Modul 2 - Konservasi Energy Bernoully

download Modul 2 - Konservasi Energy Bernoully

of 57

Transcript of Modul 2 - Konservasi Energy Bernoully

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    1/57

    Konservasi Energi

    (Kontinuitas & Hk. Bernoulli)

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    2/57

    Mass Flux

    Tube of flow: bundle of streamlines

    A1 A2

    1vP

    2v

    Q

    11 1 1 1 1 1 1

    1

    mass fluxm

    m Av t Avt

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    3/57

    Persamaan Kontinuitas

    Gambar Aliran masuk dan keluar dari bagian pipa arus

    Volume aliran masuk dititik 1 :

    A1

    . v1

    . dt Dimana : A1

    = luas penampang dan v1

    . dt = tinggi saluran

    Volume aliran masuk dititik 2 :

    A2. v2. dt Dimana : A2 = luas penampang dan v2. dt = tinggi saluran

    Jika kerapatan fluida (densitas) =

    Maka massa aliran : . A1. v1 dan . A2. v2Avdtm ..

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    4/57

    Conservation of Mass

    IF: no sources and no sinks/drains

    1 1 1 2 2 2

    1 1 2 2

    constant

    co fornstant incompressible fluid,

    Av A v

    Av A v

    Example of equation of continuity. Also conservation ofcharge in E&M

    Narrower tube = larger speed, fastWider tube = smaller speed, slow

    1 = 2

    A x V = constan

    Hukum kontinuitas

    Q = A x V = konstans

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    5/57

    Massa fluida yang mengalir adalah konstan disepanjang saluran, maka :

    . A1. v1 = . A2. v2

    atau . A . v = konstan Hukum kekekalan massa aliran

    Dengan massa aliran dengan massa jenis tetap : , maka :

    A1. v1 = A2. v2

    A . v = konstanatau Hukum kekekalan volume aliran

    Jika : Q = Kapasitas atau jumlah aliran (Debit) (m3/detik)

    Q = A . v= konstan Persamaan Kontinuitas

    Dimana : A = Luas penampang (m2) dan v= kecepatan aliran (m/detik)

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    6/57

    FLUID DYNAMICSTHE BERNOULLI EQUATION

    The laws of Statics that we have learned cannot solveDynamic Problems. There is no way to solve for the flowrate, or Q. Therefore, we need a new dynamic approach

    to Fluid Mechanics.

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    7/57

    Example of equation of continuity.

    Penampang 1 sebuah saluran yang mengalirkan air dengan kecepatan 3 m/sdan garis tengahnya 2 m, dipenampang 2 garis tengahnya 3 m, berapakahDebit atau kapasitas dan kecepatan dipenampang keluar (2)

    1V1

    2V2

    Penyelesaian :

    Persamaan kontinuitas :

    Q = A x V = konstans

    Q1= A1x V1 Q2= A2x V2&

    Q1= Q2=Q

    Q=Q2= A2x V2

    s

    mVdQQ

    32

    1

    2

    11 42.93.)2(4

    .4

    sm

    d

    x

    A

    QV /33.1

    .

    42.94

    222

    2

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    8/57

    Conservation of Energy

    Steady, incompressible, nonviscous, irrotational

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    9/57

    Bernoullis Principle

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    10/57

    Bernoullis Principle

    Flow is faster when the pipe is narrower Put your thumb over the end of a garden

    hose Energy conservation requires that the

    pressure be lower in a gas that is moving

    faster Has to do with the work necessary to

    compress a gas (PV is energy, more later)

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    11/57

    Bernoullis Principle

    When the speed of a fluid increases,internal pressure in the fluid decreases.

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    12/57

    Bernoullis Principle

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    13/57

    Bernoullis Principle

    Why the streamlines are compressed isquite complicated and relates to the air

    boundary layer, friction and turbulence.

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    14/57

    Bernoullis Principle

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    15/57

    Who Accelerates the Fluid?

