Modelling_Hydroinformatics.pdf

download Modelling_Hydroinformatics.pdf

of 28

Transcript of Modelling_Hydroinformatics.pdf

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    1/28

    MODELLING IN WATER

    MANAGEMENT&

    HYDROINFORMATICS

    Content

    Introduction Hydroinformatics (HIS) Historical context of HIS Definition of Hydroinformatics Influence of HW and SW on development of HIS Simulation models cornerstone of HIS Data for HIS Information systems and HIS Practical HIS - role or consultant Future Trends

    Prague Flood in 2002

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    2/28

    rague oo pro ec on 8/2002 mobile flood control

    Prague Flood protection 8/2002 mobile flood control

    Prague 2002 - modellingWater Levels

    2D flood model of Prague - flood 8 / 2002

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    3/28

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    4/28

    Teoretical fundaments ofHydroinformatics

    Hydraulics (physics of aquatic systems) long tradition fundamental scientific discipline

    Hydrology technological discipline Computational hydraulics (Abbott - 1969)

    Def.: scientific discipline integrating hydraulics,numerical mathematics, numerical methods andprogramming into unified framework

    Informatics Ecology, Biology, Chemistry

    Goals of Hydroinformatics To provide predictive tools for analysis of aquatic

    component of living environment To verify effects of interventions into ecosystems using if-

    then scenarios To integrate protection of living environment in the

    engineering business To provide managerial tools for complex aquatic systems To optimize investment policy To offer training of-line systems (operational games) To support other technological areas (e.g. GIS, Expert

    systems, DSS) To provide foundation for legislations To optimize engineering design work

    Hydroinformatic system (HIS)Set of interconnected tools acting as one unified

    system and comprising substantial volume of

    information and knowledge in digital form originatingmainly from hydraulics hydrology results of applied research area of law and legislation area of social and economic espects protection of environment (EIA) informatics data collection and monitoring

    Hydroinformatic System (HIS) = Decision Support System (DSS)

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    5/28

    User

    Information systemsGeografic

    information

    systems

    Databases Knowledge

    bases

    Pollutionsources

    Models

    Transportprocesses

    Waterquality

    Ecology

    Decision Support systems

    Socio-economicimpacts

    Impact ofenvironment

    Strategicscenarios

    Userinterface

    (GUI)

    Hydroinformatic System (HIS)

    Conditions for Formation ofHydroinformatics

    Development of computational hydraulics-simulation models

    Foundation of information technology Trend for management of complex systems Development of data acquisition, monitoring and

    methods for data collection and analysis Need for communication among distinct scientific

    and engineering disciplines Need for presentation technologies (animations)

    Impacts of personalities (Abbott, Cunge, Ionescu,Price, aj.) Effects of institutions (NHL, DHI, DH, Hr, IAHR,

    IAHS)

    Conditions for Formation ofHydroinformatics

    Dynamics of

    economical processes

    New

    technologies

    Protection ofliving environment

    Restrictedfinancialsources

    Managementand

    planning in urbandrainagearea

    Dynamics of

    economical processes

    New

    technologies

    Protection ofliving environment

    Restrictedfinancialsources

    Management

    and planning in

    Water utilities

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    6/28

    Historical development of HIC Hardware development personal computers

    1980 - IBM PC .. ..

    2005 Intel = 2 Core processors

    Software development operational systems (unification) application software -(text editors, tabular processors, graphical

    modules) specialized SW - simulation models standard databases connected to GUI existence systm grafick podpory

    Increasing use of simulation models in practicalengineering life

    Historical development of HIC

    Generations of simulation tools

    1.generation - calculation of formulas - analog

    2.generation - one-off models 60s, big labs

    3.generation more general matematical models 70s, variability ofinputs

    4.generation - menu-driven system technology based on PC, DOS,weak graphics, low standardization 80s 90s

    5.generation - today UNIX x WINDOWS, DB, quality graphics, GIS,server client

    6. generation - future (KBS, UI), RTC, max safety, ?

