Molecular Machine (Jacobson) Group MIT – June 2004

5
Molecular Machine (Jacobson) Group MIT – June 2004 Avogadro Scale Engineering

description

Avogadro Scale Engineering. Molecular Machine (Jacobson) Group MIT – June 2004. 10 -10. 10 -9. 10 -8. 10 -7. 10 -6. 10 -5. 10 -4. 10 -3. 10 -2. red blood cell ~5 m (SEM). diatom 30 m. Molecular Machines (Jacobson) Group. DNA proteins nm. Simple molecules

Transcript of Molecular Machine (Jacobson) Group MIT – June 2004

Page 1: Molecular Machine (Jacobson) Group  MIT – June 2004

Molecular Machine (Jacobson) Group MIT – June 2004

Avogadro Scale Engineering

Page 2: Molecular Machine (Jacobson) Group  MIT – June 2004

Simple molecules<1nm

IBM PowerPC 750TM Microprocessor

7.56mm×8.799mm6.35×106 transistors

Semiconductor Nanocrystal~1 nm

10-10 10-510-9 10-7 10-610-8 10-4 10-3 10-2

m

Circuit designCopper wiringwidth 0.1m

red blood cell~5 m (SEM)DNA

proteins nm

bacteria1 m

Nanotube Transistor(Dekker)1012 bits/cm2 (1Tbit/cm2)

Molecular Machines (Jacobson) Group

SOI transistorwidth 0.12m

diatom30 m

Page 3: Molecular Machine (Jacobson) Group  MIT – June 2004

Fabricational Complexity

Ffab = ln (W) / [ a3 fab Efab ]

Ffab = ln (M)-1 / [ a3 fab Efab ]

•Total Complexity•Complexity Per Unit Volume•Complexity Per Unit Time*Energy•Complexity Per unit Cost

Page 4: Molecular Machine (Jacobson) Group  MIT – June 2004

…Can we use this map as a guide towards future

directions in fabrication?

Genome (Natural)

Gene Chip (Chemical Parallel Synthesis)

Semi-conductor Chip

High Speed Offset Web TFT DVD-5

Liquid Embossing

Design Rule Smallest Dimension (microns) 0.0003 0.0003 0.1 10 2 0.5 0.2Number of Types of Elements 4 4 8 6 8 2 4Area of SOA Artifact (Sq. Microns) NA 7.E+08 7.E+10 2.E+12 1.E+12 1.E+10 8.E+09Volume of SOA Artifact (Cubic Microns) 6.E+01 5.E+06 7.E+09 2.E+12 1.E+11 7.E+12 8.E+08Number of Elements in SOA Artifact 3.E+09 7.E+04 7.E+12 2.E+10 3.E+11 5.E+10 2.E+11Volume Per Element(Cubic Microns) 2.E-08 8.E+01 1.E-03 1.E+02 4.E-01 2.E+02 4.E-03Fabrication Time(seconds) 4.E+03 2.E+04 9.E+04 1.E-01 7.E+02 3 6.E+01Time Per Element (Seconds) 1.E-06 3.E+02 1.E-08 7.E-12 2.E-09 7.E-11 3.E-10Fabrication Cost for SOA Artifact($) 1.E-07 1.E+02 1.E+02 1.E-01 2.E+03 3.E-02 2.E-01Cost Per Element 3.E-17 2.E-03 2.E-11 6.E-12 6.E-09 7.E-13 1.E-12Complexity 4.E+09 9.E+04 2.E+13 4.E+10 6.E+11 3.E+10 3.E+11Complexity Per Unit Volume of SOA(um 3̂) 7.E+07 2.E-02 2.E+03 2.E-02 5.E+00 5.E-03 3.E+02Complexity Per Unit Time 1.E+06 6.E+00 2.E+08 3.E+11 9.E+08 1.E+10 5.E+09Complexity Per Unit Cost 4.E+16 9.E+02 1.E+11 3.E+11 3.E+08 1.E+12 1.E+12Cost Per Area NA 2.E-07 2.E-09 6.E-14 2.E-09 3.E-12 3.E-11

Fabricational Complexity

Page 5: Molecular Machine (Jacobson) Group  MIT – June 2004

Moleography – MIT

Jacobson Group –2004

15 nm

Direct Beam Fabricated StructuresRidley, B.A., B. Nivi, and J.M. Jacobson,. Science, 1999. 286(5440): p. 746-749(First Demonstration of All Inorganic Active Devices (Transistors) Solely from Nanoparticle Building Blocks).Bulthaup, C.A.,Jacobson et al.. Applied Physics Letters, 2001. 79(10): p. 1525-1527.Ridley, B.A., et al.,. Materials Research Society Symposium Proceedings, 2000. 581\Griffith, S., et al.. Journal of Vacuum Science & Technology B, 2002. 20(6): p. 2768-2772.