Modeling Urban Environmental Risks Under Future Climate Change Part I: WRF...

26
ASI1 Dr Fei Chen Part 1 1 Modeling Urban Environmental Risks Under Future Climate Change Part I: WRF-Urban model capabilities Fei Chen Senior Scientist Research Applications Laboratory National Center for Atmospheric Research Boulder, Colorado, USA Lecturer’s Photo Outline • Part-I: WRF-Urban model capabilities • Introduction to urban environmental risks associated with climate change • WRF-Urban modeling capabilities • Part-II: WRF-Urban applications

Transcript of Modeling Urban Environmental Risks Under Future Climate Change Part I: WRF...

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    1

    Modeling Urban Environmental Risks Under Future Climate Change Part I: WRF-Urban model capabilities

    • Fei Chen • Senior Scientist• Research Applications Laboratory• National Center for Atmospheric

    Research• Boulder, Colorado, USA Lecturer’s Photo

    Outline• Part-I: WRF-Urban model capabilities

    • Introduction to urban environmental risks associated with climate change

    • WRF-Urban modeling capabilities • Part-II: WRF-Urban applications

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    2

    Increasingly urbanized global population• 2007: >50% population; 2050: ~67% (UN, 2012)• 1975: only 5 mega cities (>10 million); 2015: 23 mega cities.

    • Climate change and sea‐level rise

    • Indoor and outdoor air quality• Human thermal stress• Water and energy sustainability • Atmospheric transport of accidental or intentional releases of toxic material

    • Extreme weather events, flood

    Examples of urban environmental risks

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    3

    IPCC AR5 (2014): Future risks and impacts caused by a changing climate

    Adaptation to reduce risk

    Urban effect on weather and climate: unintentional modification of the atmosphere by humans

    • Urban heat islandsThermal Stress

    • Greenhouse gas (CO2) emission• Air pollution on radiation

    Climate Change• Boundary layer structures. Local

    and regional atmosphere circulations

    • Precipitation Floods

    Topics discussed by Jamie Voogt and Janet Barlow

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    4

    Factors influencing urban environmental risk

    Population Change

    City Growth

    Urban Physical Effects

    on Local Climate and Weather

    Regional and Global Climate Change

    and Extreme Weather

    But the risk also depends on

    Population Change

    City Growth

    Urban Physical Effects

    on Local Climate and Weather

    Global

    Climate Change

    Societal Factors

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    5

    Modeling requirements for urban environmental-risk prediction and mitigation

    • Global and regional atmospheric modeling (established)

    • Building-scale, outdoor and indoor atmospheric modeling (new)

    • “Coupled” human-response modeling (new)

    Message ‐ Risk prediction and mitigation must include physical modeling AND human‐response modeling

    Modeling the human response to urban environmental risks

    • For example, vulnerability to extreme urban heat differs spatially by ecology, socio-economic status and cultural context.

    • Needs – Understanding local adaptive capacity (e.g., social networks, social capital, community resiliency, utilization of available resources) is critical toward reducing risk.

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    6

    The physical modeling system:A spectrum of coupled scales

    Global Scales

    Continental Scales

    Regional Scales

    Local ScalesLong Island

    Urban Scales

    Current technology for operational weather and climate prediction

    Challenge in representing multi-scale urban microclimate

    Mesoscale modelsLong Island

    Urban Scale models (CFD, LES)

    Building energy models Indoor-outdoor exchange

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    7

    Weather Research and Forecasting (WRF) ModelWidely used “community model” for both research and operational forecasting• Academic scientists • Forecast teams at operational

    weather centers• Applications communities (e.g.

    Regional Climate, Air Quality, Agriculture, Hydrology, Utilities)

    North Atlantic and North American Regional Climate Changes

    Registered Users 1/1/12

    American universities,Govt. labs, Private sector 5951

    Foreign users 12432--------18383

    Countries represented: 137

    13

    Urban Modeling for Weather Research and Forecast (WRF) Model

    • We can bridge the gap between traditional mesoscale (~ 10 km) and fine-scale urban transport and dispersion modeling (~ 10 m)

    • WRF running with 1-4 km grid spacing• Availability of new data at urban scales, urban canopy

    models• Land data assimilation techniques • Techniques to couple mesoscale and CFD (LES) models.

