Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models...

18
Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 Mel Austen and Nicky Beaumont (PML) and all IMMERSE Co-Is

Transcript of Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models...

Page 1: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Module 5: Linking macroecology and models to ecosystem services

MERP kick off meeting, PML 4-6 June 2014

Mel Austen and Nicky Beaumont (PML) and all IMMERSE Co-Is

Page 2: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Natural and Social Science ‐ Integrating Concepts:

Stock of natural capital ‐Natural carrying capacity

Natural environmental system & Total Ecological Value

[Mike Elliott, Jon Atkins, Daryl Burdon (U Hull) & Kerry Turner (UEA) Coastal zone ecosystem services HG v9]

Physico‐chemical structure / stock

Physico‐chemical processes / functioning 

Physico‐chemical capital 

Socio‐Econo‐Techno System measured as TSSV (Total Societal & System Value) & Socio‐economic carrying capacity

Intermediate ecosystem services

Final ecosystem services

Individual (use & non‐use) values

Total Economic Value

Shared (monetary & non‐monetary)

Total Social Value

Societal benefits

Ecological structure / stocks

Ecological processes / functioning

Ecological capital 

Complementary assets (human capital – population expending energy, time, money, skills)

Ecosystem goods

Page 3: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Intermediate ecosystem services Final ecosystem services Benefits

Safe recreational water

Wild captureFish & shellfish

Coastal flood and storm defence

Food production

Wave buffering Flood protection

NutrientCycling

Maintenance of biodiversity (insurance)

Climate regulation

Microbially mediated detoxification of pollutants

Seawater detoxification

PeopleOther capital inputsPhysical and chemical inputs

Austen et al 2011 NEA

Ben

thic

BIO

TUR

BAT

ION

Burial and buffering of pollutants Microbially

mediated nutrientcycling

Burial of carbon

Carbon sequestration

Raw material Production e.g. fishmeal

Aquaculture

Oxygenation and flushing of sediment

benthicproduction

Control of sediment mobility and stability

Benthic BIOTURBATION

Page 4: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Intermediate ecosystem services Final ecosystem services Benefits

Food production

Maintenance of biodiversity (insurance)

Climate regulation

PeopleOther capital inputsPhysical and chemical inputs

Fish

bio

dive

rsity

Carbon storage?

Raw material Production e.g. fishmeal

production Supports Seabirds & mammals

Wild captureFish & shellfish

Aquaculture

Recreation- anglingRecreation- Scuba divingRecreationWildlife watching

Existence

Health & wellbeing

Fish biodiversity

NutrientCycling

Austen et al 2011 NEA

Page 5: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Objectives of Module 5• Bring together natural scientists with interdisciplinary ecosystem service 

researchers working between and among natural and social science disciplines to

• Use improved mechanistic understanding (Modules 1‐4) to improve understanding of the ecosystem processes and structures that are relevant to ecosystem services

• Develop a framework to generate predictions about the fate of marine ecosystem services under different past and future scenarios, at local and regional spatial scales– To allow exploration of the implications of different management scenarios for 

ecosystem services and their socio‐economic benefits (MERP Programme Objective 3.) 

Page 6: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Task: Translate understanding and predictions derived from macroecological and empirical approaches and model ensembles into the currency of ecosystem services Develop preliminary conceptual models that link different aspects of

biodiversity and ecosystem processes to each of the ecosystem services (UKERC and BESS)

Use understanding and outputs derived from Modules 1-4 to further develop and parameterise these conceptual models

Through statistical analysis of model parameters and considering spatial and temporal scales define key processes and biodiversity elements that are: essential to ecosystem service delivery good indicators of changes in delivery of the different ecosystem services (GES

indicators?) Develop a triage of all marine ecosystem services identifying :

those directly represented by models (e.g. harvestable fish production), those for which proxy indices can be defined that can be computed from the model

data or extracted through ecoinformatics approaches (e.g. wild species diversity), those that are inaccessible to our methodology (e.g. some cultural services).

Use model and data outputs (Modules 1-4) to identify how ecosystem services change in response to changes in food web structure, and generate predictions of change in marine ecosystem services at local and regional spatial scales under different past and future scenarios.

Page 7: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

 

Ecosystem services

Generic marine ecosystem service indicators   Measurement (Units) 

1a: Food provision ‐ Wild capture sea food 

Fish and shellfish populations, seaweed stock 

Biomass (tonnes km‐2) or abundance (nos km‐2) of fish and shellfish; area (m2) or biomass (tonnes km‐2) of seaweed;  

Quality of the fish, shellfish, seaweed stock 

Species composition, Age profile; length profile; % affected by disease; mortality rates

4: Climate regulation       

Air‐sea and sediment‐water fluxes of carbon and CO2 

Modelled or empirically determined (mg C m‐2 d‐1, mg CO2 m

‐2 d‐1) Air‐sea fluxes of other greenhouse gases (e.g. dimethyl sulphide, methane, nitrous oxide) 

