MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl...

41
MOFs in Catalysis « The Emperor's New Clothes »? D. Farrusseng

Transcript of MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl...

Page 1: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

MOFs in Catalysis

« The Emperor's New Clothes » ?

D. Farrusseng

Page 2: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

2/38

1 – Acid Catalysis2 – Acid/Base3 – Encapsulation4 – Organometallics / Enantioselective Cat.5 – Photocatalysis6 – Polymerisation

Page 3: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

3/38

1 – Acid Catalysis

Page 4: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

• BASF patent 2002

4/38

poly(propylene carbonate).

Soga, K.; Imai, E.; Hattori, I. Polym. J. 1981, 13, 407.Inoue, S.; Tsuruta, T.; Furukawa, J. Makromol. Chem. 1962, 53, 215

US20020279940

- Zn/btc- MOF-5

? ! ? !

O + CO2

Zn(OH)2/glutaric acid

• First catalyst generations

Mw = 60.000-75.000 g/mol

- ZnEt2/pyrogallol > ZnEt2/H2O- ZnO/glutaric acid > Zn(OH)2/glutaric acid > Cr(OOCCH3)3

Page 5: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

5/38

0

20

40

60

80

100

Yiel

d

4 2 2 4

Catalytic results on “MOF-5”

100°C

t-BuCl

13 x 6 12 x 8 16 x 8 15 x 9

BEA MOR AlCl3MOF-5

U. Ravon, MicroMeso Mat., 2010

• Model reaction

• “MOF-5” prepared by fast pecipitation– SBET = 500-700 m2/g

• “pure” MOF-5 (Prof. S. Kaskel)– SBET = 2500 m2/g– much less active when kept under Ar and with dried chemicals

4,4'-ditBu-bipy 2,4'-ditBu-bipy 2-tBu-bipy 4-tBu-bipy

Page 6: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

6/19

Zn-OH in “MOF-5” ?

Air24hrs

Zn4O(bdc)3•2DEF Zn3(µ3-OH)(bdc)2•2DEF

1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0δ 1H / ppm

• MOF-5 transforms to MOF-69C*

• Quantification by solid 1H NMR– Zn(µOH) : dbc = 1:20-30

16 14 12 10 8 6 4 2 0 -2 -4

δ / ppm

Zn-OHHH

HH

• MOF-5 with Zn-OH defects– 3-5% of Zn(OH)– SBET = 500-700 m2/g >> MOF-69C IRMOF-1 prec

IRMOF-1 solv

*S. Hausdorf, J. Phys. Chem. A, 2008, 112, 7567

U. Ravon, New J. Chem, (2008), 32,937-940

3800 3700 3600 3500 3400 3300 3200

IRMOF-1(basf)des IRMOF-prec MOF-69C

λ / cm-1

MOF-69C

Page 7: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

7/19

Bronsted function

• MOF-69C (Zn) : Zn3(µ3-OH)2(bdc)2

• MIL-53 (Ga) : Ga(µ2-OH)(bdc)

• MIL-68 (In) : In(µ2-OH)(bdc)

1D Class with bridging OH

SiO

H

Al

D. Farrusseng, in “Handbook of heterogeneous Catalyst Design”, Wiley (Ed. U. Ozkan), 2009

Page 8: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

8/38

Alkylation on MIL-53(Ga)

biphenyl

0 1 2 3 40

20

40

60

80

100

HBEA IRMOF-1-prec MIL-53(Ga)

Conv

ersio

n

Time / hr

IRMOF 1 MIL 53(Al) MIL 53(G ) H BEA H MOR AlCl30

20

40

60

80

100

Yiel

d

4,4'-ditBu-bipy 2,4'-ditBu-bipy 2-tBu-bipy 4-tBu-bipy

MIL-53

MOF-5 Al BEAGa MOR AlCl3

Patent FR 08/01.089

• MIL-53(Ga)>>>MIL-53(Al)

• MIL-53(Ga) active at room temperature !

toluene

Page 9: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

9/38

Brønsted mechanism ?

