890_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

27086_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

81258_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

83896_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

N1_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

83889_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

83887_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Ren3_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

7606_VIC AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

27028_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

81265_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

81261_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

81260_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

27102_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

DS24_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Ren2_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

C9_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Reserve1.F25_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

PaddyR.MZ2_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Reserve2.dead3_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Ren5_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Ren6_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Wf2_VIC AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Wf3_VIC AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

27205_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Wareek.F13_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Reserve1.M65_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Wareek.F72_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

CandlP_VIC AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

81225_SA AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Euroa.M5_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Euroa.M1_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

PaddyR.FY2_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

BetBet.M50_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Goldstone.dead3_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Euroa.F1_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Betbet.F76_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Betbet.M52_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAACTAA TCTAGCCCTC CCACCAACAA

Wareek.F12_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAGCTAA TCTAGCCCTC CCACCAACAA

Reserve1.M57_Vic AGGCTTACAA ACAGCCCTTC CACTTATATG CGTATGATGA CTTATAGCAA GCCTAGCTAA TCTAGCCCTC CCACCAACAA

M19216_P.abidi AGGCCTACAA ACAATTCTAC CACTTATATG TGCATGATGA CTCATAGCAA GCCTAACCAA CTTAGCTCTC CCTCCAACAA

R9_P.australis AGGCCTACAA ACAGCCTTAC CCCTCATATG AGCATGATGA CTAATAGCAA GCCTCGCCAA CCTAGCCATT CCCCCAACAA

R10_P.australis AGGCCTACAA ACAGCCTTAC CCCTCATATG AGCATGATGA CTAATAGCAA GCCTTGCCAA CCTAGCCATT CCCCCAACAA

Page 199: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

183

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

1050 1060 1070 1080 1090 1100 1110 1120

85525_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT

8556 NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCA AATTTCTCCA TCATTCTCCT GAGCCTAAAT

85533_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT

26718_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT

85531_NSW TTAATACACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCTTAAAT

85529_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT

85534_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT

16138_Qld TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGCCTAAAT

85530_NSW TTAATATACT TGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCTA TCATCCTCCT AGGGCTAAAT

M116_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCA AATTTCTCCA TCATTCTCCT GAGCCTAAAT

85527_NSW TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCA AATTTCTCCA TCATTCTCCT GAGCCTAAAT

16137_Qld TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT

80833_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT

80837_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT

80835_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGACTAAAT

343.344_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT

80834_QLD TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT

80836_QLD TTAACATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCA AATTTCTCCA TCATTCTCCT GGGCCTAAAT

85523_NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT TGGCCTAAAT

Jf8_NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Jf72_NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT

W_NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Jf9_NSW TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCTA TCATTCTCCT AGGCCTAAAT

73656_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

83890_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

27086_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

81258_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

83896_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

N1_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

83889_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

83887_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Ren3_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

7606_VIC TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

27028_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

81265_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

81261_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

81260_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

27102_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

DS24_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Ren2_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

C9_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Reserve1.F25_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

PaddyR.MZ2_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Reserve2.dead3_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Ren5_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCCTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Ren6_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCCTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Wf2_VIC TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Wf3_VIC TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

27205_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Wareek.F13_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Reserve1.M65_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Wareek.F72_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

CandlP_VIC TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

81225_SA TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Euroa.M5_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Euroa.M1_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

PaddyR.FY2_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

BetBet.M50_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Goldstone.dead3_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Euroa.F1_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Betbet.F76_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Betbet.M52_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCC AATTTCTCCA TCATTCTCCT GGGTCTAAAT

Wareek.F12_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT

Reserve1.M57_Vic TTAATATACT GGGAGAATTA AAAGTAATCG TAGCTTCTTT CTCATGATCT AATTTCTCCA TCATTCTCCT GGGCCTAAAT

M19216_P.abidi TTAACTTACT CGGAGAATTA AAAGTAATTG TAGCTTCCTT CTCATGATCT AACTTCTCCA TTATCCTCTT AGGTTTAAAT

R9_P.australis TCAACCTATT AGGTGAATTA ATAATCATTG TATCATCATT CTCATGATCC AACCTTTCCA TCATTCTACT AGGCCTGAAT

R10_P.australis TCAACCTACT AGGCGAATTA ATAATCATTG TATCATCATT CTCATGATCC AACCTTTCCA TCATTCTACT AGGCCTAAAT

Page 200: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

184

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

1130 1140 1150 1160 1170 1180 1190 1200

85525_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT

85526 NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT

85533_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT

26718_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT

85531_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT

85529_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT

85534_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT

16138_Qld ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT

85530_NSW ACTGTTATTA CAGGCCTCTA CTCACTATAC ATATTCGTTA CATCCCAACG AGGCAAATTT ACACACCATC TATACCCAAT

M116_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT

85527_NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT

16137_Qld ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT

80833_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT

80837_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCGAT

80835_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT

343.344_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TGTACCCAAT

80834_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAT ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT

80836_QLD ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACATCATC TATACCCAAT

85523_NSW ACTGTAATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Jf8_NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Jf72_NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

W_NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Jf9_NSW ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

73656_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

83890_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

27086_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

81258_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

83896_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

N1_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

83889_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

83887_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Ren3_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

7606_VIC ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

27028_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

81265_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

81261_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

81260_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

27102_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TGTACCCAAT

DS24_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Ren2_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

C9_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Reserve1.F25_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

PaddyR.MZ2_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Reserve2.dead3_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Ren5_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Ren6_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Wf2_VIC ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Wf3_VIC ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

27205_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Wareek.F13_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Reserve1.M65_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Wareek.F72_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

CandlP_VIC ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

81225_SA ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Euroa.M5_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Euroa.M1_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

PaddyR.FY2_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

BetBet.M50_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Goldstone.dead3_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Euroa.F1_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Betbet.F76_Vic ACTGTGATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Betbet.M52_Vic ACTGTAATCA CAGGCCTCTA CTCACTTTAC ATATTTATTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Wareek.F12_Vic ACTGTAATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

Reserve1.M57_Vic ACTGTAATCA CAGGCCTCTA CTCACTTTAC ATATTTGTTA CATCCCAACG AGGCAAATTC ACACACCATC TATACCCAAT

M19216_P.abidi ACCGTAATCA CAGGCCTCTA CTCACTACAC ATATTCATTA CATCTCAACG AGGCAAATTC ACACACCACT TATATCCAAT

R9_P.australis ACCGTTATTA CAAGTATCTA TACACTCTAC ATACTAACCA CATCCCAACG AGGAAAATTC GTACACCACC TATACCCAAT

R10_P.australis ACCGTTATTA CAAGTATCTA TACACTCTAC ATACTAACCA CATCCCAACG AGGAAAATTC GTATACCACC TGTACCCAAT

Page 201: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

185

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

1210 1220 1230 1240 1250 1260 1270 1260

85525_NSW CAGCCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC

85526 NSW TAACCCATCA TTCACACGAG AGCATATACT CATATCCCTT CACCCAATTC CCCTTATAAT ATTATCCAT. ..........

85533_NSW CAGCCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC

26718_NSW CAGCCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC

85531_NSW CAGCCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC

85529_NSW CAACCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC

85534_NSW CAACCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGATCC CCCTTACAAT ATTATCTATC AACCCTAAAC

16138_Qld CAACCCGTCA TTCACACGAG AGCATATACT TATATCTCTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC

85530_NSW TAACCCGTCA TTCACACGAG AGCATATACT TATATCCTTT CACCTGGTCC CCCTTACAAT ATTATCTATC AACCCTAAAC

M116_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

85527_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

16137_Qld TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

80833_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

80837_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

80835_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

343.344_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

80834_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAATTC CCCTTATAAT ATTATCTATC AACCCAAAAC

80836_QLD TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

85523_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

Jf8_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

Jf72_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

W_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

Jf9_NSW TAACCCATCA TTCACACGAG AACATATACT CATATCCCTT CACCTAGTTC CCCTTATAAT ATTATCTATC AACCCAAAAC

73656_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

83890_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

27086_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

81258_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

83896_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

N1_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

83889_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

83887_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Ren3_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

7606_VIC TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

27028_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

81265_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

81261_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

81260_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

27102_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

DS24_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Ren2_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

C9_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Reserve1.F25_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

PaddyR.MZ2_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Reserve2.dead3_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Ren5_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Ren6_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Wf2_VIC TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Wf3_VIC TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

27205_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Wareek.F13_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Reserve1.M65_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Wareek.F72_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAATTC CCCTTATAAT ACTATCTATC AACCCAAAAC

CandlP_VIC TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

81225_SA TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Euroa.M5_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Euroa.M1_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

PaddyR.FY2_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

BetBet.M50_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Goldstone.dead3_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Euroa.F1_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Betbet.F76_Vic TAACCCATCA TCCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Betbet.M52_Vic TAACCCATCA TTCACACGAG AACATACACT CATATCCCTT CACCTAGTTC CCCTTATAAT ACTATCTATC AACCCAAAAC

Wareek.F12_Vic TAACCCATCG TTCACACGAG AACATACACT CATATCCCTT CACCTAATTC CTCTTATAAT ATTATCTATC AACCCAAAAC

Reserve1.M57_Vic TAACCCATCG TTCACACGAG AACATACACT CATATCCCTT CACCTAATTC CTCTTATAAT ATTATCTATC AACCCAAAAC

M19216_P.abidi TAACCCATCA TTCACACGAG AACATATACT TATATCTCTG CACCTAATTC CCCTCATAAT ACTATCTATT AACCCAAAAC

R9_P.australis CAAACCATCC TTTACACGAG AGCACACACT CATAGTCCTA CACCTCATAC CCCTTACCAT TATTTCCATC AACCCAAAAT

R10_P.australis TAAACCATCC TTTACACGAG AGCACACACT CATAGTCCTA CACCTCATAC CCCTTACCAT TATTTCCATC AACCCAAAAT

Page 202: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

186

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

1290 1300 1310 1320 1330 1340 1350 1360

85525_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

85526 NSW ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

85533_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

26718_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

85531_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

85529_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

85534_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

16138_Qld TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

85530_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACTAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

M116_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

85527_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

16137_Qld TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

80833_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

80837_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

80835_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

343.344_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

80834_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

80836_QLD TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

85523_NSW TTATTCTAGG CATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAACCTC

Jf8_NSW TTATTCTAGG TATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

Jf72_NSW TTATTCTAGG TATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

W_NSW TTATTCTAGG TATTACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

Jf9_NSW TTATTCTAGG TATAACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

73656_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

83890_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

27086_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

81258_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

83896_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

N1_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

83889_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

83887_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Ren3_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

7606_VIC TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

27028_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

81265_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

81261_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

81260_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

27102_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

DS24_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Ren2_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

C9_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Reserve1.F25_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

PaddyR.MZ2_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Reserve2.dead3_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Ren5_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Ren6_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGA? ??????????

Wf2_VIC TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Wf3_VIC TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

27205_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Wareek.F13_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Reserve1.M65_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Wareek.F72_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

CandlP_VIC TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

81225_SA TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Euroa.M5_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Euroa.M1_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

PaddyR.FY2_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

BetBet.M50_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Goldstone.dead3_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

Euroa.F1_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAAATCTC

Betbet.F76_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Betbet.M52_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Wareek.F12_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

Reserve1.M57_Vic TTATTCTAGG CATCACATAC TGTAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAGGAG TTTAAATCTC

M19216_P.abidi TCATTATAGG GATAACATAC TGTAAATATA GTTTAATAAA AACATTAGAT TGTGAATCTA AAAACAGAAG TTTAACCCTT

R9_P.australis TCATCCTAGG AACCACATAC TGCAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAACCCTC

R10_P.australis TCATCCTAGG AACCACATAC TGCAAATATA GTTTAACCAA AACATTAGAT TGTGAATCTA AAAATAAGAG TTTAACCCTC

Page 203: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

187

....|....| ....|....| ....|....| ..

1370 1380 1390

85525_NSW CTTATGTACC AAGAAAGATC CAAGAACTGC TA

85526 NSW ?????????? ?????????? ?????????? ??

85533_NSW CTTATGTACC AAGAAAGATC CAAGAACTGC TA

26718_NSW CTTATGTACC AAGAAAGA?? ?????????? ??

85531_NSW CTTATGTACC AAGAAAGATC CAAGAACTGC TA

85529_NSW CTTATGTACC AAGAAAGATC CAAGAACTGC TA

85534_NSW CTTATGTACC AAGAAAGATC CAAGAACTGC TA

16138_Qld CTTATGTAC? ?????????? ?????????? ??

85530_NSW CTTATATACC AAGAAAGATC CAAGAACTGC TA

M116_QLD TTTATATACC AAGAAAGATC CAAGAACTGC TA

85527_NSW TTTATATACC AAGAAAGATC CAAGAACTGC TA

16137_Qld TTTATATACC AAGAAAGATC CAAGAACTGC TA

80833_QLD TTTATATACC ?????????? ?????????? ??

80837_QLD TTTATATACC AAGAAAGATC CAAGAACTGC TA

80835_QLD TTTATATACC AAGAAAGATC CAAGAACTGC TA

343.344_QLD TTTATATACC AAGAAAGATC CAAGAACTGC TA

80834_QLD TTTATATACC ?????????? ?????????? ??

80836_QLD TTTATATACC ?????????? ?????????? ??

85523_NSW TTTATATACC AGGAAGGATC CAAGAACTGC TA

Jf8_NSW TTTATATACC AAGAAAGATC CAAGAACTGC TA

Jf72_NSW TTTATATACC AAGAAAGATC CAAGAACTGC TA

W_NSW TTTATATACC AAGAAAGATC CAAGAACTGC TA

Jf9_NSW TTTATATACC AAGAAAGATC CAAGAACTGC TA

73656_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

83890_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

27086_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

81258_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

83896_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

N1_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

83889_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

83887_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

Ren3_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

7606_VIC TTTATATACC AAGAAAGATC CAAGAACTGC TA

27028_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

81265_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

81261_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

81260_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

27102_SA TTTATATACC A????????? ?????????? ??

DS24_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

Ren2_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

C9_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

Reserve1.F25_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

PaddyR.MZ2_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Reserve2.dead3_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Ren5_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

Ren6_SA ?????????? ?????????? ?????????? ??