Modelled or empirically determined (μg greenhouse gases m‐2 d‐1) 

Levels of carbon in different components of the marine ecosystem 

Modelled or empirically determined carbon levels: biomass of carbon (g m‐2); dissolved organic or inorganic carbon (mg C m‐3); suspended organic or inorganic carbon (mg C m‐3); buried particulate organic or inorganic carbon (mg C m‐2);  

Permanence of carbon sequestration  % of carbon turnover from sediments  

10: Migratory and nursery habitat     

Area of habitat or density of biogenic habitat creating species “used” or identified as important for nursery or reproduction  

For example, extent of seagrass, maerl or kelp beds (km2) 

Number and diversity of species using the area for  nursery or reproduction  Abundance  m‐2 and species diversity 

Dependence of off‐site (commercial) populations 

Proximity to dependant populations or their migration routes; size (abundance) and health (viability) of off‐site populations 

Examples of indicators for ecosystem services (as relevant to the Dogger Bank) From Hattam et al (submitted)

Page 8: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Function Unit

1a: Food provision ‐Wild capture sea food

Primary production g C per unit area/volume

Maintenance of food web dynamicsChanges in community composition (abundance, biomass, species diversity)

Nutrient cycling to maintain food web dynamics for target species

Amount of nitrates, phosphates, silica (g per unit area/volume)

Supply of larvae & gametes of target species Number per m3

Support breeding population of suitable size and quantity Male:female ratio; adult:juvenile ratio

Provision of suitable habitats Area of habitat (per m2); quality of habitat; Number of juveniles

5: Climate regulation

Pelagic and benthic fixation of carbon through photosynthesis

Concentration of chlorophyll; primary productivity

Deposition and sequestration of carbon through hydrodynamic transport

Hydrodynamics determined through modelling

Deposition and burial of carbon in seabed sediments through bioturbation 

Carbon storage  (g C m‐2 time‐1)  ‐ carbon buried in sediments; depth of carbon in sediment; persistence of carbon in sediment

C storage in living biomass (seagrasses, salt marshes, fish, benthic organisms etc.) 

(g C m‐2 year‐1)

Calcification by marine organisms (g Ca m‐2 year‐1)Biogenic production/assimilation of greenhouse gases (e.g.dimethyl sulphide, methane, nitrous oxide) by phytoplankton, pelagic microbiota, benthic micro and macroalgae

Production of greenhouse gases  (μg greenhouse gases m‐2 d‐1)

Example indicators of selected ecological functions contributing to service delivery

Hattam et al (submitted)

Page 9: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Ecosystem services

Examples of ecosystem benefits Indicators of benefits and their measurement (Units)

1a: Food provision ‐Wild capture sea food

Nutrition from wild catch seafood consumption

g protein/year/ head or per household

Wild catch seafood landed for human consumption 

Landings data at particular times and places (tonnes)

Contribution to gross value added Monetary value (e.g. in £, $ or €) 5: Climate regulation 

Shadow price of Carbon (Treasury Green Book, CO2 equivalent)

Monetary value (e.g. in £, $ or €) 

8: Waste treatment and assimilation 

Avoided adverse health effects Health costs avoided: Hospital admissions (as long as accompanied by exposure information)

Waste removal and burial Costs of primary vs tertiary sewage treatment; replacement cost analysis;  cost to change the system to comply with EU directives vs paying infraction costs: Monetary value (e.g. in £, $ or €) 

Water filtration (reduction in turbidity). 

Tourism industry built on blue water: number of visitors to beach

Clean status of beach and/or water quality, linked to tourism

Blue flag status against tourism; WTP and how much to pay and how far to travel to a clean beach

Example indicators of selected benefits generated by ecosystem services

Hattam et al (submitted)

Page 10: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Fish/ shellfish populations: Abundance

Biomass

A2 B1 

Quality of the fishery:

Species composition

Age profile

Length profile

Fishing mortality% affected by disease

Dogger Bank ecosystem services under differing VECTORS scenarios(WP 3.2) SL. Garrard, C. Hattam, A. Böhnke‐Henrichs, D. Burdon, J. Atkins, M. Austen

Food provision (example)

• The EC MSFD calls for an ecosystem approach to marine management• The Dogger Bank contributes to wellbeing by providing ecosystem services (ES)• ES assessment informs ecosystem‐based management

Assessment based on indicators

Literature review

Modelling approach

Expert judgement

Trends in ES

Lessons learnt:• Data limitation restrict ES valuation; more indicator specific data needed• Results help prioritize research and monitoring• Interdisciplinary teams are essential for ES assessment

Implications of Vectors scenarios for Dogger Bank

B1• Precautionary approach to MSY

• 50% cover of windfarms = no take zone

• Reduced oil and gas exploration

• 0.3oC SST increase

A2• Abandonment of CFP: more destructive fishing practices

• 15% cover of windfarms

• Increased oil and gas exploration

• 0.8oC SST increase

Page 11: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Valuation of Ecosystem Benefits from the Dogger Bank• The Dogger Bank is facing various pressures from fisheries, wind farm development and aggregate extraction.