-0.2 0.0 0.2 0.4 0.6 0.8-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Toluene

Benzene

CN-benzene

Br-benzene

σ

Cl-benzene

H H

Cl

H H

• Effect of inductive groups on reactivity (Hammett constant σ)

• Charge of the transition state (ρ)– Protonation of the aromatics

Log(rate) =Cst + σ.ρ

MIL-53(Ga)

HY

Log

(r/r0

)

CH3

H H

<<

ρ> 0, acylation (basic)ρ=0, Fe-beta (redox)ρ<0, H-zeolite (acid)

B. Coq et al, Applied Cat. A, 100(1993) 69

²

Page 10: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

10/38

Brønsted acidity: Measurements

700 3650 3600 3550Wavenumber(cm-1)

3670

3684

0 2150 2100 37

2145

Wavenumber(cm-1)

2135

• Site probing by CO adsorption at 100K (Prof. S. Bordiga)

• Brønsted acidity: MIL-53(Ga) > MIL-53(Al)

• No evidence of Lewis centers

∆ν(OH)=90 cm-1

D. Farrusseng, ChemCatChem, 2010

MIL-53 (Ga)

Page 11: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

11/38

Ga-MIL-53 vs. zeolite

A. Vimont et al, . Phys. Chem. C, Vol. 111, No. 1, 2007

MILs

Not in the same range !

Page 12: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

12/38

2 – ACID BASE

Page 13: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

ZIF-8

Triglyceride > pore aperture

? ! ? !

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

time (h)

Est

er p

ropo

rtio

n (%

) Methanol

Ethanol

ZIF-8

ZnAl 2O 3 ZIF-8

ZnAl2O3

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

time (h)

Est

er p

ropo

rtio

n (%

) Methanol

Ethanol

ZIF-8

ZnAl 2O 3 ZIF-8

ZnAl2O3

O

O

O

O

R

O

O

R

R

+ 3R'-OH

OH

OH

HOR'O

O

R+ 3

C. Chizallet, et al., JACS, 2010, 132, 12365

• Esterfip process (ZnAl2O3)

Page 14: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

14

External surface models of ZIF-8

0 200 400 600 800 1000

T (K) (P = 1 bar)

Zn

C

NHO

0 200 400 600300 500

{Zn-Im3}

{Zn -Im2}

{Zn-Im}

T (K) (P = 10-6 bar)

100

A: in ambient air

B: in IR cell beforepre -treatment

C: in IR cell after activationD: in IR cell duringCO adsorption

E: catalysis

C. Chizallet, N. Bats, J. Phys. Chem. Lett, 2010, 1, 349

Page 15: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

15/38

Dissociation of MeOH on ZnIII and ZnII

Activation studies

Co- activation MeOH and Ester on ZnII

• Bulk can not activate MeOH• Actives centers : Zn-OH

• at external surfaces and/or structural defects

+1 0 kJ. mol- 1

C. Chizallet, et al., JACS, 2010, 132, 12365

Page 16: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

16/38CO

(g)

Acidité variéeA. . . CO

Nature of acid/base centers ?

• CO adsorption at 77K / DFT modelling

• Strong Zn(II) Lewis centers

• Strong Bronsted acid NH

• Weak basic sites OH and N-

• Activity at the surface

Page 17: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

17/38

alumina

SIM-1

alumina

SIM-1

Al

Zn

Enginnering: egg-shell catalyst

O OHSIM-1/γ-Al2O3 beads

iPrOH-iPrOK80°C, 10 h.

up to 90% yield after 2 runs

Aguado et al, Chem. Commun. 2010, 46, 7999-8001

SIM-1

Page 18: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

Engineering : post-hydrophobisation

Page 19: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

19/38

3 - ENCAPSULATION

Page 20: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

20/38

MOFs: bridging pore size gap

LTAMFIFAU

AlPO4-5VPI-5

ITQ-33ITQ-37

MCM-41MOF-11

HKUST-1MIL-103

ZIF-8MOF-101

ZIF-70MOF-5JUC-48

MIL-100UMCM-1MIL-101

MIL-101-ndc

0 5 10 15 20 25 30 35 40 45 50Pore size / Å

egg albuminhemoglobinmyoglobininulinTIPB

MTBEMeOHH2O

CO2

Page 21: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

Metal Nanoparticle (Au@ZIF)

