MODELACION NUMERICA DEL TRANSPORTE DE SEDIMENTOS ...

103
Director for Research and Education, CREAR Dept. of Civil and Environmental Engineering (CEE) Dept. of Geology and Planetary Science (GPS) University of Pittsburgh, USA Jorge D. Abad 1 & Alejandro Mendoza 1 Assistant Professor Center for Research and Education of the Amazonian Rainforest www.crearamazonia.org MODELACION NUMERICA DEL TRANSPORTE DE SEDIMENTOS MORFOLOGIA http://www.pitt.edu/~jabad/ Collaborators: @ University of Pittsburgh: - Center for Latin American Studies (CLAS) - Alejandro Mendoza (Postdoc) - Christian Frias, Ronald Gutierrez, Kristin Dauer (G) - Adrian Garcia, Brian Hone, Collin Ortals (UG) Programa Seminario Internacional de Potamología “JOSÉ ANTONIO MAZA ÁLVAREZ” IV

Transcript of MODELACION NUMERICA DEL TRANSPORTE DE SEDIMENTOS ...

��

�Director for Research and Education, CREAR �

Dept. of Civil and Environmental Engineering (CEE)�Dept. of Geology and Planetary Science (GPS)�

University of Pittsburgh, USA " �

Jorge D. Abad1 & Alejandro Mendoza�1Assistant Professor�

Center for Research and Education of the Amazonian Rainforest www.crearamazonia.org �

MODELACION NUMERICA DEL TRANSPORTE DE SEDIMENTOS à MORFOLOGIA�

http://www.pitt.edu/~jabad/ �

Collaborators: �@ University of Pittsburgh: �-  Center for Latin American Studies (CLAS)�-  Alejandro Mendoza (Postdoc)�-  Christian Frias, Ronald Gutierrez, Kristin Dauer (G) �-  Adrian Garcia, Brian Hone, Collin Ortals (UG) �

Programa GeneralCurso básico dehidráulica !uvial

Jiutepec, Morelos, México. 22 y 23 de octubre, 2013.

Seminario Internacional de Potamología“JOSÉ ANTONIO MAZA ÁLVAREZ”IV

TARIFAS, INSCRIPCIÓN Y FORMA DE PAGO(LOS COSTOS INCLUYEN IVA)

SeminarioProfesionales: $5,000.00Estudiantes: entrada libre a las sesiones técnicas previa inscripción al evento y presentación de credencial de estudiante vigente

Curso básico de Hidráulica FluvialProfesionales: $2,500.00 Estudiantes: $1,000.00 (previa inscripción al curso y presentación de credencial de estudiante vigente)

Para asistir al Seminario y al curso básico es requisito llenar la hoja de inscripción y cubrir la cuota correspondiente mediante depósito bancario o transferencia a favor del IMTA, a la cuenta IMTA Ingresos Propios No. 07501436317 del banco SCOTIABANK INVERLAT S.A., Número de sucursal 01 JIUTEPEC MORELOS, Plaza 075, Matriz y/o Sucursal 1717 JIUTEPEC, o bien mediante transferencia electrónica a la CLABE 044543075014363171, Dígito Referenciado 14084. El registro al seminario deberá realizarse por internet desde el micrositio del evento anunciado en la página web del IMTA: http://www.imta.gob.mx (Sección TEMAS DE INTERÉS - Foros, seminarios y eventos)

COMITÉ ORGANIZADOR

PresidenteM. I. Víctor Javier Bourguett Ortíz Tel: 777 [email protected]

Coordinador CientíficoM. A. José Raúl Saavedra Horita Tel: 777 3293600 Ext. 887, [email protected]

Comité TécnicoDr. Pedro Antonio Guido Aldana Tel: 777 3293600 Ext. [email protected]

M. en C. Alberto Güitrón de los Reyes Tel: 777 [email protected]

Lugar: Centro de Capacitación - IMTA.

Foto

: Jav

ier

de la

Maz

aRí

o U

sum

acin

ta, E

do. d

e C

hiap

as.