    Simulation model

    the Core of HIS system

    RDBMSRDBMS

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    7/28

    Conceptual Models

    Deterministic Models

    Stochastic models

    Simulation - modelling

    Application of concept, that substitute for natural process ( nonlinearreservoir)

    Mathematical solution of differential equations describing the natural

    process (hydrodynamic equations, continuity equation)

    Based on solution of natural processes by means of statistical

    methods

    Models are tools able to simulate long term behaviour of physical

    system by means of interpretation of dominant proccesses

    digital copy of a physical system (1, 2, 3D)

    simulation of physical processes important for the for

    the studied phenomena (non stationarity, dynamics, continuity)

    ForecastsForecasts::WhatWhat happenshappens,, whenwhen..............

    Deterministic Simulation Models

    Q

    xb

    H

    xx+ = 00

    2

    gAix

    ygA

    x

    A

    Q

    t

    Q=++

    + EgAi

    the same response to outer impuls like in nature

    difficult to obtain input

    data

    QQ

    Q

    hh

    hh

    Simulation Model like virtual reality

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    8/28

    Simulation modelsDefinition

    program (digital code) model (tool for user able to simulate reality) matematical model x physical model

    simulationtool

    Model build :

    1. problem definition 2. schematization (space and time) 3. governing equations 4. dependend, independent variables 5. empirical and complementary formula 6. algoritmization of task 7. boundary and initial conditions 8. calibration 9. verification 10. simulation

    Modular structure of simulation model

    Water Quality

    Sediment Transport

    Hydrodynamics

    Rainfall-Runoff

    Advection-Dispersion

    Flood Forecasting

    River Catchment

    Precipitation

    Receiving water

    i

    t

    t

    Q

    Rainfall-runoff processes

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    9/28

    Rainfall

    Algorithm

    Runoff from

    catchment

    Rainfall

    Lossmodel

    RainfallExcess

    Routingmodel

    Runoff fromcatchment

    Evapo-transpiration

    Interception Storage

    Unsaturated Zone

    Ground watertransfers

    Depression Storage

    Runoff fromcatchment

    Saturated Zone

    CatchmentChannelStorage

    precipitation

    Black Box models Physical process models

    Loss-routing models

    Rainfall-Runoff Processes

    System descriptionLooped network (1D, 1D+)2D horizontal mesh

    Hydraulic phenomenaBackwater effectsFlood RoutingWave propagationEnergy dissipation

    Hydraulic Structures Weirs Culverts Bridges

    Regulation Gates Pumping Control Structures Dambreak Failures

    Hydrodynamic Processes

    Hydroinformaticsand

    Data

    RDBMSRDBMS

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    10/28

    Need of information for optimalmanagement in complex systems

    Dealing with information is one of the key factors for mastering

    of problems in complex systems. (Ratzek, 1992)

    "Since post-industrial organisations will be faced withincreasing environmental complexity and turbulence,organisations need to process information and make

    decisions will be substantially increased", (Huber, 1984).

    Information technology is the basic tool, used by organizations,

    to make forecasts, cope with the environmental changes and to

    adjust to them (Malone & Rockart, 1993)

    Current state of data

    Increasing demandon integrated solution Impactof Information Technology Focus on living environment

    Increasing demand on data (quality and quantity) Increase in cost for data collection, update and archiving Need for quick and cheapdata exchange Demand on continual data update and maintenance

    Changes in data reguirements

    Change in approach to water related problems

    Current state of data sources

    Large spectrum and volume of data Only a part of the data in a digital form (IS) Variousspecialized information systems Various proprietary data structures, formats, data guality Communications using export/import routines

    Data for Simulation model Structural data

    Pipe (X,Y,Z, length, DN, roughness, slope, ) Manhole (X,Y,Z1,Z2, diameter, inlet, outlet)

    Structures (pump, CSO, basin, gates, ) Catchment areas (size, slope, impermeability, inhabitnts)

    Processes Data (time series) Water consumption data Flow data (v, h, Q) Water quality data (O2, NH4, NO3, P) Precipitation (i)

    Operational data Gates manipulation, pump QH,

    Parameters in model

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    11/28

    topological data for the river channel(cross sections, objects)

    topological data for the river inundation(inundation profiles, objects in inundations photo, DMT)

    hydrological and hydraulic data(roughness, Q-H curves, manipulation rules for the objects,

    precipitaion, water level and flow time series)