    Acceleration due to pressure difference.Bernoullis Principle = Conservation of energy

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    16/57

    Bernoullis Equation

    1 1 2 2

    2 2

    1 1 1 2 2 2 2 2 1 1

    2 2

    1 1 1 2 2 2

    2

    1 1

    2 2

    1 12 2

    1constant

    2

    m A x A x

    p A x p A x mv mgy mv mgy

    p v gy p v gy

    p v gy

    kinetic E, potential E, external work

    Bentuk dan ukuran yang sama

    Energi Balance :

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    17/57

    Subskrip 1 dan 2 pada sembarang titik, maka ditulis menjadi :

    tan

    2

    1 2konsvgyp

    Persamaan Bernoulli

    Jika : = Berat jenisg.

    Maka : tan

    2

    1 2konsv

    gy

    p

    Atau :

    tankonsyg

    vp

    2

    2

    Energi Tekanan

    Energi Kinetik

    Elevasi(Energi Potensial)

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    18/57

    The Bernoulli Equation (unit of L)

    At any two points on a streamline:

    P1/ + V12/2g + z1= P2/ + V2

    2/2g + z2

    12

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    19/57

    The Bernoulli Equation (unit of L)

    At any two points on a streamline:

    P1/ + V12/2g + z1= P2/ + V2

    2/2g + z2

    12

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    20/57

    A Simple Bernoulli Example

    V2Z = air

    Determine the difference in pressure between points 1 and 2

    Assume a coordinate system fixed to the bike (from this system,the bicycle is stationary, and the world moves past it). Therefore,

    the air is moving at the speed of the bicycle. Thus, V2 = Velocity ofthe Biker

    Hint: Point 1 is called a stagnation point, because the air particlealong that streamline, when it hits the bikers face, has a zero

    velocity (see next slide)

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    21/57

    Stagnation Points

    On any body in a flowing fluid, there is a stagnation point. Some fluidflows over and some under the body. The dividing line (the stagnationstreamline) terminates at the stagnation point. The Velocity decreases

    as the fluid approaches the stagnation point. The pressure at thestagnation point is the pressure obtained when a flowing fluid is

    decelerated to zero speed by a frictionless process

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    22/57

    Apply Bernoulli from 1 to 2

    V2Z

    Point 1 = Point 2

    P1/air+ V12/2g + z1 = P2/air+ V22/2g + z2

    Knowing the z1 = z2 and that V1= 0, we can simplifythe equation

    P1/air= P2/air+ V22/2g

    P1 P2= ( V22

    /2g ) air

    = air

    A Si l B lli E l

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    23/57

    A Simple Bernoulli Example

    If Lance Armstrong is traveling at 20 ft/s, what pressure

    does he feel on his face if the air= .0765 lbs/ft3?

    We can assume P2 = 0 because it is only atmospheric pressure

    P1 = ( V22/2g )(air) = P1 = ((20 ft/s)

    2/(2(32.2 ft/s2)) x .0765 lbs/ft3

    P1 =.475 lbs/ft2

    Converting to lbs/in2 (psi)

    P1 = .0033 psi (gage pressure)

    If the bikers face has a surface area of 60 inches

    He feels a force of .0033 x 60 = .198 lbs

    B lli A i

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    24/57

    Bernoulli Assumptions

    Key Assumption # 1

    Velocity = 0

    Imagine a swimming pool with a small 1 cm hole on the floor of

    the pool. If you apply the Bernoulli equation at the surface, andat the hole, we assume that the volume exiting through the holeis trivial compared to the total volume of the pool, and thereforetheVelocity of a water particle at the surface can be assumed tobe zero

    There are three main variables in the Bernoulli EquationPressure Velocity Elevation

    To simplify problems, assumptions are often made toeliminate one or more variables

    B lli A i

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    25/57

    Bernoulli Assumptions

    Key Assumption # 2

    Pressure = 0

    Whenever the only pressure acting on a point isthe standard atmospheric pressure, then thepressure at that point can be assumed to be zerobecause every point in the system is subject tothat same pressure. Therefore, for any free

    surface or free jet, pressure at that point can beassumed to be zero.

