Modeling of Microstructure Evolution During LENS Deposition€¦ · L. Wang, H. Kadiri, S....

21
1 L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007 Modeling of Microstructure Evolution During LENS TM Deposition Liang Wang, PhD Haitham El Kadiri, PhD Sergio Felicelli, PhD Mark Horstemeyer, PhD Paul Wang, PhD Center for Advanced Vehicular Systems Mississippi State University

Transcript of Modeling of Microstructure Evolution During LENS Deposition€¦ · L. Wang, H. Kadiri, S....

  • 1

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Modeling of Microstructure Evolution During LENSTM Deposition

    Liang Wang, PhDHaitham El Kadiri, PhD

    Sergio Felicelli, PhDMark Horstemeyer, PhD

    Paul Wang, PhD

    Center for Advanced Vehicular Systems Mississippi State University

  • 2SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Laser Engineered Net Shaping (LENS)

  • 3SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Introduction

    • A variety of materials can be used:– Steel Materials (4140, SS410, SS316)– Ti-based alloy (Ti-6Al-4V)– Inconel, copper, aluminum, etc.

    • Application:– Aerospace repair & overhaul– Rapid prototyping and 3D structure fabrication– Product development for aerospace, defense,

    and medical markets, etc.• Advantages:

    – Low cost & time saving – Enhanced design flexibility and automation– Highly localized heat-affected zone (HAZ)– Superior material properties (strength and

    ductility)

    Processing Blade

    Processing Bar

  • 4SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Objectives

    • Develop a 3-D thermal-metallurgical model to simulate 16-pass single build plate LENS deposition of 4140 steel powder with SYSWELD finite element code.

    • Predict the thermal profiles, phase transformation, and hardness in the deposited part, and compared with experimental data

    • Investigate the effect of the thermal cycles on the phase transformation and consequent hardness.

  • 5SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    5

    10

    12.8

    20

    16 layers

    Process parameters ValuesWidth of the part 2.0mm

    Thickness for each layer 0.8mmLaser beam travel velocity 8.5mm/s

    Moving time of the laser beam for each pass

    1.18s

    Idle time of consecutive layers deposition

    0.32s

    Time to finish one layer 1.5sTotal time to finish the part 24s

    Substrate

    (unit: mm)

    • Weld direction: Same direction for each pass• Both the deposited part and the substrate are 4140 steel

    Geometry & Process Parameters

    Chemical composition of 4140 steel (wt%)

  • 6SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Thermal Properties (4140)

    Martensite

    Bainite

    Ferrite

    Phase Proportion (%)

    Ms

    CCT Diagram

    Specific Heat Density

    Thermal Conductivity

  • 7SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    • Modified heat conduction equation:

    f ρ- phase proportionT Ct λji, Q

    )(TLij

    ijA - proportion of phase i transformed to j in time unit

    - temperature

    - time- phase indexes

    - latent heat of i → j transformation

    - mass density- specific heat

    - thermal conductivity

    - heat source

    Thermal-Metallurgical Model

    ∑∑∑<

    =⋅+⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∇⎟⎠

    ⎞⎜⎝

    ⎛∇−

    ∂∂

    ⎟⎠

    ⎞⎜⎝

    jiijij

    iii

    iii QATLTft

    TCf )()( λρ

  • 8SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    • Dummy material method is applied to the element activation: – M1: Deposited layers + substrate

    • Material with actual thermal properties and phase transformation

    – M2: Layer being deposited • Material with actual thermal properties

    and starting with dummy phase• Dummy phase → Austenite phase

    (T>Taus) – M3: Layers to be deposited

    • Material with dummy low thermal properties and without phase transformation

    Element Activation Technique

    • Fixed mesh is used for the plate and substrate.

    M1

    M2

    M3

    V

    Element size in the beams:

    0.1 X 0.1 X 0.1 mm3

  • 9SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Heat Source

    hzhrrrr ieeo))(( −−

    −=

    222 )()( tvyyxxr oo ⋅−−+−=

    ⎟⎟

    ⎜⎜

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−⎟

    ⎠⎞

    ⎜⎝⎛ −=

    2

    02

    0

    1exp12rr

    hz

    hrPQr π

    • 3D Conical Gaussian Function

    rQ

    P

    - Input energy density (W/mm3)

    - Absorbed laser power (W)

    rQ

  • 10SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Initial and Boundary Conditions

    • Initial condition

    • Boundary condition on the bottom of the substrate

    • Boundary conditions for all other surface

    • As new layers are activated, the surfaces are increased and the boundary conditions are updated.

    0)0,,,( TtzyxT ==

    0)0,,( TzyxT == 0>tfor

    ( ) ( ) Laserrea QTTTThnTk ΩΩΩΩ −−+−=⋅∇ 44)( εσr

  • 11SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Model for Phase Transformation

    • Evolution equation for austenitic, ferritic-perlitic, and bainitic transformation of steels:

    )(

    )()(

    T

    TfTf

    dtdf

    ijj

    ijjj eq

    τ

    −=

    jf - proportion of phase j and

    These functions can be obtained by comparison of the predictionprovided by the model with experimental results (i.e. CCT diagram).