    Data needs for simulation model

    flooding

    water quality

    sediment transport

    dam break

    Data requirements are stronglyinfluenced by the type of simulation:

    Additional data sources

    -750000 -745000 -740000 -735000

    -1054000

    -1053000

    -1052000

    -1051000

    -1050000

    -1049000

    -1048000

    -1047000

    -1046000

    -1045000

    -1044000

    -1043000

    -1042000

    -1041000

    -1040000

    -1039000

    -1038000

    -1037000

    1

    - 7 5 00 0 0 00 0 - 74 5 0 00 0 0 0 - 740000000-1060000000

    -1058000000

    -1056000000

    -1054000000

    -1052000000

    -1050000000

    -1048000000

    -1046000000

    -1044000000

    -1042000000

    -1040000000

    -1038000000

    -1036000000

    -1034000000

    Untitled

    1-1-1990 16-5-1991 27-9-1992 9-2-1994 24-6-1995 5-11-1996 20-3-1998

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    35.0

    [m] Flags

    355 372445

    513 475523 534 427419

    0

    100

    200

    300

    400

    500

    199019911992199319941995199619971998

    h[mm]

    Users of data

    Private consulting companies

    Simulation

    model

    GIS, CAD

    RDBMS

    Specialised

    tools

    GIS

    CAD

    Owners

    RDBMS

    Governmental

    officesRDBMS

    Researchorganisations

    Simulation

    models

    Specialised

    tools

    Water utilities

    GIS

    CAD RDBMS

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    12/28

    kan_pkt

    kanal_pkt_MS

    kak_lin

    kak_pkt

    kak_lin

    kak_pkt

    kan_lin

    kan_pkt

    kak_lin

    kan_lin

    kak_pkt

    kan_pkt

    Ms_No

    weir

    kan_pkt

    kan_lin

    FROM kanal_pkt_MS

    TO kan_pkt

    kanal_pkt_MS

    kan_pkt

    kan_pkt

    kan_lin

    kanal_pkt_MS

    kan_lin

    kan_pkt

    kan_lin

    kan_pkt

    NEWMANHOLE

    kan_lin weir

    kak_weir

    kak_weir

    kanal_pkt_MS

    kan_pkt

    kanal_pkt_MS

    kan_pkt

    kak_weir

    go to Eryl'steam

    go to GISteamDATABASEcorrected

    /PROGRAMSOFIYSKAVODA/

    kan_lin

    kan_pkt

    HORISONTAL, VERTICAL

    PLANANDPHOTO

    INSIMULATIONM ODEL

    USETHEMES

    SAVEAS

    CUTTHEME

    COPYFIELDS

    -FILLFIELD

    JOINTABLES

    WITHDATA"B"

    INGISTHEMES

    ENTERDATA"A"FORMANHOLE

    GIS\U+0442\U+0435\U+043C\U+0438:HASRIGHTLOCATION

    MOVEMANHOLES

    SITUATIONPLANIN CADFORMAT

    FROM MANHOLESURVEY

    EXCELLTABLECREATETHEME

    FORCOLLECTORKAKACH

    GISTHEMES

    YES

    NODOESMANHOLE

    VERIFICATION

    EXISTIN GIS IN GIS THEMES

    CREATE

    VERIFICATION

    DOESMANHOLE

    NO

    YES

    VERIFICATIONOFNUMBERS

    CUTTHEME

    SAVEAS

    FROM MANHOLESURVEY

    EXCELLTABLE

    FROMMANHOLE SURVEY

    FROMMANHOLE SURVEY

    SITUATIONPLANIN CADFORMAT

    FROM MANHOLESURVEY

    EXCELLTABLE

    SAVEAS

    CUTTHEME

    CORRECTLOCATION

    OFMANHOLES

    INGISTHEMES

    RUNAVENUESCRIPTS

    TRANSFERMEASURED

    DATAINGI STHEMES

    INGISTHEMES

    CORRECTPROBLEMS

    RUNAVENUESCRIPTS

    connectivity checks

    aqva base

    DOESMANHOLE

    VERIFICATION

    HASRIGHTLOCATION

    YES

    NO

    START

    1CONTRACT

    MS-GISTRANSFER

    2 CONTRACT

    MS-GISTRANSFER

    START

    2 CONTRACT

    INDATABASE

    /PROGRAMSOFIYSKAVODA/

    FILLDATAFROM

    Contractordata

    Single dataevaluation

    DataConnectivity

    check

    Field datacheck survey

    GIS dataVerification

    Simulationmodelling

    Other sourcedata

    Data manipulation aspect

    Integration of data (GO HM Prahy)