Wf2_VIC TTTATATACC AAGAAAGATC CAAGAACTGC TA

Wf3_VIC TTTATATACC AAGAAAGATC CAAGAACTGC TA

27205_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

Wareek.F13_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Reserve1.M65_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Wareek.F72_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

CandlP_VIC TTTATATACC AAGAAAGATC CAAGAACTGC TA

81225_SA TTTATATACC AAGAAAGATC CAAGAACTGC TA

Euroa.M5_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Euroa.M1_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

PaddyR.FY2_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

BetBet.M50_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Goldstone.dead3_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Euroa.F1_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Betbet.F76_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Betbet.M52_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Wareek.F12_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

Reserve1.M57_Vic TTTATATACC AAGAAAGATC CAAGAACTGC TA

M19216_P.abidi CTTATATACC AAGAAAGATC CAAGAACTGC TA

R9_P.australis CTTATATGCC AAGAAAGAAC CAAGAACTGC TA

R10_P.australis CTTATATGCC AAGAAAGAAC CAAGAACTGC TA

Page 204: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

188

Appendix 6

The ω-globin sequence alignment of P. breviceps samples used in Chapter three, consisting of Exon2 (1-67), Intron2 (68-596) and Exon3 (597-

705) ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

10 20 30 40 50 60 70 80 90 100

W_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

EuroaF1_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

81260_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

Ren2_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

Ren5_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

WF2_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

JF9_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

JF8_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

16137_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

159.160_Qld ?????????? ?????????? ?????????? ?????????? ?????????? ?????CAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

CandleP_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCTCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

27028_SA ?????????? ?????????? ?????????? ????GACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

Reservedead3_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

83887_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

81261_SA ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

81262_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

BetbetM50_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

DaedBT_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

27102_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

27086_SA GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

Reserve.aliveViC GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

85527_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

M116_Qld ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

80836_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

80833_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

80835_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

80837_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

80834_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

419.420_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

85530_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

85533_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

R9_P.australis GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCATAGTG AGTACCCCTC TGCCATTTCT CTGGGGCCTA

R10_P.australis GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCATAGTG AGTACCCCTC TGCCATTTCT CTGGGGCCTA

M19216_P.abidi GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGTCATTTCT CTGGGGCCTA

85525_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

85531_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

85529_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

85534_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

85524_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

85532_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

26718_NSW GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

Reservem57_Vic GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

16138_Qld GGCCACCTTT GACAAGCTGA GTCAGCTACA CTCAGACAAG CTGCATGTGG ACCCCCAGAA CTTCAGAGTG AGTACCCCTC TGCCATTTCT CTGGAGCCTA

Page 205: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

189

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

110 120 130 140 150 160 170 180 190 200

W_NSW GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

EuroaF1_Vic GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTC-A ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

81260_SA GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

Ren2_Vic GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

Ren5_Vic GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

WF2_Vic GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

JF9_NSW GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

JF8_NSW GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

16137_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

159.160_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

CandleP_Vic GGGGGGACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

27028_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

Reservedead3_Vic GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

83887_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

81261_SA ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

81262_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

BetbetM50_Vic GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

DaedBT_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

27102_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

27086_SA GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

Reserve.aliveVic GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

85527_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC

M116_Qld ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????ATTC

80836_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC

80833_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC

80835_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC

80837_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC

80834_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC

419.420_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC TAAGGACAGG GAGCTCATTC

85530_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

85533_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

R9_P.australis GGGGG-ACAA GGCTTACAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

R10_P.australis GGGGG-ACAA GGCTTACAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

M19216_P.abidi GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

85525_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

85531_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

85529_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

85534_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

85524_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

85532_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

26718_NSW GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

Reservem57_Vic GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

16138_Qld GGGGG-ACAA GGCTTGCAGA TTCTAAAAAC TCGAAGATTC TTCAGTGGGC ATATAGTCCA ACCTCCTACT TGAAAACCTC CAAGGACAGG GAGCTCATTC

Page 206: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

190

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

210 220 230 240 250 260 270 280 290 300

W_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

EuroaF1_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

81260_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

Ren2_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

Ren5_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

WF2_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

JF9_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

JF8_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

16137_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

159.160_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

CandleP_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

27028_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

Reservedead3_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

83887_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

81261_SA ?????????? ?????????? ?????????? ?????AACCT CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

81262_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGTTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

BetbetM50_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

DaedBT_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

27102_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

27086_SA TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

Reserve.aliveVic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

85527_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

M116_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

80836_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

80833_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

80835_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

80837_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

80834_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

419.420_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

85530_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACTT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

85533_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

R9_P.australis TTTTACAGGC TCATT-???T CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCCC

R10_P.australis TTTTACAGGC TCATT-???T CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCCC

M19216_P.abidi TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

85525_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

85531_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

85529_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

85534_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

85524_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

85532_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

26718_NSW TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

Reservem57_Vic TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

16138_Qld TTTTACAGGC TCCTTGTATT CCTTTTCCCT CCTTCAACCT CAACTTGTCT CTGGGCTAAC AATCTCTCCC TCTTTCAGGA TTTTTTAACA GAGACCCCC-

Page 207: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

191

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

310 320 330 340 350 360 370 380 390 400

W_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

EuroaF1_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

81260_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

Ren2_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

Ren5_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

WF2_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

JF9_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

JF8_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

16137_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

159.160_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

CandleP_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

27028_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

Reservedead3_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

83887_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

81261_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

81262_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

BetbetM50_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

DaedBT_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

27102_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

27086_SA TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

Reserve.aliveVic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85527_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M116_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

80836_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

80833_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

80835_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

80837_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

80834_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

419.420_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85530_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85533_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

R9_P.australis TTTTGCTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAGAGTCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

R10_P.australis TTTTGCTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAGAGTCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

M19216_P.abidi TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85525_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85531_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85529_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85534_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85524_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

85532_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

26718_NSW TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

Reservem57_Vic TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGGGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

16138_Qld TTTTACTCCC TGGGAATGTT GTTTTAAACT CCTAAGAGTG CCAG-?TCAG GAGGAGCCTT AGAAATCATC TACCAAAGAG GGCACATGTT CCATCTCACT

Page 208: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

192

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

410 420 430 440 450 460 470 480 490 500

W_NSW AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

EuroaF1_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

81260_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

Ren2_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

Ren5_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

WF2_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

JF9_NSW AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

JF8_NSW AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

16137_Qld AAAAC-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

159.160_Qld AAAAC-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

CandleP_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

27028_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

Reservedead3_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

83887_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

81261_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

81262_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

BetbetM50_Vic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

DaedBT_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

27102_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

27086_SA AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

Reserve.aliveVic AAAAT-???? ??TCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

85527_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC

M116_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC

80836_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC

80833_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC

80835_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC

80837_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC

80834_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC

419.420_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAACCCT CAGCTTCCCC

85530_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

85533_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

R9_P.australis AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTAT TTTTCCAAAG CTCACTATTA GTCCAGCCCT CAGGTTCCCC

R10_P.australis AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTAT TTTTCCAAAG CTCACTATTA GTCCAGCCCT CAGGTTCCCC

M19216_P.abidi AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCTCC

85525_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

85531_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

85529_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

85534_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

85524_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

85532_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCCTCCCC

26718_NSW AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA ?????????? ??????????