    B lli A ti

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    26/57

    Bernoulli Assumptions

    Key Assumption # 3

    The Continuity Equation

    In cases where one or both of theprevious assumptions do not apply, then

    we might need to use the continuityequation to solve the problem

    A1V1=A2V2

    Which satisfies that inflow and outfloware equal at any section

    B lli E l P bl F J t

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    27/57

    Bernoulli Example Problem: Free Jets

    What is the Flow Rate at point 2? What is the velocity at point 3?

    1

    2

    3

    H2O

    Part 1:Apply Bernoullis eqn between points 1 and 2

    P1/H2O + V12/2g + h = P2/H20 + V2

    2/2g + 0

    simplifies to

    h = V22/2g solving for V

    V = (2gh)

    Q = VA or Q = A2(2gh)0A2

    Givens and Assumptions:Because the tank is so large, we assume V1 = 0 (Volout

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    28/57

    1

    2

    3

    H2O

    Z = 0A2

    Bernoulli Example Problem: Free Jets

    Part 2: Find V3?

    Apply Bernoullis eq from pt 1 to pt 3

    P1/H2O + V12

    /2g + h = P3/H20 + V32

    /2g HSimplify to h + H = V3

    2/2g

    Solving for V V3 =( 2g ( h + H ))

    Th C ti it E ti

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    29/57

    The Continuity EquationWhy does a hose with a nozzle shoot water further?

    Conservation of Mass:In a confined system, all of the mass that enters the system, must also exit

    the system at the same time.

    Flow rate = Q = Area x Velocity

    1A1V1(mass inflow rate) = 2A2V2( mass outflow rate)

    If the fluid at both points is thesame, then the density drops

    out, and you get the continuityequation:

    A1V1 =A2V2

    ThereforeIf A2 < A1 then V2 >V1

    Thus, water exiting a nozzle has

    a higher velocity

    Q1 = A1V1

    A1

    V1 ->

    Q2 = A2V2

    A1V1 = A2V2

    A2 V2 ->

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    30/57

    Free Jets

    The velocity of a jet of water is clearly related to the depth of waterabove the hole. The greater the depth, the higher the velocity. Similarbehavior can be seen as water flows at a very high velocity from the

    reservoir behind a large dam such as Hoover Dam

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    31/57

    example problem

    A tank of water has a small nozzle at itsbase as shown. Find the velocity inft/sec and the volumetric flow rate in

    ft

    3

    /sec from the nozzle.

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    32/57

    Fluid Mechanics

    Assume the jet is cylindrical and that thepressure is atmospheric as soon as itleaves the nozzle. Apply Bernoullis

    equation between a point 1 on the surfaceof the tank and a point 2 at the nozzleexit:

    2

    2

    221

    2

    11 zg2g

    Pzg2g

    P

    vv

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    33/57

    Fluid Mechanics

    The pressure at point 1 and at point 2 isjust that of the atmosphere, so P1 = P2.

    At point 1 the height is z1 = H and at point2 the height is z2 = 0. If the size of thetop of the tank is very large compared to

    the outlet area, then (V1)2 is significantlyless than (V2)

    2 .

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    34/57

    Fluid Mechanics

    The Bernoulli Equation becomes

    but the terms P1/g and P2/g are equaland cancel because the pressures are thesame, and what is left is

    0g2g

    P

    H0g

    P2

    221

    v

    gH22 V

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    35/57

    Fluid Mechanics

    And so the exit velocity is

    the discharge flow rate is

    sec/ft1.32)ft16)(sec/ft2.32(2 22

    V

    3in ft ft

    in sec sec

    ft

    2

    2

    2 2 2

    41 132.1 2.8

    4 412

    Q A d

    V V

    Tank Example

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    36/57

    Tank ExampleSolve for the Pressure Head, Velocity Head, and Elevation Head at each

    point, and then plot the Energy Line and the Hydraulic Grade Line

    1

    23 4

    1

    4

    Assumptions and Hints:

    P1 and P4 = 0 --- V3 = V4 same diameter tube

    We must work backwards to solve this problem

    R = .5

    R = .25

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    37/57

    1

    23 4

    1

    4

    Point 1:

    Pressure Head : Only atmospheric

    P1/ = 0Velocity Head : In a large tank,V1 = 0 V12/2g = 0

    Elevation Head : Z1= 4

    R = .5R = .25

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    38/57

    1

    23 4

    1

    4

    H2O= 62.4 lbs/ft3

    Point 4:

    Apply the Bernoulli equation between 1 and 40 + 0 + 4 = 0 + V4

    2/2(32.2) + 1

    V4 = 13.9 ft/s

    Pressure Head : Only atmospheric P4/ = 0Velocity Head :V4

    2/2g = 3

    Elevation Head : Z4= 1

    R = .5R = .25

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    39/57

    1

    23 4

    1

    4

    Point 3:

    Apply the Bernoulli equation between 3 and 4 (V3=V4)P3/62.4 + 3 + 1 = 0 + 3 + 1

    P3 = 0

    Pressure Head : P3/ = 0Velocity Head :V3

    2/2g = 3

    Elevation Head : Z3= 1

    R = .5R = .25

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    40/57

    1

    2 3 4

    1

    4

    Point 2:

    Apply the Bernoulli equation between 2 and 3P2/62.4 + V2

    2/2(32.2) + 1 = 0 + 3 + 1

    Apply the Continuity Equation

    (P.52)V2 = (P.252)x13.9 V2 = 3.475 ft/s

    P2/62.4 + 3.4752/2(32.2) + 1 = 4 P2 = 175.5 lbs/ft

    2

    R = .5R = .25

    Pressure Head :P2/ = 2.81

    Velocity Head :V2

    2/2g = .19

    Elevation Head :Z2= 1

    Penerapan Persamaan Bernoulli

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    41/57

    Dengan mengambil dasar tangki sebagai patokan, diperoleh :

    2

    2

    2

    12

    1

    2

    1vpghvp a

    Atau gh

    ppvv a 22

    2

    1

    2

    2

    Berdasarkan hukum kontinuitas :

    1

    2

    12 v

    A

    Av

    Disebut vena contracta

    Jika tangki terbuka dan berhubungan dengan udara luar, maka : p = pa dan p pa = 0

    Dan : A1 >> A2, maka : ghv 22 Kecepatan efflux sama dengan kecepatan benda jatuh bebas melaluiTinggi h disebut Dalil Toricelli

    Jika pada permukaan tertutup dimana v12 diabaikan dan tekanan p besar maka :

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    42/57

    ppv a

    )(22

    Penerapan pada gaya dorong sebuah roket

    Jika : A = luas lubang, = rapat massa fluida yang keluarv = kecepatan efflux,

    maka massa fluida yang mengalir dalam waktu dt :

    A v dt

    maka momentumnya : A v2 dtkarena kecepatan fluida didalam relatif kecil, maka : A v2Maka gaya reaksi dorongan :

    Atau :

    ppAAvF o

    )(22

    )(2 appAF

    Gambar 1

    Contoh : (gambar 1)

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    43/57

    Sebuah roket dimana disebelah atas air terdapat udara bertekanan p = 2 atm.a). Jika roket ditahan diam, berapakah kecepatan efflux yang keluar dari lubang pada ekor roketb). Berapa tolakan keatas (dorongan) keatas jika luas lubang 0,5 cm2 ?

    a. Tekanan relatif p pa = 1 atm 106 dyn cm-2, maka kecepatannya :

    ppv a

    )(22

    3

    25

    .1

    .102

    cmgr

    cmdynexv

    b. Gaya tolak keatas (dorongan) atau gaya reaksi :

    dyncmdynxcmxF6262

    10.105,02

    Pipa Ventury

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    44/57

    2

    2

    221

    2

    112

    1

    2

    1gyvpgyvp

    Dari persamaan Bernoulli :

    y1 = y2

    2

    22

    2

    112

    1

    2

    1

    vpvp Maka :