    Integration of data (Sofia DAP)

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    13/28

    Data volumes Sewer system - LIDS, 20M

    Digital reference map of Prague, ArcInfo , 100M

    Digital map of Prague, DGN, 48M

    Ortophoto map of Prague, JPG, 77M, DMT of Prague (10x10 m, 30 cm ) , 240M

    Cartographic map of Prague, TIF, 80M

    Groundwater levels, grid 30m x 30 m, MGE, 20M

    9 years historical rainfall serie in 7 sites, ASCII, 5M

    Development plans

    Prague land register

    maps of vegetation, protection zones

    Measurement data (19i, 19Q, 25H)

    Hydroprojekt,a.s.

    Data volumes

    Rainfall data - Gandalf, 500M

    Matematical model of sewer system, MOUSE , 5000M

    Matematical model of rivers, MIKE11, 2000M

    Catchment data, PE, impervious areas, Mapinfo, 500M

    Simulation results MOUSE, MikeView, 20000M

    Simulation results MIKE11, MikeView, 10000M

    Interpretation of data

    Sewer data ?

    Population data ? +

    X

    X

    Hydraulic data ?

    Adristic sea

    Baltic sea

    ?

    ?

    Designmethods

    Evaluationmethods?

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    14/28

    X1,Y1

    X2,Y2X1,Y1

    X2,Y2

    X1,Y1

    X1,Y1

    X1,Y1

    L2 X2,Y2

    L1

    X1,Y1

    Interpretation of data

    structurestopology

    Relative distancesMeasurements

    Interpretation of data

    start

    SCADA

    ModelsInspections

    GISCAD

    Integration and openness

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    15/28

    Unproductive, time consuming work bringing higher probability of random

    or systematic errors and difficulties in a long term data maintanance.

    ! WRONG DECISIONS !

    Data communication problems

    Data formats - vektor x raster data, ASCII x BIN x RDB,Data structure time series, summer/winter time, objects

    Data conversions - topology of network, coordinate systems, unitsWork with data data volumes, data management, changes, updateGeneral topics quality of source data, costs, units, formats, SW a

    HW errors

    PODBABARUZYNE

    LIBUS

    UHRINEVES

    KLEMENTINUM KARLOV

    BRANIK

    7 locations time serie 1990-1998 Average rainfall: 450 mm/year

    Average year for simulations: 1994

    Historical rainfall series

    1 -1 -1 99 0 1 6- 5- 19 91 2 7- 9- 19 92 9 -2 -1 99 4 2 4- 6- 19 95 5 -1 1- 19 96 2 0- 3- 19 98

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    35.0

    [m] Flags

    355372

    445

    513475

    523 534

    427419

    0

    100

    200

    300

    400

    500

    1990 1991 1992 1993 1994 1995 1996 1997 1998

    h[mm]

    9-2-1994 31-3-1994 20-5-1994 9-7-1994 28-8-1994 17-10-1994 6-12-1994

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    [m] Flags

    415

    458

    406

    537

    492

    447

    483

    Example rainfall data

    Hydroprojekt,a.s.

