Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction...

38
Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER SYSTEME MAGDEBURG Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

Transcript of Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction...

Page 1: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg

Model Order Reduction for Nonlinear Systems

Lihong Feng

MAX-PLANCK-INSTITUT

DYNAMIK KOMPLEXER

TECHNISCHER SYSTEME

MAGDEBURG

Max Planck Institute for Dynamics of Complex Technical Systems

Computational Methods in Systems and Control Theory

Page 2: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 2

Overview

• Linearization MOR.

• Qudratic MOR.

• Bilinearization MOR.

• Variational analysis MOR.

• Trajectory piece-wise linear MOR.

• Proper orthogonal decomposition (POD).

• References.

Page 3: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 3

Linearization MOR

Original large ODE

)()(

)()(/

tLXty

tBuXfdtCdX

)(Xf

AXXf )(~

Linearization: approximate

by a linear function )(Xf

)()(~

1

)(])(,[/ 00

tLXty

tuXDXfBAXdtCdX f

)()(

))(()(2

1)()()(

00

00000

XXDXf

XXXHXXXXDXfXf

f

f

T

f

Taylor series expansion:

)()(~

)()()(/ 00

tLXty

tBuXXDXfdtCdX f

.,1,0,])[(,~

},,,{

1

0

1

21

irCACsMBAr

rMrMrMrizationorthogonalV

i

i

j

,...1,0,)( 1 irCAM i

i

B~

Page 4: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 4

Example

1 2 3 N-3 N-2 N-1 N

C C C C C C Ci(t)

Y. Chen, MIT thesis 1999.

)()(

),(

0

0

1

)(

)()(

)()(

)()(

1

11

3221

211

tLXty

tu

xxg

xxgxxg

xxgxxg

xxgxg

dt

dX

nn

kkkk

1)( 40 xexg x

xxgg

xg

xggxg

41)0(')0(

!2

)0('')0(')0()( 2

)()(

),(

0

0

1

4141

418241

418241

4282

1

11

321

21

tLXty

tu

xx

xxx

xxx

xx

dt

dX

nn

kkk

Page 5: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 5

Example

0 2 4 6 8 100

0.005

0.01

0.015

0.02

0.025

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

+ q=10 __ full simulation

Page 6: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 6

Example

0 2 4 6 8 100

0.005

0.01

0.015

0.02

0.025

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

+ q=10

-- q=20

__full simulation

Page 7: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 7

Example

0 2 4 6 8 100

0.005

0.01

0.015

0.02

0.025

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

+ q=10

-- q=20

...linear, no reduction

__ full simulation

Page 8: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 8

Quadratic MOR

)(Xf )(Xg

)(Xf

)(Xg

nqRZVZX q ,,

)()(ˆ

)(~

/

tLVZty

tuBVWVZVZVAVZVdtCXdZV TTTTTT

Approximate by a quadratic polynomial

)()(

)()(/

tLXty

tBuXfdtCdX

Taylor series expansion:

)()(~)(

~/

tLXty

tuBWXXAXdtCdX T

))(()(2

1)()(

))(()(2

1)()()(

00000

00000

XXXHXXXXDXf

XXXHXXXXDXfXf

f

T

f

f

T

f

.,1,0,])[(,~

)(

},,,{

1

0

1

0

21

irCACsMBACsr

rMrMrMrizationorthogonalV

i

i

j

Page 9: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 9

Example

1 2 3 N-3 N-2 N-1 N

C C C C C C Ci(t)

Y. Chen, MIT thesis 1999.

)()(

),(

0

0

1

)(

)()(

)()(

)()(

1

11

3221

211

tLXty

tu

xxg

xxgxxg

xxgxxg

xxgxg

dt

dX

nn

kkkk

1)( 40 xexg x

22'

2'

80041!2

)0('')0()0(

!2

)0('')0()0()(

xxxg

xgg

xg

xggxg

)()(

),(

0

0

1

)(800

)(800)(800

)(800)(800

)(800800

4141

418241

418241

4282

2

1

2

1

2

1

2

32

2

21

2

21

2

1

1

11

321

21

tLXty

tu

xx

xxxx

xxxx

xxx

xx

xxx

xxx

xx

dt

dX

nn

kkkk

nn

kkk

Page 10: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 10

Example

1 2 3 N-3 N-2 N-1 N

C C C C C C Ci(t)

Y. Chen, MIT thesis 1999.

)()(

),(

0

0

1

)(800

)(800)(800

)(800)(800

)(800800

4141

418241

418241

4282

2

1

2

1

2

1

2

32

2

21

2

21

2

1

1

11

321

21

tLXty

tu

xx

xxxx

xxxx

xxx

xx

xxx

xxx

xx

dt

dX

nn

kkkk

nn

kkk

)()(~)(

~/

tLXty

tuBWXXAXdtCdX T

W

is a tensor, it has n matrices, the ith matrix

corresponds to the ith element of the

nonlinear vector.

Page 11: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 11

Example

1 2 3 N-3 N-2 N-1 N

C C C C C C Ci(t)

Y. Chen, MIT thesis 1999.

0000

0000

00800800

008001600

1

nnRW

W

1

1

000000

0000

08008000

08000800

000800800

0000

i

i

i

RW nni

1,,1 iii

80080000

800800

0000

00

0000

nnn RW

XWX

XWX

XWX

WXX

nT

iT

T

T

1

VZWVZ

VZWVZ

VZWVZ

WVZVZ

nTT

iTT

TT

TT

1

Page 12: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 12

Example

0 2 4 6 8 100

0.005

0.01

0.015

0.02

0.025

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

-- quadratic MOR, q=10

…linear, no reduction

__ full simulation

Page 13: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 13

Example

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

-- quadratic MOR, q=10

…quadratic MOR, q=20

__ full simulation

Page 14: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 14

Example

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

-- quadratic MOR, q=10

…quadratic, no reduction

__ full simulation

Page 15: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 15

Bilinearization MOR

)(Xf )(Xg

)(Xf

)(XgnqRZVZX q ,,

)()(ˆ

)()(/

tLVZty

tuBVtVZuNVVZAVdtdZ TTT

Approximate by quadratic polynomial , but written into Kronecker

product

)()(

)()(/

tLXty

tBuXfdtdX

Taylor series expansion:

XXAXAXf

XXXHXXXXDXf

XXXHXXXXDXfXf

f

T

f

f

T

f

210

00000

00000

)(

))(()(2

1)()(

))(()(2

1)()()(

)()(

)()(/

tXLty

tuBtuXNXAdtdX

2, nNRX N

Page 16: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 16

XX

XX

0

BB 0LL

11

21

0 AIIA

AAA

0

00

BIIBN

)()(

)()(/

tXLty

tuBtuXNXAdtdX

)()(

)()(/

tLXty

tBuXfdtdX

Carleman bilinearization

Carleman bilinearization:

[1] W.J. Rugh, Nolinear System Theory, The John Hopkins University Press, Boltimore, 1981.

[2] S. Sastry, Nonlinear Systems: Analysis, Stability and Control, Springer, New York, 1999.

Bilinearization MOR

BaBa

BaBa

BA

mnm

n

1

111

Kronecker product

Page 17: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 17

)()(

)()(/

tXLty

tuBtuXNXAdtdX

How to compute V?

1

)()(n

n tyty

nnn

t

n

reg

nn dtdtttuttttuttthty 1210

21

)( )()(),,,()(

BeNeNeLttthtAtAtAT

n

reg

nnn 11),,,( 21

)(

Volterra series expression of bilinear system According to the theory in [Rugh 1981], the output response of the bilinear system can be expressed into Volterra series,

BAAsINAAsINAAsINAAsIL

BAIsNAIsNAIsNAIsLsssh

nn

Tn

nn

T

n

reg

n

111

1

111

2

111

1

111

1

1

1

2

1

1

1

21

)(

)()()()()1(

)()()()(),,,(

Laplace transform (drop for simplicity):

Bilinearization MOR

Page 18: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 18

)()(

)()(/

tXLty

tuBtuXNXAdtdX

How to compute V?

BAAsINAAsINAAsINAAsIL

BAIsNAIsNAIsNAIsLsssh

nn

Tn

nnn

reg

n

111

1

111

2

111

1

111

1

1

1

2

1

1

1

21

)(

)()()()()1(

)()()()(),,,(

Laplace transform:

i

n

i

nn sAsAIAsI 111)(

1 1

1

1

1

21

)(

1

111)1(),,,(n

nnn

l l

lllll

n

n

n

reg

n BANNALAsssssh

BANNALAllmllln

nnn 11)1(),,( 1

Multimoments:

Bilinearization MOR

Page 19: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 19

)()(

)()(/

tXLty

tuBtuXNXAdtdX

How to compute V?

1 1

1

1

1

21

)(

1

111)1(),,,(n

nnn

l l

lllll

n

n

n

reg

n BANNALAsssssh

BANNALAllmllln

nnn 11)1(),,( 1

Multimoments:

},,{},{}{ 1

1

111

1 BABAspanbAAKVrangeq

q

},,{},{}{ 11

1

,1

1

1

11

j

q

jjjqj NVANVANVANVAAKVrange j

j

},,{}{ 1 JVVcolspanVrange

)()(ˆ

)()(/

tLVZty

tuBVtVZuNVVZAVdtdZ TTT

Reduced model:

Bilinearization MOR

Page 20: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 20

Example

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

original system

quadratic MOR, q=20

quadratic, no reduction

bilinearization, q=20

V for bilinearization MOR: },{}{ 21 VVcolspanVrange

})(,,){(}{ 191

1 BABAspanVrange

)}1(:,){(}{ 1

1

2 NVAspanVrange

V for quadratic MOR:

},,{}{ 201 BABAspanVrange

Page 21: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 21

Variational analysis MOR

XXXAXXAXAXf

XXXHXXXXDXfXf f

T

f

3210

0000

)(

))(()(2

1)()()(

Taylor series expansion:

)()(

)()(/

tLXty

tBuXfdtdX

)()(

)(~~/ 21

tLXty

tuBXXAXAdtdX

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

)()()(),( 3

3

2

2

1 tXtXatXtX

Variational analysis:

)()(

)(~~/ 21

tLXty

tuBXXAXAdtdX

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

or

or

Original system:

Page 22: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 22

Variational analysis MOR

)()()()( 3

3

2

2

1 tXtXatXtX

Variational analysis [11]:

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

)()(

)(~~)]()()[(

)]()[(

)(/)(

3

3

2

2

13

3

2

2

13

3

2

2

13

3

3

2

2

13

3

2

2

12

3

3

2

2

113

3

2

2

1

tLXty

tuBXXXXXXXXXA

XXXXXXA

XXXAdtXXXd

)(~~)(/)(: 111 tuBtXAdttdX

)()(/)(: 112212

2 XXAtXAdttdX

)()()(/)(: 111312212313

3 XXXAXXXXAtXAdttdX

0)( if ,0)( :Assume tutX

Page 23: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 23

Variational analysis MOR

)()()()( 3

3

2

2

1 tXtXatXtX

Variational analysis:

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

)(~~)(/)(: 111 tuBtXAdttdX

)()(/)(: 112212

2 XXAtXAdttdX

)()()(/)(: 111312212313

3 XXXAXXXXAtXAdttdX

}~

,,~

{ 1

1

1

11111 BABAspanVZVXq

},,{ 212

1

122222 AAAAspanVZVX

q

]},[,],,[{ 32132

1

133332 AAAAAAspanVZVX

q

33

3

22

2

11

3

3

2

2

1

3

3

2

2

1 )()()()(

ZVZVZV

XXX

tXtXatXtX

},,{)( 321 VVVspantX

Page 24: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 24

Variational analysis MOR

Original system:

)()(

)()(/

tLXty

tBuXfdtdX

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

},,{)( 321 VVVspantX

Compute V: },,{)( 321 VVVspanVrange

Reduced model: )()(ˆ

)(~~/ 321

tLVZty

tuBVVZVZVZAVVZVZAVVZAVdtdZ TTTT

VZtX )(

Page 25: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 25

Example

V for bilinearization MOR:

},{}{ 21 VVcolspanVrange

},,{}{ 191

1 BABAspanVrange

)}1(:,{}{ 1

2 NVAspanVrange

V for Variational analysis MOR:

},{}{

)}6:1(:,{}{

}{

},,{}{

21

0

2

1

12

2

0

2

41

11

VVspanVrange

VAspanVrange

AorthV

BABAspanVrange

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time, u(t)=0, t<3; u(t)=1, t>=3

voltage a

t node 1

original exact output response

Bilinearization MOR, q=20, relative error=0.0078

Variational analysis MOR, q=9, relative error=0.0073

Page 26: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 26

Example

V for [Phillips 2000] method:

V for our method [Feng 2014]:

},{}{

)]}6:1(:,[{}{

}{

},,{}{

21

0

2

1

12

2

0

2

41

11

VVspanVrange

VAspanVrange

AorthV

BABAspanVrange

},{}{

)}6:1(:,{}{

)(

},,{}{

21

0

22

112

10

2

41

11

VVspanVrange

VspanVrange

VVAAV

BABAspanVrange

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time, u(t)=0, t<0.3; u(t)=1, t>=0.3

voltage a

t node 1

original

our method, q=9, relative error=0.0073

Phillips 2003 method, q=9, relative error=0.0076

Page 27: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 27

Trajectory piece-wise linear MOR

)(Xf

)(1 Xg

)(2 Xg

)(4 Xg

)(3 Xg

0X1X

2X

)()(

)()(/

tLXty

tBuXfdtdX

Original system:

)()(

,)(~/1

0

tLXty

BuXgwdtdXs

i

ii

1,,1,0),()()( siXXAXfXg iiii

iXk

j

jkjkix

XfaaA

)(),(

Page 28: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 28

Trajectory piece-wise linear MOR

)()(

)()(/

tLXty

tBuXfdtdX

Original system:

)()(

,)(/1

0

tLXty

BuXgdtdXs

i

i

))((~~

1,,1,0),()(~)()(~)(

iiiiii

iiiiii

XAXfwXAw

siXXAXwXfXwXg

)()(

),()~~(/ 0

1

0

tLXty

tBuwBXAwdtdX i

s

i

ii

ii AXXfBBBB )(],,[~

00

How to compute V?

},,{}{

1,,1,0}~

,,~

{}{

11

1

s

i

q

iiii

VVspanVrange

siBABAspanVrange i

Page 29: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 29

Trajectory piece-wise linear MOR

)()(

)()(/

tLXty

tBuXfdtdX

Original system:

)()(ˆ

),(~~(/ 0

1

0

tLVZty

tBuVwBVVZAVwdtdZ T

i

Ts

i

i

T

i

Trajectory piece-wise linear system:

Reduced model:

)()(

),()~~(/ 0

1

0

tLXty

tBuwBXAwdtdX i

s

i

ii

Page 30: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 30

Proper orthogonal decomposition (POD)

POD and SVD

SVD:

nmTT RD

YVUVUY

:

00

0or

s.t. ,),,( and ),,(exist there,matrix any For 11

nn

n

mm

m

nm RvvVRuuURY

ly.respective and

of columns first theincluding matrices thebe and Let ).,,( Here, 1

VU

dVUdiagD dd

d

It is obvious,

d

i

d

i

iRji

d

i

iRiji

m

k

kj

d

ki

d

i

iij

Td

d

i

iij

TddTdd

i

iij

Td

ij

Td

i

d

ij

Tdd

n

uyuuuyuYUuYU

uVDUUuVDVDuy

VDUyyY

mm

1 1111

111

1

.,,))((

))()(())(())((

)(),,(

Y can be represented in terms of d linearly independent columns of . dU

Page 31: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 31

Proper orthogonal decomposition (POD)

Definition

.,1 ,~,~ s.t. minarg}{1

~,,~11

ljiuuu ijRji

n

j

jRuu

l

ii mml

.rank of basis POD called are }{ vectors the},,1{For 1 ludl l

ii

: of columns theingapproximatin

ions,approximat rank all among optimal, is }{ basis POD The 1

Y

lu l

ii

2

1||~~,|| Here, mm RiRij

l

ijj uuyy

Page 32: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 32

Model Order Reduction using POD

)())(()(

ROM get the to Use.3

)~,,~( ,~~

of from rank of vectorsPOD Get the 2.

),(

snapshots get the tosystemnonlinear original theSolve 1.

1

1

tBuVtVzfVdt

tdzEVV

V

uuVVUX

XSVDq

xxX

TTT

q

T

tt m

Algorithm MOR using POD

How to deal with ?

An effective way is to approximate the nonlinear function by projecting it onto

a subspace that approximates the space generated by the nonlinear function,

and with dimension

))(( tVzf

.nl

),,( ),()( 1 luuUtUctf

Page 33: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 33

DEIM

).()()()(

that,so

)()()()()(

thenr,nonsingula is Suppose

,],,[

matrix aconsider ,particularIn

).()(

system inedoverdeterm thefrom rows heddistinguis select we,)( determine To

1

1

1

tfPUPUtUctf

tfPUPtctUcPtfP

UP

ReeP

tUctf

mtc

TT

TTTT

T

mn

l

?,,1, indices especify th tohow and compute toHow liU i

Compute :

U

).,,( 3.

)( : toApply 2.

)).(,),((matrix a into ))(( of snapshots eCollect th 1.

1

1

F

l

F

TFF

tt

uuU

VUFFSVD

xfxfFtxfm

Page 34: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 34

DEIM

Using DEIM to decide the indices:

Algorithm Discrete Empirical Interpolation Method (DEIM)

for end .8

], [ ], [ .7

||max]|,[| .6

.5

),,( where,for )( Solve 4.

do to2for .3

][ ],[ ],[ .2

|| max]|,.[|1

],[ :Output

Ffor basis POD :Input

T

11

11

11

1

1

1

i

F

i

l

F

i

i

F

i

TT

F

F

lT

l

l

i

F

i

iePPuUU

r

Uur

uPUP

li

ePuU

u

R

u

Page 35: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 35

DEIM

Come back to :

))(( tVzfV T

)).(()())(( 1 tVzfPUPUtVzf TT

. oft independen still is ROM solving during ))(( ofn computatio then ),( of entries

few aon dependsonly entry each but above, as evaluatedisely componentwnot is ))(( If

. oft independen is ROM solving during ))(( ofn Computatio

))(()())((

that so

))(())((

then))),((,)),((())(( If

1

11

ntVzfVtx

ftxf

ntVzfV

tVzPfUPUVtVzfV

tVzPftVzfP

txftxftxf

T

i

T

TTTT

TT

nn

can be precomputed before solving the ROM

Page 36: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg 36

References

Quadratic MOR:

[1] Yong Chen, “Model order reduction for nonlinear systems”, MIT master thesis, 1999.

Bilinearization MOR:

[2] J. R. Phillips, “Projection Frameworks for Model Reduction of Weakly Nonlinear

Systems”, Proc. IEEE/ACM DAC, 184-189, 2000.

[3] Z. Bai, and D. Skoogh, “A projection method for model reduction of bilinear dynamical systems”, Linear Algebra Appl., 415: 406-425, 2006.

[4] L. Feng and P. Benner, A Note on Projection Techniques for Model Order Reduction of

Bilinear Systems, AIP Conf. Proc. 936: 208-211, 2007.

Page 37: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg Model Order Reduction of Parametric Systems 37 30.06.2014

Variational analysis MOR:

[5] J. R. Phillips, “Automated Extraction of Nonlinear Circuit Macromodels ”, Proc. of IEEE

Custom Itegrated Circuits Conference, 451-454, 2000.

[6] L. Feng, X. Zeng, Ch. Chiang, D. Zhou, Q, Fang “Direct nonlinear order reduction with

variational analysis”, Proc. of Design, Automation and Test in Europe Conference and

Exhibition, 2:1316-1321, 2004.

Trajectory piece-wise linear (polynomial) MOR:

[7] M. Rewienski and J. White, “ A Trajectory Piecewise-Linear Approach to Model Order

Reduction and Fast Simulation of Nonlinear Circuits and Micromachined Devices”, IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., 22(2):155-170, 2003.

[8] M. Rewienski and J. White, “ Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations ”, Linear Algebra Appl., 415(2-3):426-454,

2006.

References

Page 38: Model Order Reduction for Nonlinear Systems...Max Planck Institute Magdeburg Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER

Max Planck Institute Magdeburg Model Order Reduction of Parametric Systems 38 30.06.2014

References

POD:

[9] S. Volkwein, “Model reduction using proper orthogonal decomposition ”, Lecture notes, June 7,

2010.

[10] S. Schaturantabut and D. C. Sorensen, “Nonlinear model reduction via discrete empirical

interpolation”, SIAM J. Sci. Comput. 32(5): 2737-2764, 2010.

A very good book for nonlinear system:

[11] W. J. Rugh, “Nonlinear system theory, the Volterra/Wiener Approach”, The Johns Hopkins

University Press, 1981.