    • Hence, the WRF model is able to deal with regional climate, fine-scale weather forecast, and urban scales.

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    8

    International collaborative effort:Developing WRF-Urban modeling capability

    15

    More than 100 groups in 25 countries have used the WRF‐Urban modeling system. 

    Integrated WRF-Urban Cross-scale Modeling Framework

    Improved Input

    Fine‐scale urban land‐use and building characteristics

    Urbanized high‐resolution land data assimilation system 

    (u‐HRLDAS)   

    Fine‐scale atmospheric analysis 

    (FDDA)

    WRF Modeling System 

    Urban modeling componentsAdvanced Applications

    Noah land surface model 

    Urban canopy models

    Indoor‐outdoor exchange 

    Urban T&D models (CFD, LES) 

    Chemistry (WRF‐Chem)

    Hydrology  (WRF‐Hydro)

    Human‐response modeling 

    Urban extreme weather and climate 

    Public health and risk assessment

    City flood and water management

    Adaptation and mitigation

    Emergency response 

    Chen et al., 2010, Intl. J. Climatology 

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    9

    What urban effects do we model in WRF?

    HeatTurbulenceMomentum

    Drag Wake diffusion

    Radiation

    Surface energy balance: QN+ QF= QH + QE + DQS+ DQA

    boundary layer and radiation parameterizations  

    Fluxes of momentum, latent heat, and sensible heat; radiometric temperature

    The Noah Land Model

    Coupling the Noah land surface model (LSM) to urban canopy models (UCM)

    Natural surface

    Urban canopy models: Man‐made  surfaceCoupled through ‘urban fraction’ 

    Chen et al., 2010, Intl. J. Climatology 

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    10

    Urban Modeling in WRF-Noah:Three parameterization schemes

    1. Bulk parameterization• Increased roughness length: from 0.5 m to 0.8 m

    • turbulence generated by rough elements • Reduced surface albedo: from 0.18 to 0.15

    – radiation trapping• Increased volumetric heat capacity and thermal

    conductivity: 3.0106 J m-3 K-1 and 3.24 W m-1 K-1• heat storage in buildings

    • Reduced evaporation: vegetation fraction was reduced to 0.05; reduced available urban soil water capacity.

    • Available since WRF V2.0sf_surface_physics = 2 (Noah), sf_urban_physics = 0

    Reference: Liu et al., 2006: Journal of Applied Meteorology and Climatology

    2. Single-layer Urban Canopy Model (SLUCM) • 2-D urban geometry • Street canyons • Shadowing from buildings and

    reflection of radiation• Multi-layer roof, wall and road

    models• Available since WRF V2.2

    sf_surface_physics = 2 (Noah) sf_urban_physics = 1

    • References:• Kusaka et al., Bound.-Layer Meteor., 2001• Miao et al., J. Appl. Meteor. Climatol., 2009

    Urban Modeling in WRF-Noah:Three parameterization schemes

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    11

    3. Multi-layer Urban Canopy Model: Building Effect Parameterization (BEP) scheme• Direct interactions with WRF PBL schemes at multiple vertical

    layers • Calculate effects of buildings on momentum and heat fluxes • Modify WRF TKE scheme and turbulent length scales

    • Available since WRF3. 1sf_surface_physics = 2 (Noah) sf_urban_physics = 2

    • works with BouLac and MYJ PBL only

    Reference:  Martilli et al., 2002, Boundary Layer Meteorology. 

    Urban Modeling in WRF-Noah:Three parameterization schemes

    Salamanca and Martilli (2009, Theoreti. Appli. Climatol.)

    Building Energy Model (BEM):Represent indoor-outdoor exchange

    • Improve the estimate of the anthropogenic fluxes. • Estimate energy consumption related to meteorology (air conditioning and

    heating).