    Example rainfall dataMeasured rainf all 6.7.1999 1730 1830

    D13

    D19D14

    D01

    D03

    D04D05 D06

    D02

    D17

    D18

    D10D07

    D11D12

    D15 D08

    D09D16

    17:30:00

    6-7-1999

    1 7: 45 :0 0 1 8: 00 :0 0 1 8: 15 :0 0

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    [m] Flags

    D01

    17:40:006-7-1999

    17:50:00 18:00:00 18:10:00 18:20:00

    0.0

    10.0

    20.0

    30.0

    40.0

    [m] Flags

    D14

    17:30:00

    6-7-1999

    1 7: 45 :0 0 1 8: 00 :0 0 1 8: 15 :0 0 1 8: 30 :0 0

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    [m] Flags

    D02

    17:30:00

    6-7-1999

    17 :4 5: 00 1 8: 00 :0 0 1 8: 15 :0 0

    0.0

    10.0

    20.0

    30.0

    40.0

    [m] Flags

    D03

    17:30:00

    6-7-1999

    1 7: 45 :0 0 1 8: 00 :0 0 1 8: 15 :0 0

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    [m] Flags

    D04

    17:30:00

    6-7-1999

    17:40:00 17:50:00 18:00:00 18:10:00 18:20:00

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    [m] Flags

    D05

    17:30:00

    6-7-1999

    1 7: 45 :0 0 1 8: 00 :0 0 1 8: 15 :0 0

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    [m] Flags

    D06

    17:30:00

    6-7-1999

    1 7: 45 :0 0 1 8: 00: 00 1 8: 15 :0 0

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    35.0

    40.0

    [m] Flags

    D07

    Hydroprojekt,a.s.

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    16/28

    Example Rainfall dataProcessed rainfall intensities - 6.7.1999

    17 30 17 48 17 51 17 53

    17 55 17 57 18 01 18 06

    Hydroprojekt,a.s.

    Catchment data Catchment delineation, areas

    snow elevation zones

    Hydrological and meteorological data Water level and Discharge hydrographs

    Rainfall amounts

    Evaporation

    Snow cover

    Temperature

    etc.

    Hydrological data

    Databases

    Topographical DataTopographical Data:

    River cross-sections Flood plain topography Channel & Flood plain

    roughness Structure geometry

    Time Series DataTime Series Data: Boundary conditions, Calibration and Verification Additional data-type:

    Q-h boundary data

    b (storage width)

    h (elevation)

    flood plain flood plainchannel

    Time

    Discharge [m3/s]

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    17/28

    Topography data Cross section data (all the same DATUM !!) Flodplains data (width, volume, area, DEM,..)

    Aerial/Satelite/Radar images of flood extents Reservoirs data (control strategy, spillways ...) Structures description (control strategy, geometry ...) data in geographical coordinates background maps

    Hydraulic data Water level and Discharge hydrographs Rating curves Peak water level during significant events (used for

    calibration and verification)

    etc.

    Hydrodynamic data

    GIS and other IS Geografical information systems

    ESRI MAPINFO INTERGRAPH

    GIS what is it for? Graphical presentation of geographically distributed data graphics is based on databaseorientedinformation Tools for topological data presentation, processing and analysis

    Priority for user: firstly: data analysis and pilot project for data collection and

    definition of requirements for IS

    Hydroinformatics and

    Project

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    18/28

    Role of consultant

    Engineer coordinator: Information into the numbers, symbols and codes Interpretationof results

    E tica laspect Communication between specialists on definedplatform

    HIS expert:

    Specialized teams - multidisciplinary character of work Experts in hydraulics, hydrology, chemistry; ecologists mathematitians IT experts Communications and measurement experts

    Problem Formulation

    Phase C+D Phase E

    Phase F

    MOUSE NAM runoff model

    MOUSE HD,AD model

    MIKE11 river model

    1,4

    0,83,2

    2

    2,2

    0

    3 , 6

    0,85

    1,6

    5

    2,4

    2

    ,8

    0,4

    1,5

    1,6

    MIKE11 Vltava river model

    MOUSE HD, AD sewer model

    MOUSE NAM runoff model

    1,4

    0,83,2

    2

    2,2

    0

    3 , 6

    0,85

    1,6

    5

    2,4

    2

    ,8

    0,4

    1,5

    1,6

    1,4

    0,83,2

    2

    2,2

    0

    3 , 6

    0,85

    1,6

    5

    2,4

    2

    ,8

    0,4

    1,5

    1,6

    1,4

    0,83,2

    2

    2,2

    0

    3 , 6

    0,85

    1,6

    5

    2,4

    2

    ,8

    0,4

    1,5

    1,6

    MIKE11 Vltava river model

    MOUSE HD, AD sewer model

    MOUSE NAM runoff model

    BLACK BOX treatment plant model

    MIKE11 rivermodel

    MOUSE NAM runoff model

    MOUSE HD,AD model

    MOUSE HD,AD model

    -750000 -745000 -740000 -735000 -730000[m]