Reservem57_Vic AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCTTCCCC

16138_Qld AAAATGAAGC ATTCACTTAG CACAAGCCAG ACCCCAACTT TGGTCCAGGC ATATCTTTCT TTTTCCAGAG CTCACTATTA GTCCAGCCCT CAGCCTCCCC

Page 209: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

193

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

510 520 530 540 550 560 570 580 590 600

W_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

EuroaF1_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

81260_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

Ren2_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

Ren5_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

WF2_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

JF9_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

JF8_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

16137_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

159.160_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

CandleP_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

27028_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

Reservedead3_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

83887_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

81261_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

81262_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

BetbetM50_Vic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

DaedBT_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

27102_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

27086_SA CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA ACTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

Reserve.aliveVic CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

85527_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

M116_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

80836_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

80833_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

80835_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

80837_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

80834_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

419.420_Qld CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

85530_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

85533_NSW CAGGGGTGCA CTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

R9_P.australis CAGGGGTACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGTT GACCCTCTGC TCTCTCTTCC TTCTAGCTCC

R10_P.australis CAGGGGTACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGTT GACCCTCTGC TCTCTCTTCC TTCTAGCTCC

M19216_P.abidi CAGGGGCACA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

85525_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

85531_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

85529_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

85534_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

85524_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

85532_NSW CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAC TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

26718_NSW ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????

Reservem57_Vic CAGGGGTGCA CTGCACCCTG C?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????

16138_Qld CAGGGGTGCA TTGCACCCTG CTTCCCTCAG GCATAGAATC CTTCTCCCAT TTGTATGGGA GCTTGGGGCT GACCCTCTTC TCTCTCTTCC TTCTAGCTCC

Page 210: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

194

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|...

610 620 630 640 650 660 670 680 690 700

W_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

EuroaF1_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

81260_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

Ren2_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

Ren5_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

WF2_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

JF9_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

JF8_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

16137_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

159.160_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

CandleP_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

27028_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

Reservedead3_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

83887_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

81261_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

81262_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

BetbetM50_Vic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

DaedBT_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

27102_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

27086_SA TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

Reserve.aliveVic TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85527_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M116_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

80836_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

80833_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

80835_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

80837_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

80834_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

419.420_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85530_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85533_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

R9_P.australis TTGGAGACAA CCTGATCATA GTCCTGGCAG CTGCCTTGGG CAAGGAATTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

R10_P.australis TTGGAGACAA CCTGATCATA GTCCTGGCAG CTGCCTTGGG CAAGGAATTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

M19216_P.abidi TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85525_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85531_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85529_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85534_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85524_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

85532_NSW TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

26718_NSW ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????

Reservem57_Vic ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????

16138_Qld TTGGAGACAA CCTGATCATA GCCCTGGCAG CTGCCTTGGG CAAGGACTTT ACTATCGAGG CACAAGCAGC CTGGCAGAAG CTGGTGGGAG TAGTGGCCGC TGCCC

Page 211: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

195

Appendix 7

Identification numbers (Id), population, sex, and locality, and microsatellite genotypes for nine loci of all sugar gliders analysed in these studies.

Codes in sex column are as follows: F = Female, M = Male,? = unknown. A = Adult, sub = sub-adult and J = Juvenile.

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

73756 Alaman ? -36.72 140.33 266 334 478 486 308 308 326 330 273 273 451 466 153 163 118 118 251 251

dead-Bt Bordertown ? -36.31 140.77 326 326 478 478 0 0 310 330 0 0 469 469 145 153 112 118 0 0

81265 Bourne AF -37.41 140.68 278 278 478 486 272 324 294 318 289 289 466 466 157 163 114 118 251 251

81266 Bourne JF -37.41 140.68 278 278 478 478 272 316 318 326 269 289 466 469 155 163 112 114 0 0

81267 Bourne JF -37.41 140.68 278 278 486 486 272 312 318 326 269 289 466 475 155 163 114 116 0 0

81268 Bourne AF -37.41 140.68 270 274 478 486 304 328 314 322 261 265 457 460 149 149 112 116 0 0

81269 Bourne AF -37.41 140.68 270 278 478 478 316 328 314 342 269 269 436 469 139 157 116 116 251 251

81270 Bourne AF -37.42 140.68 266 278 478 486 292 312 322 346 261 269 445 457 139 149 112 116 251 251

81271 Bourne AM -37.42 140.68 266 274 478 478 320 320 318 322 227 227 472 475 159 159 112 116 251 251

B1 Bourne AM -37.41 140.68 270 270 478 486 312 328 310 318 269 289 460 475 0 0 112 112 0 0

B3 Bourne AF -37.41 140.68 266 270 478 486 328 328 294 318 265 269 0 0 145 159 112 116 0 0

B4 Bourne subF -37.41 140.68 266 278 478 486 316 328 294 294 269 269 0 0 0 0 112 118 0 0

Page 212: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

196

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

B5 Bourne JF -37.41 140.68 270 270 486 486 304 308 302 326 265 289 460 469 149 159 116 116 0 0

B6 Bourne JF -37.41 140.68 306 306 478 486 272 328 302 326 265 289 463 469 149 159 116 116 0 0

B7 Bourne JF -37.41 140.68 302 306 0 0 272 328 318 326 261 265 460 463 149 157 116 116 251 251

c1 Casterton

Rd JF -37.77 140.94 258 262 478 478 284 284 322 330 0 0 457 469 149 151 112 112 251 251

c10 Casterton

Rd AM -37.77 140.94 254 428 478 478 308 308 322 330 277 277 457 469 151 155 112 118 251 257

c11 Casterton

Rd JF -37.77 140.94 266 428 478 478 304 308 310 322 277 277 445 469 0 0 112 112 0 0

c2 Casterton

Rd AM -37.77 140.94 258 262 478 478 284 284 318 330 0 0 448 457 149 157 112 112 251 257

c3 Casterton

Rd JM -37.77 140.94 258 262 478 478 284 284 318 322 265 277 448 448 151 157 112 118 251 251

c4 Casterton

Rd subM -37.77 140.94 310 310 478 478 280 280 318 322 265 277 445 448 149 151 112 112 0 0

c5 Casterton

Rd AF -37.77 140.94 262 269 478 478 284 284 318 322 265 277 448 469 151 151 112 118 251 251

c6 Casterton

Rd AF -37.77 140.94 310 428 478 478 280 284 318 322 265 277 445 469 149 151 112 118 0 0

c7 Casterton

Rd AF -37.77 140.94 266 310 478 478 304 316 306 322 277 277 445 460 151 159 112 118 251 257

Page 213: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

197

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

c8 Casterton

Rd JF -37.77 140.94 266 266 478 478 280 304 314 318 269 277 445 460 151 161 112 118 251 257

c9 Casterton Rd

AM -37.77 140.94 266 310 478 478 280 304 318 322 257 277 445 460 145 161 112 112 251 257

DS1 Deadmans Swamp

JF -37.17 140.86 322 334 478 478 0 0 314 326 265 277 442 445 145 153 116 116 0 0

DS10 Deadmans Swamp

AM -37.15 140.87 274 274 478 478 308 324 226 310 235 265 448 460 157 159 112 114 0 0

DS11 Deadmans Swamp

AF -37.15 140.87 298 298 486 486 316 316 346 366 265 281 0 0 145 153 116 116 0 0

DS12 Deadmans Swamp

AF -37.15 140.87 432 436 478 482 300 324 238 366 269 269 439 478 145 153 112 116 0 0

DS13 Deadmans Swamp

JF -37.15 140.87 290 506 482 486 296 316 366 370 265 265 439 445 143 153 112 116 0 0

DS14 Deadmans Swamp

AF -37.15 140.86 270 282 478 482 304 308 314 314 265 269 436 466 153 159 116 118 0 0

DS15 Deadmans Swamp

JF -37.15 140.86 270 274 0 0 308 316 314 358 265 269 436 469 153 157 114 116 0 0

DS16 Deadmans Swamp

AM -37.15 140.86 0 0 478 482 324 324 226 310 265 281 469 469 153 159 112 116 0 0

DS17 Deadmans Swamp

JM -37.15 140.85 330 334 478 486 312 320 362 366 235 265 436 463 145 163 116 116 0 0

DS18 Deadmans Swamp

AM -37.15 140.85 298 510 478 482 308 312 366 370 265 273 439 442 145 163 114 116 0 0

DS19 Deadmans Swamp

AM -37.15 140.85 278 298 478 486 312 320 358 362 235 265 442 463 145 163 116 116 0 0

DS2 Deadmans Swamp

AF -37.17 140.86 330 506 482 482 0 0 362 366 265 265 439 448 153 153 114 116 251 251

Page 214: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

198

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

DS20 Deadmans Swamp

AM -37.15 140.85 266 270 482 486 296 312 338 362 265 269 436 442 145 153 116 116 251 251

DS21 Deadmans Swamp

AF -37.15 140.85 278 330 478 478 320 320 310 362 235 265 463 469 163 163 112 116 251 251

DS22 Deadmans Swamp

subM -37.16 140.85 330 330 478 478 300 316 306 310 265 265 0 0 149 153 116 116 251 251

DS23 Deadmans Swamp

subF -37.16 140.85 266 270 478 478 304 304 314 314 269 273 436 442 145 153 112 116 251 251

DS24 Deadmans Swamp

AM -37.16 140.85 0 0 478 482 300 324 306 318 265 269 439 466 149 159 116 116 251 251

DS25 Deadmans Swamp

AM -37.16 140.85 298 506 486 486 280 312 226 314 265 265 433 436 145 153 116 116 251 257

DS26 Deadmans Swamp

AM -37.16 140.85 266 266 482 486 280 312 314 362 265 269 436 442 143 145 116 116 251 251

DS27 Deadmans Swamp

subF -37.16 140.85 290 330 478 486 316 316 314 362 265 265 448 460 153 153 112 112 251 251

DS28 Deadmans Swamp

AM -37.16 140.85 266 266 482 486 280 280 314 362 265 273 436 478 145 153 116 116 251 251

DS29 Deadmans Swamp

JM -37.15 140.84 294 480 478 478 316 316 362 366 269 273 460 478 159 163 112 112 251 251

DS3 Deadmans Swamp

JF -37.17 140.86 322 330 478 482 320 324 342 366 265 265 445 448 153 153 114 116 251 251

DS30 Deadmans Swamp

subF -37.15 140.84 330 506 478 482 316 316 338 366 265 269 445 478 143 149 114 116 251 251

DS31 Deadmans Swamp

JM -37.15 140.84 0 0 0 0 316 316 0 0 0 0 445 457 0 0 116 116 251 251

DS32 Deadmans Swamp

AF -37.15 140.84 314 314 478 482 308 324 226 226 269 277 457 466 163 163 112 116 251 251

Page 215: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

199

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

DS33 Deadmans Swamp

subF -37.15 140.84 314 506 478 482 308 308 314 338 265 269 448 478 153 163 112 116 251 257

DS34 Deadmans Swamp

JM -37.15 140.84 266 266 478 482 308 308 314 326 235 269 445 448 145 153 116 116 251 251

DS35 Deadmans Swamp

AM -37.15 140.84 314 510 478 478 280 324 326 338 265 277 463 466 153 153 112 114 251 251

DS4 Deadmans Swamp

AF -37.17 140.86 334 338 482 486 316 316 314 318 265 277 475 478 145 163 112 116 251 251

DS5 Deadmans Swamp

AM -37.17 140.86 322 506 478 486 316 316 226 362 265 273 463 475 153 157 112 112 251 251

DS6 Deadmans Swamp

JF -37.17 140.86 330 330 478 486 304 324 318 362 269 281 457 469 153 153 114 114 251 251

DS7 Deadmans Swamp

subF -37.17 140.86 326 330 478 478 308 316 314 362 265 269 460 469 149 159 112 116 251 251

DS8 Deadmans Swamp

JF -37.17 140.86 0 0 478 478 304 320 314 314 269 281 448 457 153 157 114 116 251 251

DS9 Deadmans Swamp

JM -37.15 140.87 282 290 482 486 316 324 362 366 265 281 439 445 153 159 112 112 251 251

81225 Grundys AF -37.70 140.73 286 290 478 486 284 340 298 330 269 269 460 496 153 153 112 116 251 262

83901 Grundys AM -37.70 140.73 250 286 478 486 284 284 314 318 265 269 457 496 149 157 116 116 251 257

83902 Grundys subM -37.70 140.73 282 290 486 486 284 288 314 318 269 273 442 466 153 153 112 112 251 257

83903 Grundys subF -37.70 140.73 286 286 478 478 312 312 310 330 269 277 457 496 153 155 0 0 0 0

83904 Grundys subF -37.70 140.73 286 290 478 478 328 332 314 318 265 277 457 496 153 157 0 0 251 251

Page 216: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

200

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

83905 Grundys AF -37.71 140.73 286 290 478 478 312 312 314 334 265 269 457 457 153 157 112 116 251 251

83906 Grundys subM -37.71 140.73 286 310 478 478 308 328 314 326 265 273 442 463 153 157 0 0 257 257

83907 Grundys AM -37.71 140.73 262 286 478 478 328 328 298 306 265 265 463 463 157 157 0 0 0 0

83908 Grundys JF -37.71 140.73 246 290 478 486 280 284 298 298 269 269 445 460 153 153 0 0 0 0

G10 Grundys AF -37.70 140.75 0 0 486 486 280 308 326 330 273 277 457 487 151 157 112 114 251 251

G11 Grundys JM -37.70 140.75 246 246 486 486 280 308 298 326 227 273 487 496 149 151 112 112 251 251

G12 Grundys AM -37.70 140.75 246 246 478 486 284 308 298 318 227 265 457 496 149 149 112 116 254 254

G13 Grundys AM -37.70 140.75 246 246 478 486 280 308 318 326 265 273 460 472 149 157 112 116 254 254

G14 Grundys subM -37.70 140.73 246 246 478 486 284 324 298 310 265 269 445 496 149 153 116 116 251 257

G15 Grundys JF -37.70 140.73 290 294 478 486 308 312 302 322 273 277 487 487 149 149 112 118 251 257

G16 Grundys subF -37.70 140.73 250 250 478 486 284 284 314 318 265 269 457 463 149 153 112 116 254 254

G17 Grundys subM -37.70 140.73 246 246 486 486 312 324 326 330 227 273 463 466 149 157 112 118 251 257

G18 Grundys JM -37.71 140.73 290 334 486 486 312 312 318 330 273 289 0 0 149 151 112 114 251 251

G19 Grundys AF -37.71 140.73 286 290 478 486 312 312 310 314 265 269 0 0 153 157 112 116 251 251

Page 217: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

201

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

G20 Grundys JM -37.71 140.73 286 290 478 486 312 312 298 334 269 277 451 496 0 0 112 112 251 251

G21 Grundys JM -37.71 140.73 286 290 478 486 312 312 330 338 269 277 442 496 153 153 112 112 251 251

G22 Grundys JM -37.71 140.73 286 290 478 486 312 312 298 334 269 277 451 457 153 157 112 112 251 251

G23 Grundys ? -37.70 140.73 0 0 0 0 0 0 0 0 265 265 466 475 0 0 114 114 0 0

G24 Grundys AF -37.70 140.75 286 334 486 486 308 328 326 326 273 277 457 487 153 159 112 114 0 0

G25 Grundys subM -37.70 140.73 246 286 478 486 312 312 298 310 269 269 451 457 153 153 112 112 0 0

G26 Grundys JF -37.70 140.75 290 334 486 486 308 308 298 326 0 0 457 457 149 151 112 114 290 290

G27 Grundys JM -37.70 140.75 286 290 478 486 308 308 318 326 227 273 487 496 149 151 112 116 0 0

G28 Grundys JF -37.70 140.75 286 290 478 478 308 308 318 326 227 273 457 496 149 159 112 114 0 0

G9 Grundys ? -37.70 140.73 262 290 0 0 284 284 298 298 269 269 0 0 0 0 112 116 0 0

83895 Mt Meredith JF -37.67 140.88 250 326 478 486 306 324 334 358 265 289 448 454 149 157 0 0 251 251

83896 Mt Meredith AF -37.67 140.88 250 326 486 486 324 324 326 338 265 289 448 466 149 149 114 114 251 251

83897 Mt Meredith JM -37.67 140.88 326 330 478 478 284 324 326 338 265 277 448 454 149 157 114 116 251 251

83898 Mt Meredith AF -37.67 140.88 250 326 478 478 280 324 326 358 265 289 448 466 149 157 114 116 251 251

Page 218: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

202

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

83899 Mt Meredith subM -37.67 140.88 326 330 478 486 280 324 306 322 285 289 448 502 149 157 112 114 0 0

83900 Mt Meredith subF -37.67 140.88 326 330 478 486 308 328 306 322 265 289 442 466 149 149 116 116 0 0

MtTR2 Mt Meredith subM -37.67 140.88 326 330 478 478 304 324 326 338 265 289 454 502 145 149 116 116 0 0

N1 Nangwarry AF -37.47 140.89 286 310 478 478 304 308 302 338 269 281 0 0 153 157 114 120 251 257

N2 Nangwarry JF -37.47 140.89 0 0 0 0 304 316 302 338 265 269 460 469 153 157 116 120 251 254

N3 Nangwarry subM -37.47 140.89 278 278 478 486 312 316 346 350 261 265 469 472 157 159 114 116 0 0

N4 Nangwarry JF -37.47 140.89 278 278 478 486 308 308 338 338 261 269 460 469 153 155 112 114 0 0

N5 Nangwarry AF -37.47 140.89 278 286 478 478 304 308 338 342 265 269 448 460 153 157 112 112 290 290

81261 Paltridges AM -37.62 140.93 286 472 478 478 324 332 302 306 293 293 460 463 149 155 114 116 251 251

81262 Paltridges AF -37.62 140.93 254 468 478 478 308 332 318 334 265 269 454 457 145 159 114 116 251 251

83887 Paltridges subM -37.61 140.93 266 298 478 482 320 324 318 326 265 277 427 457 157 167 116 116 0 0

83888 Paltridges subM -37.62 140.93 306 306 478 482 312 320 302 322 261 277 436 442 149 167 114 116 0 0

PL3 Paltridges JF -37.61 140.93 274 274 478 486 276 276 302 358 265 265 439 460 0 0 114 114 0 0

PL4 Paltridges AM -37.62 140.93 242 318 478 478 328 328 318 322 265 265 475 475 0 0 114 116 0 0

Page 219: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

203

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

PL5 Paltridges AM -37.62 140.93 334 468 478 478 324 332 302 318 269 277 439 457 145 151 112 114 251 257

PL6 Paltridges AM -37.61 140.93 302 502 486 486 308 316 322 350 265 269 448 478 145 163 116 116 251 257

PL7 Paltridges subM -37.62 140.93 270 468 478 478 332 332 310 318 227 277 457 478 145 149 114 116 251 257

PL8 Paltridges AF -37.61 140.93 0 0 0 0 312 324 322 350 265 269 0 0 149 167 112 116 0 0

PEN4 Penola CP ? -37.36 140.70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116 116 0 0

PEN5 Penola CP ? -37.36 140.70 0 0 0 0 0 0 226 322 0 0 0 0 0 0 0 0 0 0

PEN6 Penola CP ? -37.36 140.71 0 0 0 0 0 0 294 294 0 0 0 0 149 159 112 114 0 0

27028 Penola CP ? -37.36 140.71 306 488 486 486 304 312 294 318 269 273 454 466 139 139 112 116 251 257

81263 Penola CP JF -37.36 140.70 270 314 478 486 288 308 302 322 265 289 466 469 143 155 112 116 0 0

81264 Penola CP AF -37.36 140.71 270 314 478 486 288 304 294 322 269 273 427 436 157 159 112 114 251 251

REN1 Rennick SF M -37.91 140.99 274 286 478 486 316 328 242 314 227 285 436 448 149 153 112 116 251 254

REN9 Rennick SF AF -37.90 141.00 274 286 478 486 300 308 286 306 227 269 427 472 149 153 116 118 251 251

REN10 Rennick SF AM -37.90 141.00 274 286 478 486 316 328 242 314 227 285 436 448 149 153 112 116 251 251

RA4 Rennick SF subF -37.89 141.00 322 468 486 486 308 312 318 326 285 289 445 460 119 119 112 114 0 0

Page 220: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

204

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

REN11 Rennick SF AM -37.91 140.99 254 310 478 486 280 284 286 286 265 277 463 466 149 157 112 114 0 0

REN12 Rennick SF JF -37.91 140.99 306 306 478 486 296 316 314 318 269 285 436 442 149 153 116 116 0 0

REN2 Rennick SF AF -37.91 141.00 294 314 478 486 308 320 330 342 265 265 427 466 145 149 112 112 251 251

REN3 Rennick SF M -37.91 141.00 274 286 478 486 268 316 314 342 227 265 448 457 149 149 112 116 251 251

REN4 Rennick SF M -37.91 141.00 294 310 478 486 308 320 326 330 273 289 460 466 145 149 112 112 251 251

REN5 Rennick SF JM -37.91 140.99 286 294 478 478 316 316 242 242 261 285 436 445 149 153 116 116 251 251

REN6 Rennick SF AM -37.90 141.00 274 278 478 486 308 316 242 326 227 277 445 454 149 149 112 116 251 254

SGR.PA Rennick SF M -37.91 141.00 314 322 486 486 308 308 342 354 265 285 427 445 145 149 112 116 251 251

REN7 Rennick SF AF -37.91 140.99 306 306 478 478 296 316 318 322 261 269 442 445 149 151 116 116 251 251

REN8 Rennick SF AM -37.91 140.99 290 314 486 486 308 308 310 342 265 277 442 457 149 149 114 118 254 254