• CVI of [AuCOCl] / 30wrt%loading

21/38

D.Esken R. Fischer, RUB

ZIF-90

ZIF-8

Page 22: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

•HPA templating in HKUST-1

Cu(NO3)2 + HPW + H3BTC

seconds

Bajpe et al. Chem. Eur. J. 2010L. H. Wee et al, Chem. Comm, 2010F. Kapteijn, J. Catal, 2009

Quenching at 77K

hours

PTA 25% wt MIL-101

Nafion

PTA 25% wt MIL-101

Nafion

EsterificationHPW@MIL-101

Heteropoly acids HPW/MOF

• Catalysis• Knoevenagel•MeOH deydration•Esterfication

Page 23: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

Complexes in MOFs

• Encapsulation of metallo-phthalocyanines

23/38

N

NN

N

N

N

N

N

F

F

F

F

M

FF

F

FF

F

F

FF F

F

F N

NN

N

N

N

N

NFe

Pore window1.6x1.5 nm

MPcF16,(sol):≈1.3x1.3 nm

FePc(t-Bu)4,(sol):>1.7x1.7 nm

OH

O

Tetralin

1-Tetralol

1-Tetralone

90°CAir

n(Tetralin):n(complex)=64000:1

Kockrick et al, Chem. Commun. 2010

Page 24: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

24/38

4 – Functional Ligands

Page 25: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

25/38

Sources of inspiration

Enzymes ZeolitesMOFs

• Organic

• Multinuclear sites

• Flexible

• Low thermal stability

• Inorganic

• Isolate acid sites

• Rigid

• High thermal stability

• Hybrid

• Multinuclear sites

• “Semi-rigid”

• 200-400°C

Page 26: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

26/38

8% ee !+ *

Kim et al. Nature, 404 (2000), 982

POST-1• Homochiral MOF• Lewis Base

? ! ? !

Esterification

• Enantioselectivity ?• Pore size effect ?

Page 27: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

Asymmetric alcoholytic kinetic resolution of styrene oxide

27/38Tanaka, New Journal of Chemistry, 2010

Page 28: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

28/38Hupp, Chem Comm, 2006Goldberg, Chem Comm, 2005

Bio-mimetic metallo-ligands

Mn(Salen)Porphyrin

PIZA-1

• Linker = bio-mimetic catalyst

Page 29: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

Net interpenetration to adjust pore size

W. Lin, Nat. Chem, 2010

Characterisation…. Activity rate vs. Cost ?

Page 30: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

30/38

MOF-NH2 library for post-functionlisation

NH2

MIL-101 (Fe)4

NH2N

N

NH2NH2

NH2

NH2

MIL-53(Al3, Fe4)DMOF-12

UMCM-12

MIL-68 (In)5IRMOF-31

CAU-18

NH2

MOF-LIC-16

UiO-667

1 Eddaoudi, M. et al, Science, 2002, 295, 469-472. 5 Savonnet, M. et al, 2009, FR Patent 09/05.101. 2 Wang, Z. et al, Inorg. Chem. 2009, 48, 296-306. 6 Gamez, P. et al, Eur. J. Inorg. Chem., 2008, 1551-1554.3 Ahnfeldt, T. Inorg. Chem., 2009, 48, 3057-3064. 7 Cavka, J. H. et al, J. Am. Chem. Soc., 2008, 130, 13850 –13851.4 Bauer, S. et al, Inorg. Chem., 2008, 47, 7568. 8 Ahnfeldt, D. et al, Angew. Chem.-Int. Edit. 2009, 48, 5163-5166.

COOH

COOH

NH2

NH2

Page 31: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

31/38

Post-functionalisation methods

1 Wang, Z. Q et al, Chem. Soc. Rev. 2009, 38, 1315-1329. 5Ahnfeldt, T. Inorg. Chem., 2009, 48, 3057-3064.2 Dugan, E. et al, Chem. Commun., 2008, 3366-3368. Gamez, P. et al, Eur. J. Inorg. Chem., 2008, 1551-1554. 3 Ingleson, M. J.et al, Chem. Commun., 2008, 1287-1289. 6 Savonnet, M et al, Green Chem. 2009, 11, 1729-1732.Gamez, P. et al, Eur. J. Inorg. Chem., 2008, 1551-1554. 7 Christophe V.et al, Angew. Chem. Int. Ed., 2010, 49, 4644-4648.

4 Britt, D. et al, Inorg. Chem., 2010, 49, 6387-6389.

MOF-NH2

NH2

NH

R OO

RO

R

R NCONH

R HO

NR

R OHO

NHR

Cl RO

SClCl

O

ONH

R

O

NHR

O

NCS1

2

3 45

6

7

NH

H2N

HN

Page 32: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

Post-functionalisation vs. Porosity ?

• One pot Click Chemistry

32/38

N3 N

NN

MOF-N3 MOF-fun

NH2

MOF-NH2

TMSN3

0 20 40 60 80 1000

200

400

600

800

1000

1200

1400

BET

surfa

ce a

rea

(cm

².g-1

)

Degree of modification (%)

NH2

MIL-68(In)-NH2

NH2

CAU-12 3

NH2

MIL-68(In)-NH2

NH2

CAU-12 3

MIL-68

CAU-1

Page 33: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

33/38Rosseinsky, Chem.Com, 2008

tBuOOHTHF/65°C72h

40% conversion

Surface Organometallic species

S. Cohen, Chem. Soc. Rev., 2009

NH2

O

N

HO

N

OV

O

O

Ac2O OCN-R

V(O)acac2

OHO

Lack of short range characterisation….

Page 34: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

34/38

5 – PhotoCatalysis

Page 35: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

35/38

MOFs: Photocatalysis

Gascon et al., ChemSusChem, 2008

Effect of the linker on the bandgap

S. Bordiga et al, Chem.Commun. 2004

Zn4O13 node = Quantum dotsLinkers = antenna for hv

• MOF-5 : photoluminescent material

ZnO

ex em

• MOF-5 : Strong oxidizing semi-conductor

Corma et al., J. Mater. Chem , 2010

Page 36: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

36/38

Polymerisation

• Topotactic polymerization in 1D MOF

Kitagawa et al, Angew. Chem., 2004

7.8 x 7.8 Mw/Mn=1.6

• Anionic polymerization of acetylene in 1D MOF

• Polycarbonates from epoxides & CO2 in 3D MOF(Zn)

Kitagawa et al, Nature, 2005

Mueller, US patent, 2003 Zinc glutarate = 2nd catalyst generation

Mw = 60.000-75.000 g/mol

Page 37: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

Marketing ?

Enzymes ZeolitesMOFs

Page 38: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

38/38

Page 39: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

39/19

Think different !

OH+

Metal0-SO3H

-NH2

Page 40: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

40/19

Flexibility & molecular recognition

• Pore flexibility upon guest adsorption

• Rotating ligand with Temperature

MIL-53

[Zn2(1,4-ndc)2-(dabco)]n

CPL-2

S. Kitagawa et al, Angew. Chem. 2006, 118, 5054

Towards biomimetism

Page 41: MOFs in Catalysis - TU Dresden · 2011. 4. 14. · Catalytic results on “MOF-5” 100°C t-BuCl 13 x 6 12 x 8 16 x 8 15 x 9-5 BEA MOR AlCl 3 U. Ravon, MicroMesoMat., 2010 • Model

41/39

Thanks

Dr. Sonia AguadoDr. J. CanivetDr. C. GaudillereDr. U. RavonM. SavonnetC-H. NicolasT. LescouetDr. J. PawlesaDr. E. KockrickDr. J. SubletA. CamarataM. Bahssa

Dr. N. Bats, IFPENDr. C. Nieto, IFPENDr. G. Pirngruber, IFPENDr. F. Figueras, IRCELYONDr. C. Pinel, IRCELYONDr. A. Lesage, ENS-LyonDr. M. Baias, ENS-LyonDr. L. Emsley, ENS-Lyon

Prof. S. Kaskel, TUD