    -1053000

    -1052000

    -1051000

    -1050000

    -1049000

    -1048000

    -1047000

    -1046000

    -1045000

    -1044000

    -1043000

    -1042000

    -1041000

    -1040000

    -1039000

    -1038000

    -1037000

    [m]

    D

    C B

    KSB

    M

    BS

    A

    112B

    F2

    F3

    modr

    Jih

    Barr

    Stod

    Solid

    JM

    Po%%232

    D1

    BS1

    -750000 -745000 -740000 -735000 -730000[m]

    -1053000

    -1052000

    -1051000

    -1050000

    -1049000

    -1048000

    -1047000

    -1046000

    -1045000

    -1044000

    -1043000

    -1042000

    -1041000

    -1040000

    -1039000

    -1038000

    -1037000

    [m]

    D

    C B

    KSB

    M

    BS

    A

    112B

    F2

    F3

    modr

    Jih

    Barr

    Stod

    Solid

    JM

    Po%%232

    D1

    BS1

    -750000 -745000 -740000 -735000 -730000[m]

    -1053000

    -1052000

    -1051000

    -1050000

    -1049000

    -1048000

    -1047000

    -1046000

    -1045000

    -1044000

    -1043000

    -1042000

    -1041000

    -1040000

    -1039000

    -1038000

    -1037000

    [m]

    D

    C B

    KSB

    M

    BS

    A

    112B

    F2

    F3

    modr

    Jih

    Barr

    Stod

    Solid

    JM

    Po%%232

    D1

    BS1

    -744500 -744000 -743500 -743000 -742500 -742000 -741500[m]

    -1044600

    -1044400

    -1044200

    -1044000

    -1043800

    -1043600

    -1043400

    -1043200

    -1043000

    -1042800

    -1042600

    -1042400

    -1042200

    [m]

    V123

    V165

    V166

    V167

    B

    A_O21A

    A_O11A

    M_0 A_O4A A_O9AA_O10A

    A_O13A

    A_O2A

    A_O1A

    A_O14A

    A_O16A

    A_O18A

    A_0

    A_O20AA_O20A

    A_O15A

    B_O11B

    B_O5B Os

    Os

    Os

    P2

    Vl

    System Schematisation

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    19/28

    Model

    Monitoring19 flowmeters

    24 water level meters

    19 rain gauges

    3 WQ samplers

    1 2 : 0 04 - 7 - 1 9 9 7

    0 0 : 0 05 - 7 - 1 9 9 7

    1 2: 00 0 0:0 06 - 7 - 1 9 9 7

    1 2:0 0 0 0: 007 - 7 - 1 9 9 7

    0 . 0 0

    0 . 0 5

    0 . 1 0

    0 . 1 5

    0 . 2 0

    0 . 2 5

    0 . 3 0

    0 . 3 5

    0 . 4 0

    0 . 4 5

    0 . 5 0

    0 . 5 5

    0 . 6 0

    0 . 6 5

    0 . 7 0

    0 . 7 5

    [ M 3 / S E C ] T i m e s e r i e s o f D I S C H A R G E B R A N C H E S ( 1 _ 0 4 0 7 . p r f )

    simulan model

    Model Calibration

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    20/28

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    21/28

    Totalinflow to the city

    Total CSO production

    Total WWTP production

    Impact parameter BSK5[t/year]

    CHSK[t/year]

    NL[t/year]

    N tot[t/year]

    N-NH4+[t/year]

    P tot[t/year]

    Total inflow to the city 8 700 62 500 44 500 47 500 270 400

    Total impact from CSOs 430 1 100 640 107 60 20

    Total impact from WWTP 3 700 12 600 5 800 4 100 950 250

    BOD

    3%

    29%

    68%

    Amonia

    21%

    5%

    74%

    Phosphorus

    60%

    3%

    37%

    Analysis and interpretation of results

    From To Qmax No MaxT[hour]

