Modeling Trends of the European Electricity Sector with a Focus … · 2021. 1. 18. · - 0 -...

18
Modeling Trends of the European Electricity Sector with a Focus on Nuclear Phase-outs in the UK and France Berlin Conference on Energy and Electricity Econonomics; Berlin, 12. October 2016 Pao-Yu Oei, Clemens Gerbaulet, Christian von Hirschhausen, Mario Kendziorski, Casimir Lorenz Technische Universität Berlin, Workgroup for Infrastructure Policy (WIP) Deutsches Institut für Wirtschaftsforschung (DIW Berlin), Energy, Transport and Environment (EVU)

Transcript of Modeling Trends of the European Electricity Sector with a Focus … · 2021. 1. 18. · - 0 -...

  • - 0 - February.2016

    Modeling Trends of the European Electricity Sector

    with a Focus on Nuclear Phase-outs in the UK and France

    Berlin Conference on Energy and Electricity Econonomics; Berlin, 12. October 2016

    Pao-Yu Oei, Clemens Gerbaulet, Christian von Hirschhausen, Mario Kendziorski, Casimir Lorenz Technische Universität Berlin, Workgroup for Infrastructure Policy (WIP)

    Deutsches Institut für Wirtschaftsforschung (DIW Berlin), Energy, Transport and Environment (EVU)

  • - 1 - February.2016

    Model application: Dynelmod

    Scope: Europe Objective: System Cost minimization • Capacity Cost and Generation Cost • Investment cost

    • Generation Capacities • Grid Expansion

    Investments: five-year steps (2015), 2020, 2025,

    2030, 2035, 2040, 2045, 2050, plant dispatch: hourly resolution over set of ~350 hours

    Boundary condition examples • Country-sharp power plant portfolio development

    (decommissioning of existing plants) • Electricity demand development per Country • CO2-Budget over time • Market coupling: NTC or Flow-Based

    Source: Gerbaulet and Lorenz (2016)

  • - 2 - February.2016

    Water Biomass Hard coal

    Wind Lignite Diesel

    Fuel Oil Gas

    Nuclear Furnace gas Oil shale

    Synthetic gas

    Power Plants and Networks in Europe

    Source: Schneider, Kuhs (2013)

  • - 3 - February.2016

    Structural Changes in the Future, decommissioning of nuclear power plants in Europe

    Source: Schneider, Kuhs (2013)

  • - 4 - February.2016

    Implemented CO2 emission constraint for Europe aiming at a decarbonization of the electricity sector until 2050

    Source: Energy Roadmap 2050; Impact Assesment SEC (2011) 1565; page 70 ; Scenario: "Diversified supply scenario"; column Power generation/District heating for EU27 countries

    0

    200

    400

    600

    800

    1000

    1200

    1400

    2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055

    Mt

    CO

    2

  • - 5 - February.2016

    The European Commission reduced their nuclear projection but still includes new constructions, esp. in France and UK

    12 27 41 21 7 8 1 23 43 14 5 5 0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    2025 2030 2035 2040 2045 2050

    GW

    EC Reference Scenario 2013 EC Reference Scenario 2016Source: EC (2013, 2016).

  • - 6 - February.2016

    „Transition Enérgétique“ à la francaise

    Electricity Sector Other sectors

    Nuclear Renewable energies Demand on

    fossil fuels

    Greenhouse gas

    emissions

    Final energy

    consumption (share of gross electricity consumption)

    50% 40% -30% -40% -75% -50%

    2025

    2030

    2030 2030 2050 2050

    (base 2012) (base 1990) (base 2012)

    The share of nuclear energy accounted for 76% in 2015 France. The Transition Enérgétique lays-out a pathway for the next decade but many things remain uncertain afterwards.

    The following slides examine a “sobriety” scenario developed by Criqui, et al. (2015) assuming a path for 2050 with

    - 0% share of nuclear, - >80% renewables, - -50% energy consumption

    Source: “Loi sur la transition énérgétique” (2015)

  • - 7 - February.2016

    Results of the sobriety scenario for France until 2050 – France remains an electricity exporter despite the nuclear phase-out

    -100

    0

    100

    200

    300

    400

    500

    600

    700

    2015 2020 2030 2040 2050

    TWh

    trade

    Wind

    Sun

    Biomass

    Hydro

    Fossil

    Nuclear

    Soruce: Own modeling based on Criqui, et al. (2015).

  • - 8 - February.2016

    Expected closure of existing nuclear power plants and investments in newbuilds envisaged by the UK energy strategy

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

    GW

    existing Capacity planned Capacity

    Source: National Audit Office (2016), PRIS Database, own assumptions.

  • - 9 - February.2016

    Two possible scenarios for a nuclear phase-out in the UK – sector-coupling might lead to increasing import needs in 2050

    Scenario “D-EXP” (decarbonize and expand) depicts an intensive sector coupling and the usage of gas in combination with carbon capture, transport, and sequestration (CCTS).

