Modeling of Membrane Sound Absorbers

download Modeling of Membrane Sound Absorbers

of 8

Transcript of Modeling of Membrane Sound Absorbers

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    1/17

    Purdue University 

    Purdue e-Pubs

    Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering

    8-1-2002

    Modeling of Membrane Sound Absorbers J Stuart Bolton Purdue University , [email protected]

     Jinho Song 

    Follow this and additional works at: hp://docs.lib.purdue.edu/herrick 

    Bolton, J Stuart and Song, Jinho, "Modeling of Membrane Sound Absorbers" (2002). Publications of the Ray W. Herrick Laboratories.

    http://docs.lib.purdue.edu/?utm_source=docs.lib.purdue.edu%2Fherrick%2F27&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/herrick?utm_source=docs.lib.purdue.edu%2Fherrick%2F27&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Fherrick%2F27&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/herrick?utm_source=docs.lib.purdue.edu%2Fherrick%2F27&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/herrick?utm_source=docs.lib.purdue.edu%2Fherrick%2F27&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Fherrick%2F27&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/herrick?utm_source=docs.lib.purdue.edu%2Fherrick%2F27&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://docs.lib.purdue.edu/?utm_source=docs.lib.purdue.edu%2Fherrick%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    2/17

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    3/17

    Introduction - Background

     

    Conventional” Sound Absorbing Material

     

    Sound energy dissipation by thermal and viscousinteraction of sound field and material fibers

    -

    boundary layer 

    Sketch of

    Fibrous Material

    sc a ory ow

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    4/17

    Introduction - Background

     

    Conventional” Nonfibrous Material Usages Some environmental needs

    - Healthy Surroundings/Ease of Maintenance- Recycling

    - Moisture-Resistance

    Fibrous materials can be used with impermeable membranesto “tune” their performance

    Fibrous Materialα 

     s

    - Conventionally, membrane does not dissipate any energy

    Fibrous material

    + MembraneMembrane Fibrous Material

    Frequency 

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    5/17

    Introduction –

    Motivation & Objectives Recently, it has been observed that

    stacked sheets of accordion-folded,

    OBJECTIVES:

    Identify the origin of the. .,

    sheets) offer substantial levels of lowfrequency absorption even thoughsuch arrays feature no obviousdissi ative elements.

     

    behavior capacity of sucha treatment

    - Develop models of those

    - Use those models to optimizethe acoustical performance

     Alternating layers of folded mylar 

    -

    HYPOTHESIS:

    Dissipation results fromlosses due to local flexing

    - How do you model this effect?  by curvature (i.e., byfolding) or tension

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    6/17

    Theoretical Model – Theoretical Approach

    REFLECTED WAVE TRANSMITTED WAVE

    I II

    System Model

    INCIDENTWAVE

    TENSIONED MEMBRANE

    Region I : z  jk 

    r on

     jkz 

     I n

     z 

    ner k  J  Bet  z r  P  )(),,(  

     

     Assumed Solutions (Modal Sums)   Boundary Conditions

    Continuity of Velocity :

    Region II :

    Membrane

     z  jk 

    r  N 

    on II 

    n z 

    ner k  J C t  z r  P 

    )(),,(   t  y

     z 

     P 

     j  z 

     I 

    0      t  z  j  z 

     II 

    0   

    Membrane Equation of Motion :

    Displacement : , 0n N  on T  yk  y  II  I 

     f    22

     f  f  c

      , s f c   

    - Dissipation introduced by modeling T as complex : )1(     jT T  o      ( : Loss Factor)

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    7/17

    Theoretical Model – Solution Method

     Apply two velocity continuityboundar conditions and membrane

    Solution Method   System Response(Membrane Displacement)

    Membrane Displacement

    equation of motion on a point-by-

    point basis across the membrane

    Particle

    Position

    I II

    r

    Radius[m]Frequency[Hz]

    y

    ~

     N  A

     A

    ...

    1

    1000

    1200

    1400

    1600

    Membrane Displacement (Top View)

        e    n    c    y     [     H    z     ]

    Number 

    of Point

    at which

    B.C.’s

    applied

     N 

     N 

     B

     B

    ...

    ...

    0

    0

     Matrix

    t Coefficien

    Vector 

    orcing 

    -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

    200

    400

    600

    Radius[m]

         F    r    e    q

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    8/17

    Model Verification – Power Comparison

    Compare power calculated by using Acoustical Solution with power

    Power Comparison

      -

    - Acoustical Solution

    })2*)((Re{1

    a

     I  I  I    dr r u P W      })2*)((Re{1

    a

     II  II  II    dr r u P W     

    Power Dissipated :