Σ ([1]  +  [2]  +  [3]  +[4]+…)  =  RIVER  DYNAMICS  

[4]FLUID MOTION

[3]SEDIMENT TRANSPORT

[2]BED MORPHOLOGY

[1]PLANFORM DYNAMICS

RIVERS | PLANFORM| BED MORPHOLOGY AND SED. TRANSPORT| HYDRODYNAMICS| GENERALITITES

Mean and fluctuating velocities ●  Turbulence originates from the instability of laminar flows ●  The parameter that plays the most important role in this process is the Reynolds number

νHU

=Re

Re=26 Re=2000

Re=10000 Re~5x105

Wake far behind the obstacle

Re=1.54

H U

Turbulence modeling ●  We can think of turbulence as a

Ø Collection of eddies flowing Ø Largest eddies of size L and smallest eddies of size h Ø Eddies interact in a very complex manner Ø This interaction happens in a self-similar way

u Turbulent flow

Measuring mean and turbulent flow

'iii uuu +=

x z y

Free surface

ui = (u,v,w)

Measuring mean and turbulent flow

x z y

Free surface

ui = (u,v,w)

Instantaneous flow equations

Different Approaches to Modeling Turbulent Flows

Eddy size

Ener

gy d

ensi

ty

in

RANS

LES

DNS

out transfer

●  DNS: direct numerical simulation (resolves all scales)

●  LES: Large Eddy Simulation (resolves large and intermediate scales and models small scales)

●  RANS: Reynolds Averaged Navier-Stokes (resolves large scales and models intermediate and small scales)

resolved modeled RANS

modeled resolved LES

resolved DNS C

ompu

tatio

nal c

ost i

ncre

ases

Scal

e of

sim

ulat

ion

incr

ease

s

Empi

rical

mod

elin

g in

crea

ses

Comparison of Modeling Approaches

Eddy size

Eddy

ene

rgy

in

out

RANS

LES DNS

LES (Large Eddy Simulation)

15 16

WSE WSE

Abad et al. (2013), ESPL

RANS modeling: KINOSHITA CHANNEL

Modeling in river-type systems

Eddy size

Mor

phod

ynam

ic

RANS

LES

DNS

1D, 2D and 3D flow models

3D flow equations

x z y

Free surface

Channel bottom

u,v,w

h

u(x,y,z),v(x,y,z),w(x,y,z) h(x,y,z)

[1] Mass conservation

[2] x-momentum

[3] y-momentum

[4] z-momentum

x z y

U,V Free surface

Channel bottom

h

U(x,y),V(x,y) h(x,y)

2D flow equations

[1] Mass conservation

[2] x-momentum

[3] y-momentum

x z y

U Free surface

Channel bottom

h

U(x) h(x)

1D flow equations 1.2. FLUID GOVERNING EQUATIONS 9

(Cf = 9.81n2h�1/3). Figure 1.7 shows an example where the depth-averagedform of the governing equations were used to simulate the fluid motion arounda bend (Abad et al., 2008a). Notice only horizontal velocities are computed.

1.2.3 One-dimensional (1D) form

Similarly, by integrating the 3D governing equation in a cross section, the 1Dcross-averaged governing equations are derived as:

@A

@t+

@Q

@x= 0 (1.9)

Figure 1.8: Example of simulation using 1D governing equations. Simulationperformed using HEC-RAS model

@Q

@t+

@

@x(�U2A) + gA

@h

@x= gA(So � Sf ) (1.10)

Where Q is the water discharge or flow rate, A is the cross-section area, � isthe momentum coe�cient, So and Sf are the bed and friction slopes respectively.Figure 1.8 shows an example where the 1D form of the governing equationswere used to simulate the hydrodynamics for the Matanza-Riachuelo creek inArgentina.

1.2. FLUID GOVERNING EQUATIONS 9

(Cf = 9.81n2h�1/3). Figure 1.7 shows an example where the depth-averagedform of the governing equations were used to simulate the fluid motion arounda bend (Abad et al., 2008a). Notice only horizontal velocities are computed.

1.2.3 One-dimensional (1D) form

Similarly, by integrating the 3D governing equation in a cross section, the 1Dcross-averaged governing equations are derived as:

@A

@t+

@Q

@x= 0 (1.9)

Figure 1.8: Example of simulation using 1D governing equations. Simulationperformed using HEC-RAS model

@Q

@t+

@

@x(�U2A) + gA

@h

@x= gA(So � Sf ) (1.10)

Where Q is the water discharge or flow rate, A is the cross-section area, � isthe momentum coe�cient, So and Sf are the bed and friction slopes respectively.Figure 1.8 shows an example where the 1D form of the governing equationswere used to simulate the hydrodynamics for the Matanza-Riachuelo creek inArgentina.