    Scenario “M-VEC” (multivector transition) is less reliant on electrification, and foresees a growth of electricity consumption only between 2040 and 2050 and a more limited availability of CCTS.

    -100

    -

    100

    200

    300

    400

    500

    600

    700

    2015 2020 2030 2040 2050 2015 2020 2030 2040 2050

    D-EXP M-VEC

    TWh

    Nuclear Coal Gas Gas (CCTS) Hydro

    Biomass Solar Wind Trade other

    Soruce: Own modeling based on Pye, et al. (2015).

  • - 10 - February.2016

    Conclusion: Decarbonization of the European electricity sector is compatible with a reduction of nuclear capacities

    A reduction of nuclear capacities leads to • increased investment in gas, renewables, and storage; • reduced electricity generation by coal to be in line with the European CO2 target; • Shifts in electricity trades between neighbouring countries depending on national strategies.

    -

    500

    1,000

    1,500

    2,000

    2,500

    3,000

    3,500

    4,000

    4,500

    2015 2020 2030 2040 2050

    TWh

    other

    Wind

    Sun

    Biomass

    Hydro

    Gas CCS

    Gas

    Coal

    Lignite

    Nuclear

  • - 11 - February.2016

    Modeling Trends of the European Electricity Sector

    with a Focus on Nuclear Phase-outs in the UK and France

    Berlin Conference on Energy and Electricity Econonomics; Berlin, 12. October 2016

    Pao-Yu Oei, Clemens Gerbaulet, Christian von Hirschhausen, Mario Kendziorski, Casimir Lorenz Technische Universität Berlin, Workgroup for Infrastructure Policy (WIP)

    Deutsches Institut für Wirtschaftsforschung (DIW Berlin), Energy, Transport and Environment (EVU)

  • - 12 - February.2016

    Model application: Dynelmod

    Investments • Conventional power plants • Renewables (PV, Wind Onshore/Offshore, CSP) • Storage (several storage options; e.g. Battery

    storage options, pumped hydro storage) • Grid expansion (increase of NTCs)

    Other Data • Hourly RES feed-in and load for 2012 based on

    ENTSO-E and ECWMF weather data • Increase in full-load hours of renewables over time • Cost data mainly based on Schröder et al. (2013)

    − Investment, Fix, and variable capacity cost

    Calculation over a set of hours • Variation of time-of day • Variation of season • Scaling for feed-in and demand time series

  • - 13 - February.2016

    Flow-based market coupling– Aggregation to a zonal PTDF

    The flow based cross border interaction characteristics are derived from the actual underlying grid structure

    Aggregation line sharp data to a country sharp PTDF

    PTDF Calculation from the actual AC grid

    𝑃𝑃𝑃𝐹𝑙,𝑛𝑛 = �𝐻𝑙,𝑛 ∗ 𝐵𝑛,𝑛𝑛−1 𝑛

    Load on line using PTDF

    𝑃𝑙 = �𝑃𝑃𝑃𝐹𝑙,𝑛 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

    Aggregation to a zonal PTDF with maximum transfer capacities

    𝑃𝑐𝑐,𝑐𝑐𝑐 = �𝑃𝑃𝑃𝐹𝑐𝑐,𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑧𝑐𝑛𝑧𝑙 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

    𝑃𝑐𝑐,𝑐𝑐𝑐𝑚𝑧𝑚 = min𝑖𝑐𝑃𝑖𝑐𝑚𝑧𝑚

    𝑃𝑃𝑃𝐹𝑖𝑐,𝑐𝑐 − 𝑃𝑃𝑃𝐹𝑖𝑐,𝑐𝑐𝑐

    Node-sharp representation of the European high voltage grid Blue: HVDC, red: 380 kV, yellow: 300 kV, green: 220 kV

  • - 14 - February.2016

    Research on nuclear at DIW Berlin and TU Berlin

    DIW Berlin Wochenbericht: • 13-2014: Atomkraft: Auslaufmodell mit

    ungelöster Endlagerfrage • 22-2015: Stromversorgung bleibt sicher –

    Große Herausforderungen und hohe Kosten bei Rückbau und Endlagerung

    • 45-2015: Rückbau und Entsorgung in der deutschen Atomwirtschaft: öffentlich-rechtlicher Atomfonds erforderlich

    • 45-2015: Europäische Klimaschutzziele sind auch ohne Atomkraft erreichbar

    DIW Berlin Data Documentation 2015: Stand und Perspektiven des Rückbaus von Kernkraftwerken in Deutschland ("Rückbau-Monitoring 2015")

    DIW Berlin Round-up: Uranium Power and the Uranium Market are Reserve and Ressource Sufficient (forthcoming)

  • - 15 - February.2016

    France in focus

    Technical lifetime of nuclear power plants is 45-50 years in Base scenario.