    0 0

     II  I ad    W W W    ,

    Should be equal- em rane ase o u on

    })2)((Re{2

    1 **,    

    a

     II  II  I  I md    dr r u P u P W     

    if model

    works properly

    Losses introduced by using )1(     jT T  o  

    })2())((Re{2

    1

    0

    *22

      a

     f    dr r  yi yk  yT      

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    9/17

    Model Verification – Power Comparison

    6

    7

    8x 10

    -7 Using 4 modes

     Acoustical SolutionMembrane Based Solution

    Using 4 membrane modes

    2

    3

    4

    5

    7

    8x 10

    -7 Using 30 modes

     Acoustical SolutionMembrane Based Solution

    102

    103

    0

    1

    8x 10

    -7

    Using 10 modes Acoustical Solution

    Membrane Based Solution

    3

    4

    5

    6

    3

    4

    5

    6

    7

    102

    103

    0

    1

    2

    102

    103

    0

    1

    2

    Usin 10 membrane modes

    Using 30 membrane modes

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    10/17

    Model Verification – Velocity Measurement

    SignalAnalyzer 

    Pre-Amplifier 

    Power 

    Amplifier 

    Microphone Membrane

    Laser Sensor 

    Amplifier 

    n te ac ngSound Source

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    11/17

    Model Verification – Vibrational Modes

    Theory Experiment Absolute velocity of membrane - Experiment Phase

    -0.050

    0.05

    -0.05

    0

    0.050

    0.5

    1

    xy

         |    v     /    p

         |     /     |    v     /    p     |    m    a    x

    -0.050

    0.05

    -0.05

    0

    0.050

    2

    4

    xy

         |    v     /    p

         |     /     |    v     /    p     |    m    a    x

    0.05Magnitude

    0.05Phase1st

     Absolute velocity of membrane - Experiment Phase

    -0.05 0 0.05-0.05

    0

    x

        y

    -0.05 0 0.05-0.05

    0

    x

        y

    -0.050

    0.05

    -0.05

    0

    0.050

    0.5

    1

    xy

         |    v     /    p     |     /     |    v     /    p     |    m    a    x

    -0.050

    0.05

    -0.05

    0

    0.05-2

    0

    2

    xy

         |    v     /    p     |     /     |    v     /    p     |    m    a    x

    0.05Magnitude

    0.05Phase

    2nd 

    -0.05 0 0.05-0.05

    0

    x

        y

    -0.05 0 0.05-0.05

    0

    x

        y

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    12/17

    Model Verification – Experimental Set-up

    SignalAnalyzer 

    Pre-Amplifier 

    Power 

    Amplifier 

    SoundSource

    Anechoic Termination

    Microphone

    Test Sample

    B&K Pulse Speaker Amplifier 

    Computer 

    ys em

    B&K Standing

    Microphones

    Wave Tube

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    13/17

    Model Verif ication – Experimental Results

     

    microphones : P1

    to P4

     

    Z=(1+R)/(1-R)

    • Transmission Loss:

     Normal Incident PressureTransmission Coeff. &

    Reflection Coeff.: T, R 

    TL=20 log 10 (1/|T|)

    • Sound Absorption:

    =1-|R|2

    • Sound Dissipation:“a quick and convenient method

    d = - 

    -or e erm n ng e un amen aacoustical properties”

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    14/17

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    15/17

     Absorption Mechanism –

    Imaginary part of Impedance  Absorption Coefficient

    Membrane with finite-depth backing space

    Man resonancesbecause of

    membrane dynamics

    Frequency [Hz] Frequency [Hz]

    219.0 mkg 

     s     PaT  75 0063.0    ml  1192.0

     Backing n Membranenn   Z  Z  Z  ,,  

    - Absorption peaks when Im{ Zn } = 0

    - Significant sound absorption in narrow frequency regions produced by

    dissi ation in the membrane

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    16/17

     Absorption Mechanism –

      Membranes with various Tensions

    Limp Membrane with finitedepth backing space(Conventional Picture)  Absor tion Coefficient

    0.7

    0.8

    0.9

    1

    To=25

    To=75To=200

    0

    5

    10

    15

    20

      m    (

       Z   )

     PaT  0

     

    0.3

    0.4

    0.5

    0.6

    200 400 600 800 1000 1200 1400 1600-20

    -15

    -10

    -5

    Frequency[Hz]

    Duct only

    Membrane Only

    Sum

    Im(Z)=0

       I

    200 400 600 800 1000 1200 1400 16000

    0.1

    0.2

    Frequency[Hz]

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Theory

        C  o  e   f   f   i  c   i  e  n   t   No loss mechanism

    from the membrane

    Only dissipationcomes from wall losses

    219.0 mkg 

     s    0063.0    ml  1192.0200 400 600 800 1000 1200 1400 16000

    0.1

    0.2

    0.3

    0.4

    Frequency[Hz]

       A   b  s  o  r  p   t   i  o  n eren n s o soun a sorp on

    characteristics with various tension values

    Purdue University Herrick Laboratories

  • 8/19/2019 Modeling of Membrane Sound Absorbers

    17/17

    Conclusions & Future WorkTheoretical models for the various membrane systems were

    ,

    membrane systems A sound absorption mechanism for a tensioned membrane was

    impedance and sound absorption

    The effects of various parameters in the sound absorptionperformance were presented, which can provide guidelines for 

    designing a membrane system to enhance its sound dissipation

    Effect of membrane ermeabilit stiffenin b curvature and use

    of light weight dissipative material in backing space will beconsidered in future

    Purdue University Herrick Laboratories