    1=∑j

    jf

    )(Tf ijjeq - equilibrium fraction of phase j at temperature T

    )(Tijτ - characteristic time of the transformation (from i to j) at temperature T

  • 12SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Martensitic Phase Transformation

    • Martensitic transformation by Koistinen-Marburger Law:

    )))(011.0exp(1()( TMfTf sm −−−= γ sMT ≤for

    γf - phase proportion of austenite before cooling down to Ms

    SM - initial transformation temperature

  • 13SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Hardness Calculation• Hardness of ferrite (229 HV) (Blondeau et al., 1973)

    HF (HV) = 42 + 223C + 53Si + 30Mn + 12.6Ni + 7Cr + 1Mo + logVr(10 - 19Si + 4Ni + 8Cr +130V)

    • Hardness of bainite (337 HV) (Blondeau et al., 1973)HB (HV) = -323 +185C + 330 Si + 153Mn + 65Ni + 144Cr +

    191Mo + logVr(89+53C- 55Si - 22Mn - 10Ni - 20Cr -33Mo) • Hardness of martensite (HM0 = 800 HV) (Miokovic et al., 2006)• Hardness of tempered martensite (Costa et al., 2005)

    – t1 is tempered martensite start time (the beginning of the thermal cycle in which martensite is tempered)

    – t2 is the final time when the part cools down to room temperature

    mt

    tMMdt

    tRTQAHH

    ⎭⎬⎫

    ⎩⎨⎧

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−−= ∫

    2

    10 )(exp

  • 14SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    • For each thermal cycle– If Tmax > Ac3, then complete austenization– If Tmax < Ac1, then martensite tempered

    • If there are n thermal cycles, the proportion of retained austenite in the final part:

    • Hardness of the material:

    nff ηηηηγγ K3210=

    Hardness Calculation

    ⎟⎠⎞

    ⎜⎝⎛ −−=

    9.90)(exp TM Siη ),,2,1( ni K=

    γγ HfHfHfHfHfH MMMMBBFF ⋅+⋅+⋅+⋅+⋅= 00

  • 15SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Deposition of 11th layer Deposition of 16th layer

    Temperature Contours

  • 16SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Thermal Cycles

    Temperature profile at the center point of each layer

    11 131 3 5 7 9

    15

    t (s)

    (°C)

    MsBs

    Ac3

  • 17SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    0

    500

    1000

    1500

    2000

    2500

    0 10 20 30 40 50

    Tem

    pera

    ture

    (C

    )

    Time (s)

    Ms

    °

    Ac3

    • Martensite is completely tempered at the first layer (HM = 582HV)

    Thermal Cycle (1st layer)

    a

    bd

    c

    j

    f h

    eg

    i

    The proportion of retained austenite is:

    From a to b: fr = 100%*exp[-(420-309)/90.9] = 29.5%

    From c to d: fr = 29.5%*exp[-(420-355)/90.9] = 14.4%

    From e to f: fr = 14.4%*exp[-(420-364)/90.9] = 7.8%

    From g to h: fr = 7.8%*exp[-(420-358)/90.9] = 3.9%

    From i to j: fr = 3.9%*exp[-(420-30)/90.9] = 0.0%

    Hardness of tempered martensite is calculated by integrating the equation from point b to j.

  • 18SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Temperature Ferrite Bainite Martensite

    Phase Contours (t=50s)

  • 19SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 2 4 6 8 10 12

    Distance from the substrate (mm)

    Phas

    e Pr

    opor

    tion

    MartensiteTempered Martensite

    BainiteFerrite

    Phase Proportions• The first 2 layers are

    tempered martensite since the part cools down below the martensite start temperature (Ms) for each thermal cycle

    • Starting from the third layer, the part never cools down to Ms and martensite is not tempered once it forms

    • From the 3rd to 7th layers, bainite forms due to the slow cooling rate, then marteniteforms afterwards with increasing cooling rate

  • 20SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    MeasuredPredicted

    Micro-hardness Measurement and Prediction

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    0 2 4 6 8 10 12Distance from the substrate (mm)

    Mic

    ro-H

    ardn

    ess

    (HV

    )

  • 21SPIE Defense and Security Symposium; April 9 - 13, 2007 — Orlando, FL, USA

    L. Wang, H. Kadiri, S. Felicelli, M. Horstemeyer, P. Wang, @ SPIE 2007

    Conclusion • 3-D model was developed to predict the thermal cycles,

    phase transformation, and hardness in LENS deposition process.

    • The calculated hardness qualitatively agrees with the measured data

    • The microstructure and hardness strongly depends on the thermal history in the deposited part.

    • This model has the potential to control the process-property relationships for the component design optimization to meet the product attributes.

    Modeling of Microstructure Evolution During LENSTM DepositionIntroductionObjectivesThermal Properties (4140)Thermal-Metallurgical ModelElement Activation TechniqueHeat SourceInitial and Boundary ConditionsModel for Phase TransformationMartensitic Phase TransformationConclusion