    Early exit scenario: Plants decommissioned in 2030 are phased-out already in 2025 (>42 years).

    Shutdown before 2020

    Shutdown before 2025

    Shutdown before 2030

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    2020 2025 2030 2035 2040 2045 2050

    Inst

    alle

    d C

    apac

    ity in

    Fra

    nce

    in G

    W

    Base No new Nuclear EarlyExit

  • - 16 - February.2016

    Assumptions for nuclear decommission in France

    Last active model year

    Plant Capacity (MW) Start Base No new nuclear

    France Early Exit

    Fessenheim 1 880 1977 2015 2015 2015 Fessenheim 2 880 1978 2015 2015 2015 Bugey 2 910 1979 2015 2015 2015 Bugey 3 910 1979 2020 2020 2020 Bugey 4 880 1979 2020 2020 2020 Bugey 5 880 1980 2020 2020 2020 Dampierre 1 890 1980 2020 2020 2020 Gravelines B-1 910 1980 2020 2020 2020 Gravelines B-2 910 1980 2020 2020 2020 Tricastin 1 915 1980 2020 2020 2020 Tricastin 2 915 1980 2020 2020 2020 Blayais 1 910 1981 2025 2025 2020 Dampierre 2 890 1981 2025 2020 Dampierre 3 890 1981 2025 2020 Dampierre 4 890 1981 2025 2020 Gravelines B-3 910 1981 2025 2020 Gravelines B-4 910 1981 2025 2020 Tricastin 3 915 1981 2025 2020 Tricastin 4 915 1981 2025 2020 Blayais 2 910 1983 2025 2020 Blayais 3 910 1983 2025 2020 Blayais 4 910 1983 2025 2020 St. Lauent B-1 915 1983 2030 2020 St. Lauent B-2 915 1983 2030 2020 Chinon B-1 905 1984 2030 2030 Chinon B-2 905 1984 2030 2030 Cruas Meysse 1 915 1984 2030 2030 Cruas Meysse 3 915 1984 2030 2030 Cruas Meysse 2 915 1985 2030 2030 Cruas Meysse 4 915 1985 2030 2030

    Last active model year

    Plant Capacity (MW) Start Base No new nuclear

    France Early Exit

    Gravelines C-5 910 1985 2030 2030 Gravelines C-6 910 1985 2030 2030 Paluel 1 1,330 1985 2030 2030 Paluel 2 1,330 1985 2030 2030 Flamanville 1 1,330 1986 2030 2030 Paluel 3 1,330 1986 2030 2030 Paluel 4 1,330 1986 2030 2030 St. Alban 1 1,335 1986 2030 2030 Cattenom 1 1,300 1987 2030 2030 Chinon B-3 905 1987 2030 2030 Flamanville 2 1,330 1987 2030 2030 St. Alban 2 1,335 1987 2030 2030 Belleville 1 1,310 1988 2035 2035 Cattenom 2 1,300 1988 2035 2035 Chinon B-4 905 1988 2035 2035 Nogent 1 1,310 1988 2035 2035 Belleville 2 1,310 1989 2035 2035 Nogent 2 1,310 1989 2035 2035 Penly 1 1,330 1990 2035 2035 Cattenom 3 1,300 1991 2035 2035 Golfech 1 1,310 1991 2035 2035 Cattenom 4 1,300 1992 2035 2035 Penly 2 1,330 1992 2040 2040 Golfech 2 1,310 1994 2040 2040 Chooz B-1 1,500 1996 2045 2045 Chooz B-2 1,500 1999 2045 2045 Civaux 1 1,495 1999 2045 2045 Civaux 2 1,495 2000 2045 2045

  • - 17 - February.2016

    Nuclear development assumptions for Europe

    0

    20

    40

    60

    80

    100

    120

    140

    160

    2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055

    GW

    Base No new nuclear France early exit

    Slide Number 1Model application: DynelmodPower Plants and Networks in EuropeStructural Changes in the Future, decommissioning of nuclear power plants in EuropeImplemented CO2 emission constraint for Europe aiming at a decarbonization of the electricity sector until 2050The European Commission reduced their nuclear projection but still includes new constructions, esp. in France and UK„Transition Enérgétique“ à la francaiseResults of the sobriety scenario for France until 2050 – France remains an electricity exporter despite the nuclear phase-out Expected closure of existing nuclear power plants and investments in newbuilds envisaged by the UK energy strategyTwo possible scenarios for a nuclear phase-out in the UK – �sector-coupling might lead to increasing import needs in 2050Conclusion: Decarbonization of the European electricity sector is compatible with a reduction of nuclear capacitiesSlide Number 12Model application: DynelmodFlow-based market coupling– Aggregation to a zonal PTDF Research on nuclear at DIW Berlin and TU BerlinFrance in focusAssumptions for nuclear decommission in FranceNuclear development assumptions for Europe