Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George...

14
Modelling of electroluminescenc e in polymers under ac stress Junwei Zhao , David H. Mills, George Chen and Paul L. Lewin 19 th January 2011

Transcript of Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George...

Page 1: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

Modelling of electroluminescence in polymers under ac stressJunwei Zhao, David H. Mills, George Chen and Paul L. Lewin19th January 2011

Page 2: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

Electroluminescence (EL) in polymers• Origin: light emission from the recombination of

opposite polarity charge carriers

− What are charge carriers?

− Where do the charge carriers come from?

− What mechanism is behind the existence of these charges?

• Indication: storage, transport and interaction of charge carriers within insulation materials

• Implication: the effects of degradation or ageing on polymeric materials

Page 3: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

Experiment

Page 4: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

Experimental setup• CCD camera and

triggering system allows EL emission synchronised with applied field

• Uniform electrode arrangement with semitransparent gold coated 100 µm LDPE

EL experimental setup

Page 5: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

0 45 90 135 180 225 270 315 360

-6

0

6

App

lied

volta

ge (

kV)

angle ( )

TriangularSinusoidalSquare

Measured EL emission

Measured EL under 50 Hz, 6 kVpk, ac voltage of various waveforms

(a) Applied voltage (b) EL intensity

Positive half cycle Negative half cycle

0 45 90 135 180 225 270 315 3600

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 104

EL

inte

nsity

angle ( )

EL-TriangularEL-SinusoidalEL-Square

Page 6: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

Modelling

Page 7: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

EL can be described by the total recombination rate (TRR)

Si is the recombination coefficients

Bipolar charge transport model• Model description: - Injection and extraction of charge

carriers (electron and hole) at boundaries

- Charge transport by a field dependent mobility

- Deep trapping for electrons and holes

- Recombination of electrons and holes

x=0 x=dPolymeric film

Discretization of polymeric film

0 1 2 3TRR = ht et ht e et h h eS n n S n n S n n S n n

Trapping and recombination of bipolar charges

Page 8: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

Modelled EL under sinusoidal voltage

Electroluminescence per cycle (6 kV 50 Hz)

Comparison of simulation and experiment

0 50 100 150 200 250 300 3501400

1450

1500

1550

1600

Tot

al r

ecom

bina

tion

rate

(C

m-3

s-1)

Angle ( )

0 50 100 150 200 250 300 350-10

-5

0

5

10

App

lied

volta

ge (

kV)

Total recombination rate Applied voltage(6kV 50Hz)

0 45 90 135 180 225 270 315 3600

1

2

3

4

5

6

Nor

mal

ized

EL

inte

nsity

angle ( )

Simulation 6kV Experiment 6kV

Page 9: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

0 50 100 150 200 250 300 3502000

2500

3000

De

nsi

ty o

f m

ob

ile e

lect

ron

(C

/m3)

Angle ( )

0 50 100 150 200 250 300 350300

350

400

De

nsi

ty o

f tr

ap

pe

d h

ole

(C

/m3)

Mobile electron Trapped hole

Contribution of charge carriers

Density of charge carriers per cycle (6 kV)

0 1 2 3TRR = ht et ht e et h h eS n n S n n S n n S n n

Page 10: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

Distorted injection flux at boundaries

(a) Distorted injection field

(b) Injection current density

(c) Conduction current density

0 50 100 150 200 250 300 350-2

-1

0

1

2x 10-11

Co

nd

uct

ion

cu

rre

nt

de

nsi

ty (

Am

m-2

)

Angle ( )

0 50 100 150 200 250 300 350-10

-5

0

5

10

Ap

plie

d v

olta

ge

(kV

)

Conduction current densityApplied voltage(6kV 50Hz)

0 50 100 150 200 250 300 350-40

-30

-20

-10

0

10

20

30

40

Inje

ctio

n f

ield

at

the

ele

ctro

de

(kV

/mm

)

Angle ( )

0 50 100 150 200 250 300 350-8

-6

-4

-2

0

2

4

6

8x 10-7

Inje

ctio

n c

urr

en

t d

en

sity

(A

mm

-2)

Injection field at the electrodeInjection current density

0 50 100 150 200 250 300 350-40

-20

0

20

40

Inje

ctio

n f

ield

at

the

ele

ctro

de

(kV

/mm

)

Angle ( )

0 50 100 150 200 250 300 350-10

-5

0

5

10

Ap

plie

d v

olta

ge

(kV

)

Injection field at the electrodeApplied voltage(6kV 50Hz)

Page 11: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

0 45 90 135 180 225 270 315 3600

20

40

60

80

100

120

140

Tot

al r

ecom

bina

tion

rate

(C

m-3

s-1)

angle ( )

Sine 6kV 10HzSine 6kV 20HzSine 6kV 30HzSine 6kV 40HzSine 6kV 50HzSine 6kV 60HzSine 6kV 70HzSine 6kV 80HzSine 6kV 90Hz

0 45 90 135 180 225 270 315 3600

50

100

150

200

250

To

tal r

eco

mb

ina

tion

ra

te (

Cm-3

s-1)

angle ( )

Sine 5kV 50HzSine 6kV 50HzSine 7kV 50HzSine 8kV 50HzSine 9kV 50Hz

Modelled EL under sinusoidal voltage

Electroluminescence at increased applied field

Electroluminescence at increased frequency

Page 12: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

Modelled EL under triangular & square voltage

(a) simulation

(b) experiment

Comparison between simulation and experimental results

0 45 90 135 180 225 270 315 3600

0.05

0.1

0.15

0.2

0.25

Nor

mal

ized

TR

R

angle ( )

Sine 6kV 50HzTriangle 6kV 50HzSquare 6kV 50Hz

0 45 90 135 180 225 270 315 3600

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 104

EL

inte

nsity

angle ( )

EL-TriangularEL-SinusoidalEL-Square

Page 13: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.

Conclusions• Satisfying EL simulation results have been

achieved using a bipolar charge transport model; Two typical peaks which occur prior to the voltage peak in each cycle are reproduced

• Charge carriers from the injection at the boundaries contribute more than that from the conduction process to the resultant EL

• Injection current and conduction current are both distorted from the sinusoidal form due to the presence of space charge

Page 14: Modelling of electroluminescence in polymers under ac stress Junwei Zhao, David H. Mills, George Chen and Paul L. Lewin 19 th January 2011.