81258 Snowgum AM -37.94 140.93 428 436 478 482 308 312 318 350 285 285 445 460 149 159 116 118 0 0

81259 Snowgum AF -37.94 140.93 266 294 478 486 292 328 242 286 0 0 436 448 145 145 112 118 0 0

snow1 Snowgum AM -37.94 140.94 468 468 478 478 296 316 286 326 265 285 0 0 0 0 116 116 0 0

snow2 Snowgum AM -37.94 140.93 428 452 478 478 296 324 326 340 277 285 463 463 149 149 112 116 0 0

Page 221: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

205

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

snow3 Snowgum subM -37.94 140.94 314 428 478 478 308 316 310 318 273 277 457 463 149 149 116 116 0 0

snow4 Snowgum JF -37.94 140.94 298 428 478 478 308 324 346 346 277 285 445 475 149 149 112 116 0 0

snow5 Snowgum AF -37.94 140.94 298 452 478 478 0 0 318 346 265 289 460 464 149 149 112 112 0 0

snow6 Snowgum subM -37.94 140.94 428 452 478 478 316 316 318 346 265 273 457 460 149 149 112 116 0 0

snow7 Snowgum JF -37.94 140.94 250 314 478 478 0 0 310 346 265 277 457 475 149 149 116 116 0 0

83890 The Heath JM -37.58 140.91 286 464 478 482 320 324 302 306 265 269 460 463 145 159 114 116 251 251

83891 The Heath AF -37.58 140.91 460 464 478 482 320 324 302 310 265 265 460 463 145 149 0 0 251 251

83892 The Heath subM -37.58 140.91 282 464 478 478 308 308 318 326 227 269 436 466 145 149 114 116 0 0

83893 The Heath AF -37.58 140.91 464 464 478 482 320 320 302 326 265 269 463 466 145 145 114 116 0 0

83894 The Heath JF -37.58 140.91 464 464 478 482 320 320 310 318 265 269 436 463 145 149 116 116 0 0

H10 The Heath AM -37.58 140.91 0 0 478 486 316 316 302 314 265 269 457 460 159 161 112 114 251 251

H11 The Heath AM -37.58 140.91 322 464 478 486 312 324 302 358 265 265 445 460 159 159 112 114 251 257

H12 The Heath AF -37.58 140.91 460 464 478 486 332 336 314 358 265 265 454 466 149 159 114 116 251 251

H13 The Heath AF -37.58 140.91 464 464 478 486 264 308 318 326 227 265 448 478 147 163 112 116 251 251

Page 222: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

206

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

H14 The Heath J M -37.58 140.91 464 464 0 0 264 316 314 318 269 269 0 0 145 161 114 116 0 0

H15 The Heath JM -37.58 140.91 0 0 478 482 320 332 310 358 265 265 457 463 145 151 116 116 257 257

H16 The Heath JF -37.58 140.91 274 274 478 478 324 336 310 358 265 265 0 0 151 151 116 116 0 0

H17 The Heath J M -37.58 140.91 464 464 478 482 316 320 314 326 265 269 0 0 145 161 114 116 0 0

H18 The Heath J M -37.58 140.91 464 464 482 486 316 320 302 326 265 269 457 460 145 161 114 114 0 0

H19 The Heath JM -37.58 140.91 242 270 478 486 312 316 318 318 265 265 0 0 143 149 116 116 0 0

H20 The Heath AM -37.58 140.91 274 464 478 486 300 356 302 358 227 265 448 466 149 159 114 114 0 0

H6 The Heath ? -37.58 140.91 464 468 478 478 308 324 314 326 227 265 436 463 0 0 112 116 251 251

H7 The Heath AM -37.58 140.91 286 286 486 486 324 324 322 322 227 269 448 466 149 149 114 114 0 0

H8 The Heath AM -37.58 140.91 0 0 486 486 264 264 318 318 227 265 448 448 145 149 114 116 251 251

H9 The Heath AM -37.58 140.91 242 274 478 486 264 336 318 358 265 265 457 466 149 163 112 114 251 257

81272 Topperweins JM -37.54 140.96 274 330 482 486 304 304 318 338 227 227 445 463 149 159 114 116 251 251

81273 Topperweins subM -37.54 140.95 330 472 482 486 308 324 302 338 265 285 445 463 143 149 116 116 0 0

81274 Topperweins subM -37.54 140.95 330 472 486 486 304 320 302 302 265 285 457 463 149 155 116 116 251 257

Page 223: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

207

Id Population Sex Latitude Longitude Petb1 Petb2 Petb4 Petb6 Petb7 Petb8 PN3 Pn49 Peta12

81275 Topperweins AF -37.54 140.95 294 472 486 486 308 320 302 302 265 265 445 457 143 155 116 116 251 251

81276 Topperweins AF -37.54 140.96 254 306 478 478 324 332 318 334 235 235 442 454 143 149 0 0 0 0

81277 Topperweins subM -37.54 140.95 476 480 482 486 304 316 318 322 285 285 445 451 153 163 114 116 251 251

81278 Topperweins AF -37.54 140.95 266 472 478 482 304 324 302 306 265 285 436 460 143 149 114 116 251 251

83889 Topperweins AF -37.54 140.96 278 502 486 486 292 316 310 322 227 227 442 472 145 153 116 116 251 251

TP2 Topperweins AM -37.54 140.96 246 246 478 486 292 292 226 310 227 265 466 466 149 153 114 116 251 254

TP3 Topperweins JM -37.54 140.96 246 310 478 486 320 320 226 302 265 265 466 466 153 163 0 0 251 251

TP4 Topperweins JM -37.54 140.96 310 314 478 486 292 320 302 310 235 265 466 466 151 153 114 116 251 254

TP5 Topperweins ? -37.54 140.96 306 306 478 486 280 324 318 322 265 277 0 0 145 155 114 116 251 257

TP6 Topperweins JM -37.54 140.96 262 266 478 486 332 356 226 318 265 265 0 0 143 153 114 116 0 0

TP7 Topperweins AF -37.54 140.96 262 266 478 478 312 332 226 226 265 269 0 0 143 143 112 114 0 0

27205 Western Flat ? -36.52 140.74 258 506 478 482 316 328 346 350 265 281 442 469 153 153 112 114 0 0

27102 Western Flat ? -36.52 140.74 330 488 478 478 304 308 310 338 261 273 451 454 153 153 112 116 0 0

27086 Western Flat ? -36.52 140.74 290 488 478 486 264 264 326 338 269 281 457 463 143 153 116 116 0 0

81260 Yangery AF -37.59 140.89 242 464 478 486 312 328 302 322 227 238 460 463 145 147 114 116 251 251

Page 224: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

208

Appendix 8

Catalogue number, sex, location and measurements data of 42 P. breviceps and 12 P. norfolcensis skulls. Sex codes: F = female, M = male and ?

= unknown. Region abbreviations: VIC = Victoria, SA = South Australia, Qld = Queensland, NSW = New South Wales, NT = Northern

Territory, TAS = Tasmania, NG = New Guinea. Measurement abbreviations: CBL, Condylobasal length; MZB, maximum zygomatic breadth;

RostH, rostrum height; UpMolarL. upper molar tooth raw length; UpToothL, upper tooth raw length; LowMolarL, lower molar raw length;

RostW, rostral width between upper canines; WidthRamus, width of ascending ramus; UpIncisorPreMolar, upper incisor- premolar row;

InterorbitW, interorbital width. Measurments are in millimetre.