    • Available since WRF3. 2sf_surface_physics = 2 (Noah), sf_urban_physics = 3

    • works with BEP and BouLac and MYJ PBL only

    Air conditioning (cooling)

    Air conditioning (heating)

    Heat conductionthrough walls

    ventilation

    Solar radiationthroughwindows

    Indoor heatsources(occupants, equipments)

    BEP

    BEM

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    12

    Challenge: from Real World to UCM

    Urban canopy model (UCM) parameter space

    Specification of UCM parameters in WRF

    Two methods

    • Using a look‐up table as function of urban land use types

    • Directly ingest 2‐D spatial distributions of UCM parameters 

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    13

    Parameters High density ResidentialCommercial /

    IndustryLow density Residential

    SLUM20

    building height [ m ] 10 7.5 5Standard Deviation of roof height [ m ] 4 3 1

    Anthropogenic heat [ W m{-2} ] 90 50 20

    road width [ m ] 10 9.4 8.3Fraction of the urban landscape which does not

    have natural vegetation. [ Fraction ] 0.95 0.9 0.5

    Thermal conductivity of roof [ J m{-1} s{-1} K{-1} ] 0.67 0.67 0.67

    Surface albedo of ground (road) [ fraction ] 0.2 0.2 0.2Lower boundary temperature for building wall

    temperature [ K ] 293 293 293

    …… …… …… ……

    BEP3

    BUILDING HEIGHTS:

    Roughness length for momentum over roof [ m ] 0.01 0.01 0.01

    STREET PARAMETERS …… …… ……

    BEM13

    Coefficient of performance of the A/C systems 3.5 3.5 3.5Thermal efficiency of heat exchanger 0.75 0.75 0.75

    Target Temperature of the A/C systems[ K ] 297 298 298Peak number of occupants per unit floor area

    [ person/m^2 ] 0.02 0.01 0.01

    Peak heat generated by equipment [ W/m^2 ] 36 20 16…… …… …… ……

    Specification of UCM parameters in WRF:Using urban parameter table (URBPARM.tbl)

    Depicting global urbanization using remote-sensing dataRed: urban areas in the Pearl River Delta, China

    1993 USGS data2001 MODIS data

    Data from HK urban planning office

    MODIS land‐use and land‐cover has been released in WRF 3.1 since April 2009.

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    14

    Urban Model Input: detailed regional urban land-use

    27

    NLCD 30-m Landsat land-cover for Houston

    National Urban Database and Access Portal Tool (NUDAPT), led by Jason Ching

    Ching et al., 2009, Bull. American Meteorol. Soc. 

    Example of NUDAPT gridded urban canon parameters for Houston, Texas: Plan area density (PAD), frontal area density of the buildings (FAD). 

    Specification of UCM parameters in WRF Methode2: Directly ingest 2-D spatial distributions of UCM parameters

    Released in WRF v3.5, April 2013.How to use the data? http://www.ral.ucar.edu/research/land/technology/urban.php

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    15

    WUDAPT: Facilitating advanced urban canopy modeling for

    weather, climate, air quality and environmental analyses

    Led by Jason ChingWUDPAT workshop this weekend

    Sources of Anthropogenic Heating (Country scale)

    Source: www.eia.doe.gov. U.S. Data.

    Residential21%

    Commercial17%

    Transport27%

    Metabolism1%

    Manufacturing/Industry34%

    Courtesy of David Sailor, Portland State University 

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    16

    Anthropogenic heating (AH) for Beijingderived using approach of Sailor and Lu (2004)

    0800 LST Winter0800 LST Summer

    AH critical for capturing spatial variance of land surface temperature

    MODIS Observations

    WRF‐Urban simulations 

    Miao et al., 2008, J. Appl. Meteor. Climatol. 

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    17

    WRF-Urban: Coupling mesoscale WRF with building-scale models (EULAG LES)

    Mesoscale modeling system:WRF‐Noah/UCM forecast model

    Urban T&D modeling system:EULAG LES/CFD model

    WRF provides initial and lateral boundary conditions for EULAG in two modes• Isolated sounding data mode – short term, quasi steady conditions, small scale urban domain• Unsteady (temporal‐based coupling) mode – linear interpolation of the WRF data in time and space→ Building geometry flow features resolved explicitly with immersed boundary (IB) approach

    Coupler:

    MCEL Library

    Upscale data transfer:

    Downscale data transfer

    Wyszogrodzki, Miao, and Chen, 2012, Atmospheric Research

    Synchronize models for a practical means with Model Coupling Environmental Library (MCEL)

    Downscale filter : ‐ extract data and bound it to specific area‐ change coordinates and grid structure

    MCEL ‐ COBRA Client/Server 

    • Computationally efficient system • Allows components to operate independently • Provide continuous data transfer • Improves transfer timing• Send, receive and store native WRF/EULAG grids In 

    Netcdf format for further processing

    FILTERS: resolve problems of the data incompatibility due to different models numeric (WRF Arakawa C‐grid, EULAG A‐grid) and vertical coordinates

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    18

    5 two‐way nested domains, grid spacing and grid sizes:

    • D1: 40.5km ( 90* 90*38)• D2: 13.5km (100*100*38)• D3: 4.5km  (100*100*38)• D4: 1.5km  (100*100*38)• D5: 0.5km  (100*100*38)

    Multiscale WRF-Urban resolved urban flows

    EULAG LES domain

    EULAG simulated transport and diffusion of SF6 gas tracer concentrationsDispersion footprint for IOP6 9:00 am

    Joint Urban 2003 experiment

    IOP6 IOP8Release

    typeStart

    (CDT)Release Amount

    Start (CDT)

    Release amount

    Plume (30 min) 0900 3.0 g/s 2300 3.1 g/sPlume (30 min) 1100 3.2 g/s 0100 3.0 g/sPlume (30 min) 1300 3.0 g/s 0300 3.0 g/s

    Puff 1500 0.498 kg 0500 0.500 kgPuff 1520 0.499 kg 0520 0.500 kgPuff 1540 0.510 kg 0540 0.300 kgpuff 1600 0.500 kg 0600 0.305 kg

    Wyszogrodzki, Miao, and Chen, 2012, Atmospheric Research

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    19

    How to solve interactions between steady flow and unsteady flow in coupling mesoscale models with microscale models?

    WRF/CFD-Urban Quasi-steady coupling

    WRF domains 0.5-km domain

    CFD-Urban domain8.4x7.4x1 km

    The quasi-steady mode first computes the steady state, equilibrium flow fields using 15-min WRF output as boundary conditions. The unsteady, contaminant transport evolution equation is then solved using the quasi-steady velocity and turbulence field by linearly interpolating the steady state velocity and turbulence fields.

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    20

    steady-flow coupling Quasi steady-flow coupling

    Quasi steady-flow coupling improves urban T&D predictions

    Problems in Urban Hydrologic Modeling

    SLUCM underestimate city latent heat fluxes, a common problem in urban parameterization schemes (Grimmond et al., 2011)

    Annual average of heat fluxes for July 2009‐2010:Dashed: observations from Beijing 320‐m tower (from 140‐m height),

    Solid: SLUCM simulated

    Red: sensible heat fluxGreen: latent heat flux

    model

    Obs

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    21

    Urban hydrological processes in  Single‐layer Urban Canopy Model

    41

    Urban irrigation Oasis effect Anthropogenic 

    latent heat Evaporation over 

    engineered surfaces

    Improving WRF‐Urban hydrological processes 

    Miao and Chen, 2014:  China Earth Sciences

    SLUCM significantly improve city evaporation simulation (right panel) by considering the above urban hydrological processes. 

    model

    Obs

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    22

    Improve WRF-Urban Hydrologic ModelingPhoenix summer (JJA) Vancouver spring (MAM) 

    Green: latent heat fluxesRed: sensible heatBlue: storage heat 

    Yang et al. (2014, Boundary Layer Meteorology)

    Dots: observationSolid: old modelDashed: new model

    Cool Roofs

    Green Roofs

    Assess mitigation and adaptation strategies in urbanized areas. 

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    23

    • Oasis Effect: Considering enhanced potential evapotranspiration of sparse vegetation in urban area due to the lack of obstacles to both radiation and wind.

    • To activate this option: Oasis (in URBPARM.TBL) > 1.0 • Irrigation Option (IRI_SCHEME): represent irrigation practice in urban

    areas. When activated, irrigation is scheduled for 9 to 10 pm every day from May to September. During this period, moisture of the top two soil layers of the urban vegetation and green roofs is set to field capacity (i.e., transpiration is not limited by water availability).

    • 1: for activation; 0: for deactivation. • Anthropogenic latent heat (ALH): add urban anthropogenic latent heat

    to a diurnal profile to the latent heat flux term. • Related variables in URBPARM.TBL): are ALH, ALHOPTION,

    ALHSEASON, ALHDIUPRF. • Set ALHOPTION to 1 and 0 for turning on and off the option.

    New Options for Single Layer Urban Canopy Model in WRFV3.7 (2015)

    • Evaporation over impervious surface (IMP_SCHEME): evaporation over engineered surfaces during and shortly after rainfall events. 

    • Related variables in URBPARM.TBL are IMP_SCHEME, PORIMP, DENGIMP.

    • IMP_SCHEME = 1: use the original parameterization in WRF; =2 : the new scheme.

    • Multi‐layer green roof (GROPTION): Enable modeling of multi‐layer green roof system on buildings in urban area.  

    • Related variables in URBPARM.TBL): GROPTION, FGR, DZGR. • GROPTION = 1 , using green roof modeling

    = 0 , No green roof, using default vegetation and soil type of green roof is grassland and loam, respectively.

    New Options for Single Layer Urban Canopy Model in WRFV3.7 (2015)

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    24

    New mosaic/tiling approach in WRF‐Noah released in WRF V3.6 (2014)

    Li et al. 2014:  Development and evaluation of a mosaic approach in the WRF‐Noah framework, JGR. 

    WRF‐Noah WRF‐Noah‐mosaic (N=4)

    Urban 100%

    dx= 1km

    dy= 1km

    Drylandcropland25%

    Deciduous broadleaf forest22%

    Low density urban40%

    Others13%

    48

    Latent heat fluxes

    A clear‐day case: surface fluxes at Cub hill (Towson, MD) simulated by WRF‐Urban with Mosaic approach 

    Ground heat fluxes

    Obs

    Old

    New

    Li et al. 2014:  Development and evaluation of a mosaic approach in the WRF‐Noah framework, JGR. 

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    25

    Evaluations of the WRF-Urban Model

    Houston: Diurnal cycle of wind profile (TexAQS‐2000)

    Hong Kong: 10‐day surface wind 

    Beijing, Taipei, and Tokyo: surface weather, precipitation

    Salt Lake City: Diurnal wind direction (URBAN‐2000)

    Miao and Chen, 2008: Atm. Res.  Lin et al., 2008: Atm. Environ.Jiang et al. 2008: J Geophys. Res.Miao et al., 2009: J. Appli. Meteorol. Climatol.Zhang et al., 2009: J Geophys. Res.Tewari et al., 2010: Atm. Res.

    Oklahoma City: 2‐m temperature (JU‐2003)

    Wang et al. , 2009, Adv.  Atmos. Sci., Loridan et al., 2010, Q. J. Roy. Meteorol. Soc., Miao et al., 2011, J Appl. Meteorol. Climatol.,Chen et al., 2011. J Geophys. Res.Salanmanca et al., 2011, J. Appl. Meteor. Climatol.,Kusaka et al., 2012, . J Met Soc Japan.Wyszogrodzki et al., 2012, Atm. Res.,

    Challenge (reflections)

    • WRF-Urban provides new modeling capabilities to represent city-atmosphere interactions

    • No model is perfect (WRF-Urban is no exception)

    • No city is exactly the same• Form, morphology, anthropogenic heating

    • Need to improve specification of urban parameters and to evaluate model performance

  • ASI1 ‐ Dr Fei Chen ‐ Part 1

    26

    WRF-Urban web site at NCAR/RALhttps://www.ral.ucar.edu/solutions/products/urban-canopy-model

    Thank you!Fei ChenResearch Applications laboratory National Center for Atmospheric ResearchP.O. Box 3000, Boulder, CO 80307, USATel: 303-497-8454Email: [email protected]

    • Website: • http://www.rap.ucar.edu/research/land/• Research ID on Web of

    Science: http://www.researcherid.com/rid/B-1747-2009