• To comply with the EC Habitats Directive and Marine Strategy Framework Directive, the  Dogger Bank SAC requires management to achieve the protection objectives.

(WP 3.2) T. Börger, C. Hattam, D. Burdon, J. Atkins, M. Austen

Dogger Bank management targets

Change in species diversity

Protection area for porpoises, seals and 

seabirds

Reduction of risk of invasive species

Method and Results• UK‐wide choice experiment survey (N=1,022 households)

• Unit: Willingness to pay (WTP) to secure ecosystem service change

• Outcomes can inform management planning and decision making

Page 12: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Dogger BankMethod:• Survey all beneficiaries of a set of ecosystem services

• Respondents make choicesand reveal their preferences

Results:• Value of particular services (Willingness to pay)

• Tradeoff between particular services

• Profile of groups that profit more or less from ecosystem service change

Page 13: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Valuation of Ecosystem Benefits from the Dogger Bank• The Dogger Bank is facing various pressures from fisheries, wind farm development and aggregate extraction.

• To comply with the EC Habitats Directive and Marine Strategy Framework Directive, the  Dogger Bank SAC requires management to achieve the protection objectives.

(WP 3.2) T. Börger, C. Hattam, D. Burdon, J. Atkins, M. Austen

Dogger Bank management targets

Change in species diversity

Protection area for porpoises, seals and 

seabirds

Reduction of risk of invasive species

Method and Results• UK‐wide choice experiment survey (N=1,022 households)

• Unit: Willingness to pay (WTP) to secure ecosystem service change

• Outcomes can inform management planning and decision making

Economic valuation of impacts

4.227.97

23.9630.34

25.31

0

5

10

15

20

25

30

35

Species+10%

Species+25%

Protectedarea +25%

Protectedarea +50%

Restrictedspread ofinvasivespecies

WTP (£) per UK household

• Economic valuation can quantify the welfare impacts of policy‐induced ecosystem change to inform management planning and decision‐making.

Page 14: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Deliberative Valuation and the Dogger Bank(WP 3.2) A. Delaney, D. Degnbol, M. Hadjimichael, C. Hattam, T. Börger, J. Atkins, D. Burdon, M. Austen

Alternative to monetary valuation of ecosystem 

services

In‐depth exploration of opinions

Conflicts and dilemmas in management of DB

Prioritisation of uses/ ecosystem services of DB

Results

Sustainability and balance is important

Conservation a priority, with caveats – balance intrinsic value of DB with economic demands

Influence of witnesses apparent

Availability of evidence affected discussions

Fishing prioritised over windfarm construction – historical legitimacy and information 

imbalance

Methods• Workshop designed as citizens’ jury

• 20 members of the public

• 4 expert witnesses• 2 rounds of deliberation

• Did not aim for consensus

• Supports development of management plan for the Dogger Bank cSAC• Complements ecosystem service valuation in support of ecosystem approach to 

marine management, as required by MSFD

Page 15: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

The socio-economic value of the marine service of climate regulation via CO2 cycling

Little data available to quantify the

serviceg

Use of ecosystem

model (ERSEM) to find

predictors using linear regression

Service best described by the flux of carbon into the seabed

Ellie Carter-Silk PhD student, [email protected]

Page 16: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

The socio-economic value of the marine service of climate regulation via CO2 cycling

Little data available to quantify the

service

Use of ERSEM model to find

predictors using linear regression

Apply this back to data

available to quantify the

service

Analysis is based on Analysis is based on measurements of possible indicators

we know are available

Consider the drivers to a change in

service e.g. offshore wind installation

Quantify the socio-economic

value of the flux of carbon to the seabed

Service best described by the flux of

carbon into the seabed

Ellie Carter-Silk, [email protected]

Page 17: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

EURO-BASIN: Carbon sequestration valuation in the North Atlantic

• Bio-geochemical modelling (Momme Butenschon)• Fisheries and integration modelling (Jose A. Fernandes)• Valuation (Nicola Beaumont)• Scientific advice (Manuel Barange)

Page 18: Module 5: Linking macroecology and models to ecosystem ...Module 5: Linking macroecology and models to ecosystem services MERP kick off meeting, PML 4-6 June 2014 ... water Wild capture

Multiple and different spatial and temporal scales• Multiple human activities impact on or depend on ecosystem services• Managed by different policies and regulations 

– act at multiple and different spatial and temporal scales– e.g. marine planning/licencing/MCZ’z and MPA’s/MSFD/ICES stock 

assessmentsBut also• Causalities for change in ecosystems, their services and the demand for 

benefits also operate at multiple spatial and temporal scales. • Drivers of change at highest level don’t necessarily downscale to the scales of 

currently available ecosystem/biodiversity models. • Evidence is required at different spatial scales – and within different 

boundaries– Geopolitical– Land ‐ near coastal – inshore – offshore ‐ oceanic interfaces