Species Catalogue no. Sex Region CBL MZB RostH UpMolarL UpTooth

L

LowerMolar

L RostW WidthRamus

UpIncisor

PreMolar Interorbit Width

P. breviceps C27471 ? VIC 37.6 26 8.5 7 8.2 17.5 10.1 6.7 7.2 8.6

P. breviceps C3129 ? VIC 36.8 25 9 8.3 7.4 18.5 10.1 7.7 7 7.5

P. breviceps C3128 F VIC 37 25 8.2 8 7.2 18 10.2 6 8.4 8.3

P. breviceps C4839 F VIC 37.4 26 7.9 8 7.3 17.2 10.2 6.8 7 8.3

P. breviceps C5765 F VIC 38 26 7 7.5 7.5 17.5 7.5 6 6 9

P. breviceps C9519 M VIC 36 23 7 7.5 7 17 8 5.5 6.5 7.8

P. breviceps DTC232 ? QLD 37 24 7.8 7.8 6.5 17.2 8 6.7 6.7 8.3

P. breviceps C22456 ? QLD 36.5 23 8.7 8 7 17 8.1 6.8 6.5 8.5

P. breviceps C2550 ? VIC 37 26 8.6 8 8 18 8.6 6.9 8 8.7

P. breviceps C6752 ? NG 27.7 17 5.7 6 5.3 17.8 8.7 5 7.5 5.5

P. breviceps C4039 F VIC 38 27 7.7 7.5 7.2 18 8.9 7.2 7.2 8.2

P. breviceps DTC238 M NT 37 26 8 7.8 7.7 17 8.9 6.7 7 9

Page 225: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

209

Species Catalogue no. Sex Region CBL MZB RostH UpMolarL UpTooth

L

LowerMolar

L RostW WidthRamus

UpIncisor

PreMolar Interorbit Width

P. breviceps C25272 ? VIC 38 23 9 7 6.5 17 9 7.1 7.2 8.7

P. breviceps C22460 ? VIC 38 25 8.3 7.5 7.5 18.7 9 7.5 7.5 9

P. breviceps M7309 F NSW 37.1 25 7.6 5.9 5.7 15.9 9.2 5.4 5.1 7

P. breviceps C3064 ? NSW 36.5 26 8 7.4 7.7 17.5 9.2 6.2 7 8.5

P. breviceps C25277 ? SA 38 23 8.5 7.5 7.2 17 9.2 7.8 7.5 9.1

P. breviceps C3065 M NT 35.5 24 7.8 8 6.5 18.2 9.2 6.4 6.5 8.4

P. breviceps C7777 ? VIC 38.5 25 8 8.5 9 17.5 9.2 8.9 7.7 8.5

P. breviceps C3061 M NT 33 22 8 6 7 15.5 9.5 6.5 6 7.6

P. breviceps C31205 M VIC 37 24 8.2 7.5 6.8 18 9.5 7.5 7.5 8.5

P. breviceps C2556 ? NT 33 23 7 5.7 7.2 14 10 5.9 6 7.2

P. breviceps C1934 F NG 28 6.4 6.9 6.2 8

P. breviceps C19120 ? VIC 38.5 20 9.3 7 7 18 10 8 6.5 8.7

P. breviceps C7071 ? NSW 38.2 27 7.4 7.5 7.8 18 10 6.8 7.3 8.7

P. breviceps M13646 F SA 36.8 24 9.7 7.2 7.2 18.3 10.4 7.1 7.1 8.3

P. breviceps M256 M NT 34.4 23 8.6 7.6 6.9 18.7 10.4 6.2 5.7 8.2

P. breviceps C22457 F VIC 35.8 22 8 7.5 7.5 18 10.5 7 6.8 7.5

P. breviceps M9680 F SA 36.8 24 8 7.4 6.9 17.4 10.6 6.3 7 8.1

P. breviceps M8664 F SA 35.5 27 7.7 6.4 6.9 16.2 10.7 6 6 8.3

P. breviceps M11924 M SA 38.8 23 9.3 6.9 7 15.5 10.9 7.4 6.9 7.3

P. breviceps M7311 M SA 36.1 25 8.4 7.5 7.9 17.4 11 6.6 6.1 8.2

P. breviceps C19211 ? VIC 39.5 27 8.2 7.5 7.2 18.5 11 7.2 7.5 9.5

P. breviceps M12942 F SA 36.1 25 9.2 7.5 8.1 17.4 11.3 6.5 7.3 8

Page 226: Molecular Systematics and Conservation Genetics of Gliding ... · Molecular Systematics and Conservation Genetics of Gliding Petaurids (Marsupialia: Petauridae) By Mansoureh Malekian

Appendices

210

Species Catalogue no. Sex Region CBL MZB RostH UpMolarL UpTooth

L

LowerMolar

L RostW WidthRamus

UpIncisor

PreMolar Interorbit Width

P. breviceps C10116 ? VIC 39.5 25 8.5 7.8 7.3 17 11.5 7.4 7.5 9.3

P. breviceps M10119 ? VIC 37.6 25 9.7 6.9 6.9 17 11.6 6 6.6 8.6

P. breviceps M4761 M VIC 37.5 25 10.2 8.2 7.3 17 11.6 6.3 7.6 8.7

P. breviceps M853 ? NT 36.9 24 9.1 5.2 7.2 17.8 11.9 6.7 6.7 8.5

P. breviceps M7308 F TAS 36.5 26 8.9 7 7.2 18.2 12 7.7 7.3 9.1

P. breviceps M7307 M TAS 38.7 26 9.9 7 7.9 18.6 12.1 6.9 7.3 9.9

P. breviceps M12771 F SA 38.7 25 10 7.9 8.3 17.1 12.1 6.4 8 8.9

P. breviceps M3276 M SA 39.2 26 10.5 7.9 7.5 17.8 12.1 7.8 7.7 8.7

P. norfolcensis M7922 F QLD 45.1 29 10.8 . . . . . 7.7 11.4

P. norfolcensis M7310 M ? 44.4 30 10.8 . . . . 8.5 9.8 10.8

P. norfolcensis M7305 M NSW 42.6 29 10.9 8.7 8.5 20.3 11.5 7.3 7.7 9.8

P. norfolcensis M7303 F NSW 45.5 29 10 9.8 9.3 22.5 12.8 10.2 10 10.2

P. norfolcensis C16090 ? VIC 42.5 33 10 10.1 8.6 23.5 13 9.5 9.2 12

P. norfolcensis M2748 F QLD 43.3 28 9.3 9 9.1 21.6 13.3 8.9 7.1 10.2

P. norfolcensis M7304 F NSW 45.2 24 10.8 9.8 8.8 22.4 13.5 8.5 8.6 11.9

P. norfolcensis M9679 F ? 43.1 28 11 9.7 8.8 19.2 14 7.7 7.9 10.6

P. norfolcensis M2238 F NSW 43.3 28 9.3 9.6 9.3 23.1 14.61 8.4 8.4 10.5

P. norfolcensis C29790 F VIC 47 31 10.5 9.5 8 23 15 8 9 12

P. norfolcensis C29691 M VIC 46 32 10 9.4 8.5 22 15.2 10 9.4 11

P. norfolcensis C28718 ? VIC 47.5 31 10.5 10 9 22.5 16 10 8.2 10.5