Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE 2013

23
Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE Optical Metrology 2013 Modeling Aspects in Optical Metrology IV Milan Maksimovic FocalVision & Optics Oldenzaal, The Netherlands Modeling Aspects in Optical Metrology IV, SPIE Optical Metrology, Munich, Germany, 1314. May, 2013

Transcript of Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE 2013

Page 1: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

Modeling and optimization of high index contrast gratings with aperiodic topologies

SPIE Optical Metrology 2013Modeling Aspects in Optical Metrology IV

Milan MaksimovicFocal‐Vision & Optics 

Oldenzaal, The Netherlands

Modeling Aspects in Optical Metrology IV, SPIE Optical Metrology, Munich, Germany, 13‐14. May, 2013

Page 2: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

2

Outline

• Introduction– What is  High Contrast Grating ?

• Modeling methods (brief  outline)– Standard rigorous and selected approximate methods

• Motivation and central question:– Tailoring spectral response of HCG via optimization– How to generate complex (aperiodic) unit cell topology ?

• Selected examples obtained by numerical simulations:– Spectral response under different   complex unit cell topologies

• Concluding remarks  and (some) open questions

Page 3: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

Introduction

High‐Contrast Grating: high index (bars) medium grating  fully immersed in low index medium

Periodic sub‐wavelength structure: period smaller than the wavelength of the incident  wave

Applications:• Ultrathin broadband reflectors for VCSEL (replacement for DBR reflectors)• High‐Q resonator mirrors• Resonant  polarization sensitive filters and beam splitters• Planar flat focusing mirrors (wavefront shaping)• Hollow core waveguides (ultracompact optical coupler and filters)• ….

• Superstrate and substrate are simple low index media (air)• Refractive index is real and frequency independent • Only zero‐th diffraction  order is propagating

Recent review ref.:  Adv. Opt. Photon.  4, 379‐440 (2012).

3

Page 4: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

4

High‐Contrast Gratings: modeling usingRCWA/FMM 

• RCWA/FMM– All quantities expanded in Fourier series,..

• Other rigorous  numerical methods– FEM– FDTD– …

2( ) 2

1, ,TE TM zx z x zk

L

2 22

1TE x n x

k L

2 2

2 21 1

TM x xn x n xk n x

L

Decomposition:TE (with Ey ,Hx,Hz )  & TM (with Hy ,Ex,Ez ) ‐>leading  non‐null components Φ(x,z) ‐ either Ey or Hy

( , ) ( ) ikzx z x e ( ) ( ) ikx x e 2( ) ( ) ( )TE TM x r x L

Outside the grating  filed is expanded in finite number  of propagating and evanescent waves!

Eigenvalue problem, pseudo‐periodicity,… sin

Grating Parameters:Λ ‐ period η ‐the dutytg ‐ grating heightn(x) ‐ refractive index

Plane Wave Excitation: Θ‐incidence angle k0=2π/λ – wave number

Page 5: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

5

High‐Contrast Gratings:modeling theories/methods 

• Coupled (Bloch) Mode Theory:  – Periodic waveguide‐array modes as an expansion basis– Several modes are excited in the wavelength range of interest– Coupling of waveguide‐array modes at interfaces– Dual‐mode regime responsible for most of novel phenomena:

(destructive/constructive ) interference between modes

• Effective Medium Theory:– Assumes single propagating mode: does not capture resonant phenomena in the intermediate regime!

• HCG as an Photonic Crystal– photonic bands originate from the “resonance” of the HCG supermodes,…

• HCG  as an open resonant system – response in terms of resonant excitation of “leaky” modes 

Scattering matrix: 

Resonance representation of the scattering matrix (complex poles /zeros) decomposition

Spectral features =Non‐resonant background + Pole/zero resonance contribution

P. Lalanne,  et. al. , J. LightwaveTechnol.  24, 2442 (2006).

V. Karagodsky , et al.  Opt. Express  20, 10888‐10895 (2012).…..

Adv. Opt. Photon.  4, 379‐440 (2012)

Page 6: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

High‐Contrast Gratings:simple unit cell

HCG with the: period  Λ=0.716μm, duty cycle η=0.7,height tg=140nm, ng=3.48,n0=1; 

HCG with the: period  Λ=0.140μm,duty cycle η=0.3548,  height tg=1494nm, ng=3.2,n0=1; 

Adv. Opt. Photon.  4, 379‐440 (2012).

HCG  with spectral response optimized for broadband high reflectivity or high‐Q resonances

Broadband reflectivityHigh‐Q resonances

Page 7: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

7

HCG exhibiting high‐Q resonances:simple unit cell

Deep subwavelength regime

Near-wavelength regime

Diffraction regime

Interference of  small number of waveguide‐array modes responsible for reflectivity  pattern in “near‐wavelength” regime!

HCG with the: period  Λ=0.716μm, duty cycle η=0.7,  height tg=1.494μm, ng=3.48,n0=1; TE‐polarization 

Page 8: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

8

Spectral response tailoring:how to generate unit cell topology?

Spectral response : resonances positions, number and shape, etc. 

Initial design : one that already possesses desired (spectral ) features → reduction of  computational burden in design and optimization tasks!

Fundamental  grating parameters for optimization of spectral response (simple unit cell)

• period, thickness, duty cycle

Extended feature/parameter set (complex unit cell)• transition points in the unit cell• symmetry of the unit cell 

How to generate initial unit cell topology?• Perturbations (“defects”) of the simple unit cell• Randomly generated  transition points• Deterministic aperiodic sequence 

OPTIMIZATION OF SPECTRAL RESPONSE

1. Initial  parameters:excitation + structure

2. Computation: 1. Spectral Response2. Merit Function + Constraints

3. Stop or Modify parameters and repeat 2.4. Final Design  

OPTIMIZATION (2 step approach)

1. Optimize structure with the simple unit cell2. Generate  new complex  unit cell topology 

(global parameters fixed)3. Re‐optimize spectral response with 

complex  unit cell topology4. Final Design

Page 9: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

9

HCG with the unit cell  topology  derived from perturbations

Refractive index profile for:a) basic unit cell;  b)‐ c) symmetrically perturbed unit cell; d) asymmetrically perturbed unit cell

1) Start with the simple unit cell (defined transition points)2) Generate new transition points by the “cut and split”  procedure3) Transition points shift: Δx=pηΛ=pLH4) Parameter p controls the strength of perturbation

xxxxxxxxxxxx cp

cppp 43

022

011 ,,,

xxxxxxxxxxxxx pppp 2/,2/,, 01

026,5

013

022

011

Hc Lpxxpxxxx 01

02

02

01 ,2/

01x

02x

1px

cx

2px3

px 4px

ηΛ=LH

Λ

Page 10: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

10

HCG exhibiting broadband high reflectivity :symmetric perturbation of the unit cell

Example HCG optimized for broadband reflectivitySymmetric perturbations :• Spectral shape does not change (no 

resonances)! • Bandwidth and central wavelength shift

Unit cell  perturbations by “cut and split” procedure

HCG with the: period  Λ=0.620 μm, duty cycle η=0.3548,  height tg=0.140 μm, ng=3.2,n0=1; TE‐polarization 

Page 11: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

HCG exhibiting broadband high reflectivity :field localization

|Ey| |Hy| @ resonance

Page 12: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

12

HCG resonances  with  the symmetric and asymmetric perturbations of the unit cell

Transition points shift: Δx=pηΛ

a) p=0.025b) P= 0.05c) p= 0.075 d) p=0.1

HCG with the: period  Λ=0.620 μm, duty cycle η=0.3548,  height tg=0.140 μm, ng=3.2,n0=1; TE‐polarization 

a)

b)

c)

d)

• Symmetry breaking  ‐> spectral  resonances! • Excitation of previously non‐excited modes…

Page 13: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

13

HCG exhibiting broadband high reflectivity :resonances under the oblique incidence

• Resonances (spectral reflectivity  “anomalies”) appear under the oblique incidence!• Higher  diffraction order(s)  become(s) propagating under the oblique incidence!

HCG with the: period  Λ=0.620 μm, duty cycle η=0.3548,  height tg=0.140 μm, ng=3.2,n0=1; TE‐polarization 

Page 14: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

14

HCG reflectivity: the symmetric and asymmetric perturbations of the unit cell

Spectral reflectivity :   periodic structure (left), symmetrically perturbed structure with parameter p=0.1 (middle) and asymmetrically perturbed structure with the parameter p=0.1 (right)

Symmetry breaking ‐> split in the parameter space!

Page 15: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

HCG reflectivity: randomly generated(asymmetric) transition points within unit cell

15

• Transition points in the unit cell generated from uniform distribution in the interval (0,1)• Total  thickness constrained to be within 1%  difference from the  initial unit cell

Resonances interaction ‐> crossing and anti‐crossing signature!

Page 16: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

16

HCG exhibiting high‐Q resonances:symmetrically perturbed  unit cell

Reflectivity for a symmetrically perturbed structure with p=0.1 (solid) and unperturbed structure (dashed)

Filed localization: “hot spots”in the free space between grating bars!  