    Berdasarkan persamaan kontinuitas kecepatan dititik 2 lebih besar dititik 1, maka sebaliknyatekanan dititik 2 (tenggorokan) lebih kecil dari tekanan dititik 1, dengan demikian gaya nettomenuju kekanan memberi percepatan pada fluida ketika memasuki tenggorokan, maka untukmengukur kecepatan dan massa yang mengalir digunakan Ventury meter

    Mengukur tekanan didalam fluida yang mengalir

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    45/57

    p adalah tekanan statik fluida yang mengalir didalam saluran tertutup dan jika perbedaan tinggi zatcair h1 yang besarnya adalah sebanding dengan perbedaan tekanan atmosfir pa dan tekanan statikp yaitu :

    pa p =mg h1p =mg h1

    Dimana : m= rapat massa zat cair

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    46/57

    BEq in Everyday Life

    Open a faucet, thestream of water gets

    narrower as it falls.

    Velocity increases due to

    gravity as water flow down,thus, the area must get narrower.

    A1

    A2

    V1

    V2

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    47/57

    Q & A on Bernoullis Eq.

    A bucket full of water.

    One hole andone pipe, bothopen at bottom.

    Out of which water flows faster?

    Same. It only depends on depth.

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    48/57

    Measuring Pressure

    E. Torricelli: Mercury Barometer

    hpatm

    p=0atm

    atm

    P ghP

    hg

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    49/57

    U-Tube Manometer

    1 1 2 2A atmp gh p gh

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    50/57

    The Venturi Meter

    Speed changes asdiameter changes.

    Can be used tomeasure the speedof the fluid flow.

    2 2

    1 1 2 2 1 1 2 21 1 ,2 2

    p v p v v A v A

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    51/57

    The Pitot Tube

    21

    2a a b

    b a

    p v p

    p p gh

    Th E Li d th H d li G d Li

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    52/57

    The Energy Line and the Hydraulic Grade Line

    Looking at the Bernoulli equation again:

    P/ + V2/2g + z = constant on a streamlineThis constant is called the total head (energy), H

    Because energy is assumed to be conserved, at any point alongthe streamline, the total head is always constant

    Each term in the Bernoulli equation is a type of head.

    P/ = Pressure Head

    V2/2g = Velocity Head

    Z = elevation head

    These three heads summed equals H = total energy

    Next we will look at this graphically

    Th E Li d th H d li G d Li

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    53/57

    The Energy Line and the Hydraulic Grade Line

    Q

    Measures thestatic pressure Pitot measuresthe total head

    1

    Z

    P/

    V2

    /2g

    EL

    HGL

    2

    1: Static Pressure TapMeasures the sum of theelevation head and the

    pressure Head.

    2: Pitot Tube

    Measures the Total Head

    EL : Energy Line

    Total Head along a systemHGL : Hydraulic Grade line

    Sum of the elevation andthe pressure heads along a

    system

    Th E Li d th H d li G d Li

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    54/57

    The Energy Line and the Hydraulic Grade Line

    Q

    Z

    P/

    V2

    /2g

    EL

    HGL

    Understanding the graphical approach ofEnergy Line and the Hydraulic Grade line is

    key to understanding what forces aresupplying the energy that water holds.

    V2/2g

    P/

    Z

    1

    2

    Point 1:

    Majority of energystored in the water is in

    the Pressure Head

    Point 2:

    Majority of energystored in the water is inthe elevation head

    If the tube wassymmetrical, then thevelocity would beconstant, and the HGLwould be level

    Plotting the EL and HGL

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    55/57

    Plotting the EL and HGLEnergy Line = Sum of the Pressure, Velocity and Elevation heads

    Hydraulic Grade Line = Sum of the Pressure and Velocity heads

    EL

    HGL

    Z=1Z=1Z=1

    V2/2g=3V2/2g=3

    Z=4

    P/ =2.81

    V2/2g=.19

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    56/57

  • 8/4/2019 Modul 2 - Konservasi Energy Bernoully

    57/57