[1] Mass conservation

[2] x-momentum

Sediment Transport Processes And Sediment Conservation Equation (Exner)

Bed  load  and  suspended  load  

suspended/wash load

bedload

Schmeeckle

( )Ecvqt

)1( bsbp −+⋅∇=∂

η∂λ−

-

ybyxbxb eqeqq +=

xy

z sediment bed

( ) 0455.0~037.0,7.5q c5.1

cb =ττ−τ= ∗∗∗∗

( )( ) 05.0,17q cccb =ττ−ττ−τ= ∗∗∗∗∗∗

( )( ) 05.0,7.074.18q cccb =ττ−ττ−τ= ∗∗∗∗∗∗

∗−τ+

−τ−

+=

π− ∫

b

b2)/143.0(

2)/143.0(

t

q5.431q5.43dte11

2

( ) 03.0,12.11q c

5.4

c5.1b =τ⎟

⎟⎠

⎞⎜⎜⎝

τ

τ−τ= ∗

∗∗∗

Fernandez Luque & van Beek (1976)

Ashida & Michiue (1972)

Engelund & Fredsoe (1976)

Einstein (1950)

Parker (1979) fit to Einstein (1950)

A BEDLOAD TRANSPORT RELATIONS FOR UNIFORM SEDIMENT (Parker’s e-book)

)(qqor)(qq cbbbb∗∗∗∗∗∗∗ τ−τ=τ=

19  

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0.01 0.1 1τ*

q b*

EAMEFFLBSandP approx EFLBGrav

PLOTS OF BEDLOAD TRANSPORT RELATIONS (Parker’s e-book)

E = Einstein AM = Ashida-Michiue EF = Engelund-Fredsoe P approx E = Parker approx of Einstein FLBSand = Fernandez Luque-van

Beek, τc* = 0.038 FLBGrav = Fernandez Luque-van

Beek, τc* = 0.0455

3D simulation - Hydrodynamic

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

DATA"-  Water slope and bed elevation calculation""

A slope of 1E-4 from gaging stations Mt. Carmel and New Harmony was calculated. Using that slope and the elevation of Mt. Carmel on February 2, 2012 a water surface was created for Maier Bend. Using the water surface and the MBES data the bed elevation surface was obtained.

FIELD MEASUREMENTS – WHAT DO WE NEED TO MEASURE?"

3D MODELING – MAIER BEND"

1)  Existing condition – Lidar (2011)

3D MODELING – MAIER BEND"1)  Existing condition - MBES (2012)

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

DATA"-  Water slope and bed elevation calculation""

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

DATA"-  MBES + Lidar + point bar (GPS)""

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

DATA"-  aDcp – details of the secondary flows, streamwise velocities and Umag""

CS3(011-014)

CS4(016-019)

CS5(021-024)

CS6(026-029)

CS10(044-045)

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

DATA"-  aDcp – details of the secondary flows, streamwise velocities and Umag""

CS4(016-019)

Umag [cm/s]

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

DATA"-  aDcp – details of the secondary flows, streamwise velocities and Umag"" Umag

[cm/s]

CS5(021-024)

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

DATA"-  aDcp – details of the secondary flows, streamwise velocities and Umag"" Umag

[cm/s]

CS6(026-029)

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

DATA"-  aDcp – details of the secondary flows, streamwise velocities and Umag"" Umag

[cm/s]

CS7(031-034)

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

PRE-PROCESSING FOR 3D MODEL"-  Details of Mesh generated (unstructured or structured)"

Model Domain

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

PRE-PROCESSING FOR 3D MODEL"-  Details of Mesh generated (unstructured or structured)"

Background Mesh Δs=2m Δn=2m Δz=0.5m

z s

n

Mesh was generated with OpenFOAM tool snappyHexMesh. It uses a background Hexahedral mesh and an STL surface to create the final mesh.

STL surface

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

PRE-PROCESSING FOR 3D MODEL"-  Details of Mesh generated (unstructured or structured)"

Mesh of hexahedral , polyhedra and pyramids elements

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

RESULTS"-  Flow in 3D visualization (velocities)- cavities "

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

RESULTS"-  Comparison between aDcp and Modeled (Umag, secondary flows, etc)"

CS6(026-029)

Umag [cm/s]

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

RESULTS"-  Comparison between aDcp and Modeled (Umag, secondary flows, etc)"

CS7(031-034)

Umag [cm/s]

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

RESULTS"-  Comparison between aDcp and Modeled (Umag, secondary flows, etc)"

Umag [cm/s]

CS8(036-039)

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

RESULTS"-  Prediction of bed and bank shear stresses"

Regular Mesh

1) EXISTING CONDITION: Lidar (2011)+MBES (2012)"

RESULTS"-  Prediction of bed and bank shear stresses"

Fine Mesh

2) NO DUNES"

Gutierrez et al. (2013) –JGR-ES"-  Figure showing 1D wavelet"

2) NO DUNES"

Gutierrez et al. (2013) –JGR-ES"-  Figure showing 3D bed – not working"

2) NO DUNES"

Gutierrez et al. (2013) –JGR-ES"-  Figure showing smoothed bed condition"

2) NO DUNES"

Gutierrez et al. (2013) –JGR-ES"-  Figure showing the mesh"

Steady + unsteady bed morphology

η(t) = <η> + η’(t) <η>

η’(t)

Dunes

η(t) = <η> + η’(t)

<η>

η’(t) Bed profiles at centerline

<qb> ~ 9.68E-07 m2/s

<qb> qb’

Bed load fluxes

qb(t) = <qb> + qb’(t)

Steady (Point bars) + perturbed components (bars)

1D SEDIMENT TRANSPORT MORPHODYNAMICS with applications to

RIVERS AND TURBIDITY CURRENTS © Gary Parker November, 2004

51

TOUR OF BEDFORMS IN RIVERS: ALTERNATE BARS

Alternate bars in the Naka River, an artificially straightened river in Japan. Image courtesy S. Ikeda.

Alternate bars occur in rivers with sufficiently large (> ~ 12), but not too large width-depth ratio B/H. Alternate bars migrate downstream, and often have relatively sharp fronts. They are often precursors to meandering. Alternate bars may coexist with dunes and/or antidunes.

1D SEDIMENT TRANSPORT MORPHODYNAMICS with applications to

RIVERS AND TURBIDITY CURRENTS © Gary Parker November, 2004

52

BEDFORMS IN THE LABORATORY AND FIELD: ALTERNATE BARS Alternate bars in a flume in Tsukuba University, Japan: flow turned low.

Image courtesy H. Ikeda.

Alternate bars in the Rhine River between Switzerland and Lichtenstein.

Image courtesy M. Jaeggi.

1D SEDIMENT TRANSPORT MORPHODYNAMICS with applications to

RIVERS AND TURBIDITY CURRENTS © Gary Parker November, 2004

53

BEDFORMS IN THE LABORATORY AND FIELD: MULTIPLE-ROW (LINGUOID) BARS

Linguoid bars in a flume in Tsukuba University, Japan: flow turned off.

Image courtesy H. Ikeda. Linguoid bars in the Fuefuki River, Japan. Image courtesy S. Ikeda.

ρs=2566.5 Kg/m3

Grain Size Distribution

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10Grain size (mm)

Perc

ent f

iner

D50=0.832 mm

Dg=0.828 mmσ

g=1.234<1.60 (well sorted)

λp=0.4 ( ) encsq *** ττφα −=

Designing the experiments: Obtaining βC and βR à Sediment transport

β

λπ 02 hk =cc k,βRR k,β

Lisle et al. (1997)

Free bars in straight channels

λ

B2

Free bars regime

Pool

Pool

Pool

Pool Free bars in HAMC

Whiting and Dietrich (1993)

Modeling of forced and free bars Alejandro Mendoza (Postdoc)

Point  bars   Free  bars  

Tools  2D  3D  

•  Telemac-­‐Mascaret  http://www.opentelemac.org/  

•  Mike  21C  http://mikebydhi.com/Products/WaterResources/MIKE21C.aspx  

•  Delft  3d  http://www.deltaressystems.com/hydro/product/621497/delft3d-­‐suite  

Bed  Morphology  

•  Telemac-­‐2D  – Solves  St.  Venant  equations  – Utilizes  FEM  in  irregular  grids  

•  Sisyphe  – Computes  sediment  transport  with  empirical  formulas  

– Applies  corrections  for  bed/bedforms  effects  and  secondary  flows  when  using  Telemac-­‐2D  

FORCED  BARS  Hooke  experiments  

Hooke  experiments  

After  Hooke  (1975)  (Journal  of  Geology)  

Experiments  

•  Q  =  [10-­‐50.5]  l/s  •  Recirculated  sediment  •  diameter  =  0.30  mm  •  Density  =  2700  kg/m3  

Mesh  and  Boundary  Conditions  

HQL  

QS  

Inlet   Outlet  

Friction  coefficient  

Sediment  roughness  

Sediment  transport  

•  qs  =  2E-­‐6  m2/s  (from  experiments)  

•  Calibration  using  different  equations  

•  Roughness  of  sediment  particles  

•  Use  of  corrections  for  bed  slope  and  particle  trajectory  

Q=20  l/s  

Q=50.5  l/s  

Results  for  Q=20  l/s  

Hooke  (1975)  (Journal  of  Geology)  

FREE  BARS  Lanzoni  Experiments  

Lanzoni  (2000a)  WRR  •  Development  of  alternate  bars  in  ripple  and/or  covered  beds  

•  Flume  55  m  long  1.5  m  wide  •  Sediment  recirculation,    •  Qs  =  1.05E-­‐5  m2/s  (converted  from  Qs  =  94.5  l/h  pores  included)  

•  Sediment  characteristics  – d  =  0.48  mm  – ρ  =  2650  kg/m3  – Q  =  [25-­‐47]  l/s  

More  experiments  for  free  bars  

•  Modeling  is  done  with  Telemac-­‐2D  and  Sisyphe  •  Equation  selected  was  Meyer-­‐Peter  and  Mueller.  Since  Telemac  computes  µ  =  c’f/cf  with  c’f  from  skin  friction  calculated  with  Nikuradse,  the  sediment  transport  in  Sisyphe  was  calibrated  with  ks  =  3.6D50  

Sediment  recirculation    

Q=  30  l/s  Initial  perturbation:  Bump  in  the  inlet    

Bed  evolution  

Lanzoni  [2000a]  (Table  2,  run  1505)  Wavelength  =  10.0m  Bar  height  =  7.7  cm  celerity  =  2.8  m/h  

72  HRS  SIMULATION  

Since    bars  are  advected  together  with  the  bump,  a  permanent  perturbation  is  needed  

Results  

•  Evolution  of  the  bed,  right  bank  •  Profiles  every  60  min.  •  Wavelength  10  m  aprox.  (Lanzoni  

measured  10m)  •  Celerity  2.2  m/h  (Lanzoni  

measured  2.8  m/h)  •  Bar  height  8  cm  (7.7  from  

Lanzoni)  

Important  aspects  for  bed  morphology  modeling  

•  Measurements  of  sediment  transport  from  field  

•  Calibrate  the  sediment  equation  in  order  to  reproduce  measurements  

 

RVR  Meander  (www.rvrmeander.org)  

Jorge  D.  Abad1,  Davide  Mo:a2,  Eddy  J.  Langendoen3,    Roberto  Fernandez2,  Nils  O.  Oberg2,  Marcelo  H.  Garcia2  

     

4River Centerline

Valley Centerline

RVR Meander User Interface

0

5

10

15

20

25

30

35

MigratedCenterlines (yrs)

2D Output

1.1 - 1.5

0.8 - 1.1

0.5 - 0.8

1.1 - 1.3

0.8 - 1.1

0.5 - 0.8Velo

city

Mag

nitu

de (m

/s)

After 5 years After 35 years

2.1 - 3.5

0.6 - 2.1

-0.9 - 0.6

1.9 - 3.2

0.6 - 1.9

-0.8 - 0.6

Wat

er D

epth

(m)

11.9 - 16.6

7.1 - 11.9

2.3 - 7.1

9.7 - 13.4

5.9 - 9.7

2.2 - 5.9

Shea

r Str

ess

Mag

nitu

de (P

a)

1D Output

Floodplain HeterogeneityBasic Input

1 Dept. of Civil and Environmental Engineering, University of Pittsburgh 2 Ven Te Chow Hydrosystems Laboratory, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign 3 USDA-ARS National Sedimentation Laboratory, Oxford, Mississippi

Meandering  scales  Somewhere  near  Detroit  

Pictures  courtesy    Eddy  Langendoen  

λv Α

Meandering  scales  (λ)  With  the  ongoing  effort  in  both  the  United  States  and  Europe  to  re-­‐naturalize  highly  modified  streams  à  more  development  of  GIS  Engineering  Tools  are  needed  

Proposed  alignments  for  re-­‐meandering  of  Trout  Creek,  Lake  Tahoe,  California.  

US reach - Predesign

US reach - Design

Meandering  scales  (Α)  

Meandering  scales  –  free?  Near  Fargo,  ND  (Red  River)  

RVR  MEANDER  (classical  approach)  

Typical  output  of  linear  models  

Ikeda  et  al.  (1981)  

RVR  MEANDER  (the  classical  approach)  Classic  migraZon-­‐coefficient  method  for  migraZon  (Ikeda  et  al.  1981)  

The   coefficient   E0   is   usually   obtained   via   calibraSon   against   historic   channel  centerlines.    

LimitaZons  of  classic  approach  based  on  calibrated  migraZon  coefficient:    q   it  predicts  a  smooth  and  “conSnuous”  migraSon  pa:ern;  q    linearity   of   the   expression:   it   does   not   explicitly   account   for   local,   episodic  mass  failure  mechanisms;  q   the  formulaSon  does  not  account  for  an  erosion  threshold;  q   it  does  not  consider  the  effect  of  the  bank  geometry  either;  q   it  does  not  consider  the  impact  of  the  verScal  heterogeneity  of  the  bank  materials,  horizontal  could  be  incorporated  changing  Eo  

Hickin, E. J. (1974). The development of meanders in natural river channels: American Journal of Science, 274, 414-442

Complex  planform  pa_erns  

RVR   Meander:   simplified   two-­‐dimensional   (2D)  hydrodynamic  and  migraSon  model   (Abad  and  Garcia,  2006),  based  on  migraSon  coefficient  approach    

RVR  MEANDER  (current  approach)  The  RVR  Meander  pla_orm  merges  the  funcSonaliSes  of  the  first  version  of  MEANDER  (Garcia,  Bi:ner,  and  Nino,  1994)  and  RVR  Meander  (Abad  and  Garcia,  2006)  with  CONCEPTS  (Langendoen  and  Simon,  2008).  

CONCEPTS   (CONservaSonal   Channel   EvoluSon   and  Pollutant   Transport   System):   one-­‐dimensional   (1D)  hydrodynamic   and   morphodynamic   model   (Langendoen  and   Alonso,   2008;   Langendoen   and   Simon,   2008;  Langendoen  et  al.,  2009)  

The  new  plaborm  q   is  wri:en  in  C++  language;  q    is   composed   of   different   libraries   (preprocessing,   hydrodynamics,   bank   erosion,   migraSon,   filtering,  plofng,  and  I/O);    q   stand-­‐alone  for  Windows  and  Linux  operaSng  systems  and  interface  in  ArcGIS-­‐ArcMap.  

RVR  MEANDER  (current  approach)  

Typical  output  of  linear  models  

Ikeda  et  al.  (1981)  

The  hydraulic   (fluvial)  erosion  rate  E∗,   in   the  horizontal  direcSon,   is  modeled  using  an  excess  shear  stress  relaZon,  typical  of  cohesive  material.  

Bank erosion

Jet  Test  for  in  situ  measure  of  erosion-­‐rate  coefficient  and  criZcal  shear  stress.  

Cohesive  Strength  Meter  for  in  situ  measure  of  criZcal  shear  stress.    

Erosion-­‐rate  coefficient  

CriZcal  shear  stress  

RVR  MEANDER  (current  approach)  

UncertainZes  on  q   Stress  acSng  on  the  bank  τ*  (from  modeling)  q   CriScal  shear  stress  τ*c    (from  field)  q   Erosion-­‐rate  coefficient  M*  (from  field)  

Hydraulic  erosion  rate  

Shear  stress  acZng  on  bank  

Bank  materials  composed  of  fine-­‐grained  cohesive  sediments.  Bank  erosion:  combinaSon  of  fluvial  shear  erosion  and  gravitaZonal  mass  failure  processes.    Depending   on   shape   of   bank   profile   and   physical  properSes  of  the  bank  materials,  any  one  of  the  following  mass  failure  mechanisms  might  be  observed      

q   planar    q   rotaSonal    q   canSlever  q   piping  or  sapping  

Planar  failure  Planar  failure  

RotaZonal  failure    

CanZlever  failure  Piping  

RVR  MEANDER  (current  approach)  

Pictures  courtesy    Eddy  Langendoen  

Mo:a,  D.,  Abad,  J.D,  Langendoen,  E.J.,  Garcia,  M.H.,  2011.  A  simplified  2D  model  for  meander  migra:on  with  physically-­‐based  bank  evolu:on.  Geomorphology  

[1]  RVR  MEANDER:  MC  vs  PB  

Aerial  pictures  of  the  Mackinaw  River  in  the  years  1951  and  1988.    

Reach   of   the   Mackinaw   River   in   Illinois  located   in   Tazewell   County   about   15  kilometers   upstream   of   the   juncSon   of  the  Mackinaw  River  with  the  Illinois  River.  

Mackinaw  River    study  reach.  

flow  

flow  

The   proposed   approach   showed  significant   improvements   over   the  classic   approach   in   predicSng   the  observed   migraSon   in   the   period  1951-­‐1988,  both  in  terms  of    

q   shapes    q   predicZon  error  

q Compound   loops   are   captured   by  PB    

Test for natural river

Mackinaw   River   study   reach:  historic   and   predicted   centerlines  in  1988.  Flow   is   from  right   to   lei  (Mo_a  et  al.,  2011).  

flow  

flow  

flow  

MC2  

MC1  

PB  

[1]  RVR  MEANDER:  MC  vs  PB  

Mo:a,  D.,  Abad,  J.D,  Langendoen,  E.J.,  Garcia,  M.H.,  2012.  The  effects  of  floodplain  heterogeneity  on  meander  planform  shapes.  Water  Resources  Research  

[2]  HORIZONTAL  HETEROGENEITY  

Single  realizaZon   All  realizaZons  

Mo:a,  D.,  Abad,  J.D,  Langendoen,  E.J.,  Garcia,  M.H.,  2012.  The  effects  of  floodplain  heterogeneity  on  meander  planform  shapes.  Water  Resources  Research  

[2]  HORIZONTAL  HETEROGENEITY  

Single  realizaZon   All  realizaZons  

Effects   of   length   scale   of  floodplain   heterogeneity  à  the  larger  the  scale    à   more   migrated   centerline  variability  

Mo:a,  D.,  Abad,  J.D,  Langendoen,  E.J.,  Garcia,  M.H.,  2012.  The  effects  of  floodplain  heterogeneity  on  meander  planform  shapes.  Water  Resources  Research  

[2]  HORIZONTAL  HETEROGENEITY  

High-­‐frequency   meander   bends  are  starZng  to  appear  

Single  realizaZon   Single  realizaZon  

Vertically homogeneous

Tblock = 50 daysVertically heterogeneous

Station [m]

Elevation[m]

-17 -16 -15 -14 -13

-3

-2

-1

0

1

2

2 layers with different erodibility

Layer 1

Layer 2

Station [m]

Elevation[m]

-17 -16 -15 -14 -13

-3

-2

-1

0

1

2

2 layers with same erodibility

Layer 2

Layer 1

VerZcal  heterogeneity  affects  canZlever  failure  volumes  and  therefore  migraZon    Homogeneous  migrates  at  higher  rates  

Area of vertical heterogeneity for erodibility

[3]  VERTICAL  HETEROGENEITY  

wse  

wse  

[3]  VERTICAL  HETEROGENEITY  Mackinaw  River  

Mo:a,  D.,  Abad,  J.D,  Langendoen,  E.J.,  Garcia,  M.H.,  2012.  VerScal  heterogeneity  of  the  floodplain.  Journal  of  Geophysical  Research  –  Earth  Surface  (in  review)  

[3]  VERTICAL  HETEROGENEITY  

X - 20MOTTA ET AL.: MEANDER MIGRATION IN HORIZONTALLY AND VERTICALLY HETEROGENEOUS FLOODPLAINS

Figure 1. Examples of slump blocks in rivers characterized by di!erent spatial scales.

(a) Small scale: Trout Creek (California, USA), with small blocks but long residence

time; (b) Intermediate scale: Mackinaw River (Illinois, USA), with larger but less present

blocks; c Large scale: Pilcomayo River (Argentina), blocks are substantially absent.

D R A F T January 22, 2012, 5:31pm D R A F T

X - 24MOTTA ET AL.: MEANDER MIGRATION IN HORIZONTALLY AND VERTICALLY HETEROGENEOUS FLOODPLAINS

x [m]

y [m

]

0 200 400 600 800 1000 1200 1400 1600 1800

0

2006000 7000 8000 9000 10000 11000 12000 13000 14000

Cohesion [Pa]

Tblock

500100

Figure 6. Impact of slump block existence period on meander migration. Comparison

between Tblock = 100 and 500 days.

D R A F T January 22, 2012, 5:31pm D R A F T

[3]  VERTICAL  HETEROGENEITY  

MOTTA ET AL.: MEANDER MIGRATION IN HORIZONTALLY AND VERTICALLY HETEROGENEOUS FLOODPLAINSX - 25

x [m]

y [m

]0 200 400 600 800 1000 1200 1400 1600 1800

0

2006000 7000 8000 9000 10000 11000 12000 13000 14000

Cohesion [Pa]

Cantilever + PlanarTblock = 100 days Cantilever only

Figure 7. Relative importance of cantilever and planar failure.

D R A F T January 22, 2012, 5:31pm D R A F T

X - 20MOTTA ET AL.: MEANDER MIGRATION IN HORIZONTALLY AND VERTICALLY HETEROGENEOUS FLOODPLAINS

Figure 1. Examples of slump blocks in rivers characterized by di!erent spatial scales.

(a) Small scale: Trout Creek (California, USA), with small blocks but long residence

time; (b) Intermediate scale: Mackinaw River (Illinois, USA), with larger but less present

blocks; c Large scale: Pilcomayo River (Argentina), blocks are substantially absent.

D R A F T January 22, 2012, 5:31pm D R A F T

Mo:a,  D.,  Abad,  J.D,  Langendoen,  E.J.,  Garcia,  M.H.,  2012.  VerScal  heterogeneity  of  the  floodplain.  Journal  of  Geophysical  Research  –  Earth  Surface  (in  review)  

www.rvrmeander.org  

SHORT  COURSES    q  R i v e r   C o a s t a l   a n d   E s t u a r i n e  

Morphodynamics,  RCEM  2009,  Santa  Fe,  ARGENTINA  

q  NaSonal   University   of   Engineering,  NaSonal   Congress   2010,   Lima,   Cusco,  PERU  

q  R i v e r   C o a s t a l   a n d   E s t u a r i n e  Morphodynamics,  RCEM  2011,   Tsinghua  University,  Beijing,  CHINA  

q  USDA-­‐FOREST  –  LAKE  TAHOE,  Dec  2011,  Nevada.  

q  UNAM-­‐Mexico,  January  2013    

www.rvrmeander.org  

THANKS

LinearizaZon  

Dimensionless  perturbaZons  of  velocity  in  the  streamwise  and  transverse  direcZon  and  water  depth  

Important  parameters:    

q   Sinuosity  q   Half  width-­‐to-­‐depth  raSo  q   Froude  number    q   FricSon  coefficient  

Hydrodynamics and bed morphodynamics (contd.)

Dimensionless  transverse    velocity  perturbaZon  

Dimensionless  depth    perturbaZon  

Dimensionless  streamwise    velocity  perturbaZon  

Reach-­‐averaged  values   PerturbaZons  

RVR  MEANDER  

The   canZlever   failure   is   associated   to  overhanging   slumps   of  mass   generated   by   preferenSal   retreat   of  highly   erodible   layers   or   simply   by   the   erosion  of   the  bank  below   the  water   level  with   respect   to   its   dry  porSon.      The   occurrence   of   canSlever   failure   is   determined   from   geometrical   consideraSons,   once   an   undercut  threshold  is  exceeded.  

Layer i

Layer i+1

Failure surface

Time

Hydraulic erosion

Bank erosion (contd.)

Sketch  of  canZlever  failure.  

RVR  MEANDER  

 

RVR  Meander    

 

GIS  interface    

 

Interface  overview    

Live  demonstraSon    

Future  work  

Fluvial  erosion  controls    erosion  at  the  toe  

Mass  failure  occurs  in  upper    porZon  of  the  bank    

Bank  processes  

Medium  to  long-­‐term  bank  retreat  rates  are  controlled  by  the  process  of  fluvial  erosion  at  the  toe  

Bank  armoring  

Increasing  river  scale  

Bank  processes  

Mass  failure  mechanisms  may  impact  migraSon  rates  and  shapes  through  bank  toe  protecSon  

Trout  Creek,  USA   Mackinaw  River,  USA   Pilcomayo,  ArgenZna  

River  scale  may  affect  residence  Sme  of  slump  blocks  

Layering  impacts  mass  failure  volumes        

Impacts  bank  protecSon        

Impacts  migraSon  rates  and  shapes  

Bank  processes  Bank  layering  

VerScal  heterogeneity  in  the  floodplain  may  impact  migraSon  rates  and  shapes