Resonant line shape:  Lorentzian ↔ Fano type!Unit cell symmetry preserved  under perturbation!

HCG with the: period  Λ=0.716μm, duty cycle η=0.7,  height tg=1.494μm, ng=3.48,n0=1; TE‐polarization 

|Ey| @ resonance

Page 17: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

17

HCG exhibiting high‐Q resonances:asymmetrically perturbed  unit cell

Original structure operates  in the “deep” subwavelength regime! 

Symmetry breaking in the unit cell enables excitation of resonances!

|Ey|  close to resonances 2.6966,  2.9337, 3.107  respectively.

Spectral reflectivity for periodic (dashed) and asymmetrically perturbed structure (solid) Angular dependence at resonance!

Page 18: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

18

a) basic periodic structure b) scaled structure according to 3rd generation of Thue-Morse sequence c) scaled structure according to “deformed” 4th generation of Thue-Morse sequence

HCG unit cell transition points deterministically generated from aperiodic sequence

Photonic aperiodic superlattices ( photonic quasi‐crystals) offer rich variety of complex patterns…

Aperiodic sequence of letters over finite alphabet:• Associate letters of the sequence with the high‐ or low‐ index material  (H) and (L)• Example: Thue‐Morse (model aperiodic) sequence formed by substitutions  L→LH  and H → HL

• Several first generations ( initiator L):      L, LH, LHHL, LHHLHLLH,….Generate transition points by re‐scaling  simple unit cell (initial) structure:

1. Start with initial simple unit cell: η‐duty cycle, Λ –period 2. Select generation (n) with the NH=NL=2n (number of letters in the sequence) 3. Scaled (normalized) thicknesses:  lH=η/NH and lL=(1‐η)/NH4. Generate transition points according to chosen sequence (repeated letters interpreted as double thicknesses)

Page 19: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

19

HCG reflectivity:3rd generation Thue‐Morse sequence based unit cell

• Additional resonances not present in the simple unit cell HCG• Localization of  field (“hot spots”) outside the grating bars• Resonances moved into the (previously) deep subwavelength

domain

HCG with the: period  Λ=0.716μm, duty cycle η=0.7,  height tg=1.494μm, ng=3.48,n0=1; TE‐polarization 

Page 20: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

HCG reflectivity  for “perturbed” 3rd generation Thue‐Morse sequence based unit cell

HCG with the: period  Λ=0.620 μm, duty cycle η=0.3548,  height tg=0.140 μm, ng=3.2,n0=1; TM‐polarization 

Page 21: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

21

• Hierarchical fragmentation of the spectral response• Increasing the number of resonances in the given spectral range• Unit cell symmetry switches between subsequent generations

• What is the largest generation number accessible subject to   fabrication resolution and tolerances? 

HCG reflectivity  for 3rd &  “deformed” 4th generation Thue‐Morse sequence based unit cell

• Regular  aperiodic structure ‐> generated according to deterministic aperiodic  sequence• Deformed aperiodic structure ‐> re‐shuffled regular strucure

Page 22: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

22

Concluding remarks / Questions 

We demonstrated on selected examples that:• HCG unit cell topology  influences strongly spectral response and field distributions at resonances• Symmetry of the unit cell (perturbations) plays major role in shaping spectral response under normal and oblique 

incidence (number and position of resonances)• Spectral resonance number, position, line shape and field localization  may  be controlled with complex  unit cells:

– Lorentzian shape transforms into the Fano‐type resonance shape and vice versa under “perturbations”– Resonances introduced into the (previously) deep subwavelength region– Formation of the “hot‐spots “ in the free space

• Unit cell designed using deterministic aperiodic sequences may give rise to a highly fragmented spectral response displaying hierarchical structure

• Designed  complex unit cell topology  as a the efficient initial topology prior to global optimization procedure

Open questions: 

• Is there an optimal choice of initial unit cell topology ?• What is the best choice of  modeling method ?• Existence and stability of resonances under fabrication constrains,  resolution and  tolerances ?• Computational model, conditions and constraints for (robust) topology optimization ?• What is the influence of finite number of periods, material dispersion and absorption on HCG design?• …..

Page 23: Modeling and optimization of high index contrast gratings with aperiodic topologies SPIE  2013

Milan [email protected]

SPIE Optical Metrology 2013Modeling Aspects in Optical Metrology

Modeling and optimization of high index contrast gratingswith aperiodic topologies