    OK_56K 963114 1.8 7 1.3

    OK_57K 9815155 1.5 4 1.2

    OK_70K OK_70KO 9.9 17 2.5

    RN V_RN 9.6 10 3.1

    OK_71K 539015 0.2 2 0.6

    OK_72K 544029 3.8 5 1.3

    OK_73K B9 0.0 0 0.0

    OK_75K OK_75KO 1.0 13 1.7

    OK_77K 0 0.2 6 1.2

    OK_78K 479073 0.0 0 0.0OK_79K B4 0.0 0 0.0OK_80K OK_80KO 0.0 0 0.0OK_81K OK_81KO 0.0 0 0.0OK_83K OK_83KO 1.0 1 0.3

    From To TotT[hour] Sumamax. SumaTot.

    OK_56K 963114 3.5 3500 6400OK_57K 9815155 2.6 3150 5100OK_70KOK_70KO 15.2 37 700 102 800

    RN V_RN 15.8 36400 87000OK_71K 539015 0.8 150 250OK_72K 544029 3.5 8500 14100

    OK_73K B9 0.0 0 0OK_75KOK_75KO 8.7 2500 6900OK_77K 0 3.0 270 500OK_78K 479073 0.0 0 0OK_79K B4 0.0 0 0OK_80KOK_80KO 0.0 0 0OK_81KOK_81KO 0.0 0 0OK_83KOK_83KO 0.3 600 600

    Analysis and interpretation of results

    DHI Software Suite

    ++

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    22/28

    MOUSE sewer model

    AQUAbase graphical DRBMS

    RAINGEN rainfall simulator

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    23/28

    Gandalf - monitoring

    MIKE View - postprocessing

    MIKE NET water supply

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    24/28

    MIKE 11 1D river model

    MIKE 21 2D flooding

    Mike Urban

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    25/28

    Mike Basin

    Integrace nstroj Hydroinformatiky

    Flood plainCombining 1D & 2Dmodels, i.e.MOUSE & MIKE 21

    Integration of hydroinformatic tools

    MIKE FLOODDetailed flood plain modelling

    Combines 1-D and 2-D modelling

    Detailed urban flood modelling

    River

    Water

    Wastewater

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    26/28

    3D models

    MIKE SHE

    FLUENT

    Framework for real-time modelling & DSS applications

    IMS

    SCADA or telemetrysystems

    Economic Systems(like Microsoft Navision -SAP)

    MOUSE MIKE11 MIKE NET Third party modelling software

    DIMS

    RADARDIMS

    DIMS

    Communication

    SCADASCADA

    MOUSEEFOR

    MIKE11/21

    DIALOGMIKE NET

    DIMS

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    27/28

    Operational Dashboard

    Dashboard: Web interface tosensors, alarms, data, andhydraulic models.

    For further information go to: www.HarmoniT.com or email: [email protected] 80

    Project aims and objectives

    To build a model linking mechanism for:

    run time data exchange between models, databases & tools

    In order to:

    improve ability to model complex scenarios

    Estuary

    Surface runoff

    Groundwater

    Evaporation

    Precipitation

    Coast

    EvaporationFloodsFloods

    PlanningPlanningReservoir yieldReservoir yield

    DroughtsDroughts

    Aquifer yieldAquifer yield

    Water qualityWater quality

    EcologyEcology

    Climate changeClimate change

    Ecology

    Flow

    ??

    EcologyFlow

    SCADA

    Models

    Inspections

    GISCAD

    Future trends ???

  • 8/10/2019 Modelling_Hydroinformatics.pdf

    28/28

    Pros of Hydroinformatics

    Better knowledge of water system

    Better (cheaper and more effective)decisions

    Positive effect on living environment

    Effective use of investments

    Cons of Hydroinformatics

    price of HIS systems (SW and HW)

    complexity of HIS systems

    garbage in garbage out effect

    dramatic change of approach

    Scientists from company RAND created model of home computer", howit would look

    like in 2004. ..

    From "Popular Mechanics" - 1954: