Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf ·...

75
Minimal Retentive Sets in Tournaments – From Anywhere to TEQ – Felix Brandt Markus Brill Felix Fischer Paul Harrenstein Ludwig-Maximilians-Universität München Estoril, April 12, 2010 1 / 17

Transcript of Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf ·...

Page 1: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Minimal Retentive Sets in Tournaments– From Anywhere to TEQ –

Felix Brandt Markus Brill Felix Fischer Paul Harrenstein

Ludwig-Maximilians-Universität München

Estoril, April 12, 2010

1 / 17

Page 2: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

The Trouble with Tournaments

Tournaments are oriented complete graphs

Many applications: social choice theory, sports tournaments, game theory,argumentation theory, webpage and journal ranking, etc.

Question: How to select the winner(s) of a tournament in the absence oftransitivity?

b c

a

d e

2 / 17

Page 3: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

The Trouble with Tournaments

Tournaments are oriented complete graphs

Many applications: social choice theory, sports tournaments, game theory,argumentation theory, webpage and journal ranking, etc.

Question: How to select the winner(s) of a tournament in the absence oftransitivity?

b c

a

d e

2 / 17

Page 4: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Overview

Tournament solutions

Retentiveness and Schwartz’s Tournament Equilibrium Set (TEQ)

Properties of minimal retentive sets

‘Approximating’ TEQ

A new tournament solution

3 / 17

Page 5: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Tournament Solutions

A tournament T = (A ,�) consists of:

• a finite set A of alternatives

• a complete and asymmetric relation � on A

b c

a

d e

A tournament solution S maps each tournament T = (A ,�) to a set S(T)such that ∅ , S(T) ⊆ A and S(T) contains the Condorcet winner if it exists

• S is called proper if a Condordet winner is always selected as only alternative

Examples: Trivial Solution (TRIV), Top Cycle (TC), Uncovered Set, SlaterSet, Copeland Set, Banks Set, Minimal Covering Set (MC), TournamentEquilibrium Set (TEQ), . . .

4 / 17

Page 6: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Tournament Solutions

A tournament T = (A ,�) consists of:

• a finite set A of alternatives

• a complete and asymmetric relation � on A

b c

a

d e

A tournament solution S maps each tournament T = (A ,�) to a set S(T)such that ∅ , S(T) ⊆ A and S(T) contains the Condorcet winner if it exists

• S is called proper if a Condordet winner is always selected as only alternative

Examples: Trivial Solution (TRIV), Top Cycle (TC), Uncovered Set, SlaterSet, Copeland Set, Banks Set, Minimal Covering Set (MC), TournamentEquilibrium Set (TEQ), . . .

4 / 17

Page 7: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Tournament Solutions

A tournament T = (A ,�) consists of:

• a finite set A of alternatives

• a complete and asymmetric relation � on A

b c

a

d e

A tournament solution S maps each tournament T = (A ,�) to a set S(T)such that ∅ , S(T) ⊆ A and S(T) contains the Condorcet winner if it exists

• S is called proper if a Condordet winner is always selected as only alternative

Examples: Trivial Solution (TRIV), Top Cycle (TC), Uncovered Set, SlaterSet, Copeland Set, Banks Set, Minimal Covering Set (MC), TournamentEquilibrium Set (TEQ), . . .

4 / 17

Page 8: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

a

b

5 / 17

Page 9: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

a

b

5 / 17

Page 10: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

a

b

5 / 17

Page 11: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

a

b

5 / 17

Page 12: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

5 / 17

Page 13: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

5 / 17

Page 14: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

5 / 17

Page 15: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

5 / 17

Page 16: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

5 / 17

Page 17: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

5 / 17

Page 18: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

5 / 17

Page 19: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

5 / 17

Page 20: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

ab

5 / 17

Page 21: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

ab

5 / 17

Page 22: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

ab

5 / 17

Page 23: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

ab

5 / 17

Page 24: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

ab

5 / 17

Page 25: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

ab

5 / 17

Page 26: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Examples

Definition: TRIV returns the set A for each tournament T = (A ,�)

Definition: TC returns the smallest dominating set, i.e. the smallest set B ⊆ Awith B � A \ B• Intuition: No winner should be dominated by a loser

• Define D(b) = {a ∈ A : a � b}

• TC is the smallest set B satisfying D(b) ⊆ B for all b ∈ B

Both TRIV and TC satisfy all four basic properties

B

A \ B b

B

D(b)

6 / 17

Page 27: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Examples

Definition: TRIV returns the set A for each tournament T = (A ,�)

Definition: TC returns the smallest dominating set, i.e. the smallest set B ⊆ Awith B � A \ B• Intuition: No winner should be dominated by a loser

• Define D(b) = {a ∈ A : a � b}

• TC is the smallest set B satisfying D(b) ⊆ B for all b ∈ B

Both TRIV and TC satisfy all four basic properties

B

A \ B b

B

D(b)

6 / 17

Page 28: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Examples

Definition: TRIV returns the set A for each tournament T = (A ,�)

Definition: TC returns the smallest dominating set, i.e. the smallest set B ⊆ Awith B � A \ B• Intuition: No winner should be dominated by a loser

• Define D(b) = {a ∈ A : a � b}

• TC is the smallest set B satisfying D(b) ⊆ B for all b ∈ B

Both TRIV and TC satisfy all four basic properties

B

A \ B

b

B

D(b)

6 / 17

Page 29: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Examples

Definition: TRIV returns the set A for each tournament T = (A ,�)

Definition: TC returns the smallest dominating set, i.e. the smallest set B ⊆ Awith B � A \ B• Intuition: No winner should be dominated by a loser• Define D(b) = {a ∈ A : a � b}

• TC is the smallest set B satisfying D(b) ⊆ B for all b ∈ B

Both TRIV and TC satisfy all four basic properties

B

A \ B b

B

D(b)

6 / 17

Page 30: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Examples

Definition: TRIV returns the set A for each tournament T = (A ,�)

Definition: TC returns the smallest dominating set, i.e. the smallest set B ⊆ Awith B � A \ B• Intuition: No winner should be dominated by a loser• Define D(b) = {a ∈ A : a � b}

• TC is the smallest set B satisfying D(b) ⊆ B for all b ∈ B

Both TRIV and TC satisfy all four basic properties

B

A \ B b

B

D(b)

6 / 17

Page 31: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Retentiveness

Intuition:

• An alternative a is only “properly” dominated by a“good” alternatives

, i.e., alternatives selected by S fromthe dominators of a

• No winner should be “properly” dominated by a loser

Thomas Schwartz

7 / 17

Page 32: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Retentiveness

Intuition:

• An alternative a is only “properly” dominated by a“good” alternatives, i.e., alternatives selected by S fromthe dominators of a

• No winner should be “properly” dominated by a loser

Thomas Schwartz

7 / 17

Page 33: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Retentiveness

Intuition:

• An alternative a is only “properly” dominated by a“good” alternatives, i.e., alternatives selected by S fromthe dominators of a

• No winner should be “properly” dominated by a loser Thomas Schwartz

7 / 17

Page 34: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Retentiveness

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B forall b ∈ B

b

B

D(b)

Thomas Schwartz

7 / 17

Page 35: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Retentiveness

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B forall b ∈ B

b

B

D(b)D(b)

Thomas Schwartz

7 / 17

Page 36: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Retentiveness

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B forall b ∈ B

b

B

D(b)D(b)S(D(b))

Thomas Schwartz

7 / 17

Page 37: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Retentiveness

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B forall b ∈ B

b

B

D(b)D(b)S(D(b))

Thomas Schwartz

Definition: S̊ returns the union of all minimal S-retentive sets

• Call S̊ unique if there always exists a unique minimal S-retentive set

• Minimal S-retentive sets exist for each tournament

• S̊ is unique if and only if there do not exist two disjoint S-retentive sets

7 / 17

Page 38: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Retentiveness

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B forall b ∈ B

b

B

D(b)D(b)S(D(b))

Thomas Schwartz

Definition: S̊ returns the union of all minimal S-retentive sets

• Call S̊ unique if there always exists a unique minimal S-retentive set

• Minimal S-retentive sets exist for each tournament

• S̊ is unique if and only if there do not exist two disjoint S-retentive sets

7 / 17

Page 39: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Retentiveness

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B forall b ∈ B

b

B

D(b)D(b)S(D(b))

Thomas Schwartz

Definition: S̊ returns the union of all minimal S-retentive sets

• Call S̊ unique if there always exists a unique minimal S-retentive set

• Minimal S-retentive sets exist for each tournament

• S̊ is unique if and only if there do not exist two disjoint S-retentive sets

7 / 17

Page 40: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Example

Proposition: ˚TRIV = TC

Proof: A set is TRIV -retentive if and only if it is dominating

b

B

TRIV(D(b)) = D(b)D(b)

8 / 17

Page 41: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Example

Proposition: ˚TRIV = TC

Proof: A set is TRIV -retentive if and only if it is dominating

b

B

TRIV(D(b)) = D(b)D(b)

8 / 17

Page 42: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as TEQ = ˚TEQ

• well-defined because |D(a)| < |A | for each a ∈ A

Schwartz’s Conjecture: TEQ is unique, i.e., each tournament admits a uniqueminimal TEQ-retentive set.

Theorem (Laffond et al., 1993, Houy, 2009): TEQ is unique if and only if TEQsatisfies any of MON, WSP, SSP, and IUA.

9 / 17

Page 43: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as TEQ = ˚TEQ

• well-defined because |D(a)| < |A | for each a ∈ A

Schwartz’s Conjecture: TEQ is unique, i.e., each tournament admits a uniqueminimal TEQ-retentive set.

Theorem (Laffond et al., 1993, Houy, 2009): TEQ is unique if and only if TEQsatisfies any of MON, WSP, SSP, and IUA.

9 / 17

Page 44: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Example

b c

a

d e

x D(x)

TEQ(D(x))

a {c}

{c}

b {a, e}

{a}

c {b , d}

{b}

d {a, b}

{a}

e {a, c, d}

{a, c, d}

TEQ-retentive sets: {a, b , c, d, e} , {a, b , c, d} , {a, b , c}

TEQ(T) = {a, b , c}

10 / 17

Page 45: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Example

b c

a

d e

x D(x) TEQ(D(x))

a {c} {c}b {a, e} {a}c {b , d} {b}d {a, b} {a}e {a, c, d} {a, c, d}

TEQ-retentive sets: {a, b , c, d, e} , {a, b , c, d} , {a, b , c}

TEQ(T) = {a, b , c}

10 / 17

Page 46: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Example

b c

a

d e

x D(x) TEQ(D(x))

a {c} {c}b {a, e} {a}c {b , d} {b}d {a, b} {a}e {a, c, d} {a, c, d}

TEQ-retentive sets: {a, b , c, d, e} , {a, b , c, d} , {a, b , c}

TEQ(T) = {a, b , c}

10 / 17

Page 47: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Example

b c

a

d e

x D(x) TEQ(D(x))

a {c} {c}b {a, e} {a}c {b , d} {b}d {a, b} {a}e {a, c, d} {a, c, d}

TEQ-retentive sets: {a, b , c, d, e} , {a, b , c, d} , {a, b , c}

TEQ(T) = {a, b , c}

10 / 17

Page 48: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Example

b c

a

d e

b c

a

d e

x D(x) TEQ(D(x))

a {c} {c}b {a, e} {a}c {b , d} {b}d {a, b} {a}e {a, c, d} {a, c, d}

TEQ-retentive sets: {a, b , c, d, e} , {a, b , c, d} , {a, b , c}

TEQ(T) = {a, b , c}

10 / 17

Page 49: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as TEQ = ˚TEQ

• well-defined because |D(a)| < |A | for each a ∈ A

Schwartz’s Conjecture: TEQ is unique, i.e., each tournament admits a uniqueminimal TEQ-retentive set.

Theorem (Laffond et al., 1993, Houy, 2009): TEQ is unique if and only if TEQsatisfies any of MON, WSP, SSP, and IUA.

11 / 17

Page 50: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as TEQ = ˚TEQ

• well-defined because |D(a)| < |A | for each a ∈ A

Schwartz’s Conjecture: TEQ is unique, i.e., each tournament admits a uniqueminimal TEQ-retentive set.

Theorem (Laffond et al., 1993, Houy, 2009): TEQ is unique if and only if TEQsatisfies any of MON, WSP, SSP, and IUA.

11 / 17

Page 51: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as TEQ = ˚TEQ

• well-defined because |D(a)| < |A | for each a ∈ A

Schwartz’s Conjecture: TEQ is unique, i.e., each tournament admits a uniqueminimal TEQ-retentive set.

Theorem (Laffond et al., 1993, Houy, 2009): TEQ is unique if and only if TEQsatisfies any of MON, WSP, SSP, and IUA.

11 / 17

Page 52: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Inheritance of Basic Properties

Recall: S̊ returns the union of all minimal S-retentive sets

Theorem: If S̊ satisfies MON, WSP, SSP, or IUA, so does S.

Theorem: If S satisfies (MON ∧ SSP), WSP, SSP, or IUA, so does S̊

if S̊ is unique.

12 / 17

Page 53: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Inheritance of Basic Properties

Recall: S̊ returns the union of all minimal S-retentive sets

Theorem: If S̊ satisfies MON, WSP, SSP, or IUA, so does S.

Theorem: If S satisfies (MON ∧ SSP), WSP, SSP, or IUA, so does S̊

if S̊ is unique.

12 / 17

Page 54: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Inheritance of Basic Properties

Recall: S̊ returns the union of all minimal S-retentive sets

Theorem: If S̊ satisfies MON, WSP, SSP, or IUA, so does S.

Theorem: If S satisfies (MON ∧ SSP), WSP, SSP, or IUA, so does S̊

if S̊ is unique.

12 / 17

Page 55: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Inheritance of Basic Properties

Recall: S̊ returns the union of all minimal S-retentive sets

Theorem: If S̊ satisfies MON, WSP, SSP, or IUA, so does S.

Theorem: If S satisfies (MON ∧ SSP), WSP, SSP, or IUA, so does S̊

if S̊ is unique.

12 / 17

Page 56: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Convergence

Define S(0) = S and S(k+1) = S̊(k). Thus, we obtain sequences like:

TRIV ,TC , T̊C ,TC(2),TC(3), . . .

MC , M̊C ,MC(2),MC(3),MC(4), . . .

Definition: S converges to S ′ if for each T there is some kT ∈ N such that

S(kT )(T) = S(n)(T) = S ′(T) for all n ≥ kT

Theorem: Every tournament solution converges to TEQ .

Proof: S(n−1)(T) = TEQ(T) for all tournaments T of order ≤ n

13 / 17

Page 57: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Convergence

Define S(0) = S and S(k+1) = S̊(k). Thus, we obtain sequences like:

TRIV ,TC , T̊C ,TC(2),TC(3), . . .

MC , M̊C ,MC(2),MC(3),MC(4), . . .

Definition: S converges to S ′ if for each T there is some kT ∈ N such that

S(kT )(T) = S(n)(T) = S ′(T) for all n ≥ kT

Theorem: Every tournament solution converges to TEQ .

Proof: S(n−1)(T) = TEQ(T) for all tournaments T of order ≤ n

13 / 17

Page 58: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Convergence

Define S(0) = S and S(k+1) = S̊(k). Thus, we obtain sequences like:

TRIV ,TC , T̊C ,TC(2),TC(3), . . .

MC , M̊C ,MC(2),MC(3),MC(4), . . .

Definition: S converges to S ′ if for each T there is some kT ∈ N such that

S(kT )(T) = S(n)(T) = S ′(T) for all n ≥ kT

Theorem: Every tournament solution converges to TEQ .

Proof: S(n−1)(T) = TEQ(T) for all tournaments T of order ≤ n

13 / 17

Page 59: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Convergence

Define S(0) = S and S(k+1) = S̊(k). Thus, we obtain sequences like:

TRIV ,TC , T̊C ,TC(2),TC(3), . . .

MC , M̊C ,MC(2),MC(3),MC(4), . . .

Definition: S converges to S ′ if for each T there is some kT ∈ N such that

S(kT )(T) = S(n)(T) = S ′(T) for all n ≥ kT

Theorem: Every tournament solution converges to TEQ .

Proof: S(n−1)(T) = TEQ(T) for all tournaments T of order ≤ n

13 / 17

Page 60: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Reaching the Limit

Theorem: If S , TEQ , then S(k) , TEQ for all k ≥ 0.

bi

ai

S(T)

TEQ(T)

14 / 17

Page 61: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Reaching the Limit

Theorem: If S , TEQ , then S(k) , TEQ for all k ≥ 0.

bi

ai

b1

a1

S(T)

TEQ(T)

14 / 17

Page 62: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Reaching the Limit

Theorem: If S , TEQ , then S(k) , TEQ for all k ≥ 0.

bi

ai

b2

a2

b1

a1

S(T)

TEQ(T)

14 / 17

Page 63: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Reaching the Limit

Theorem: If S , TEQ , then S(k) , TEQ for all k ≥ 0.

bi

ai

. . .

b2

a2

b1

a1

S(T)

TEQ(T)

14 / 17

Page 64: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Reaching the Limit

Theorem: If S , TEQ , then S(k) , TEQ for all k ≥ 0.

bi

ai

. . .

b2

a2

b1

a1

S(T)

TEQ(T)

14 / 17

Page 65: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

‘Approximating’ TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

Theorem: S̊ is efficiently computable if and only if S is.

S, S̊, S(2), S(3), . . .TEQ

We would like to have ‘nice’ convergence...

Theorem: If S̊ ⊆ S, TEQ ⊆ S and TEQ is unique, then TEQ ⊆ S(k+1) ⊆ S(k) forall k ≥ 0.

In particular,TRIV ⊇ TC ⊇ T̊C ⊇ TC(2)

⊇ · · · ⊇ TEQ .

Thus, TEQ can be ‘approximated’ by an anytime algorithm.

As uniqueness of TC(k) implies uniqueness of TC(k−1), we have an infinitesequence of increasingly difficult conjectures.

15 / 17

Page 66: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

‘Approximating’ TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

Theorem: S̊ is efficiently computable if and only if S is.

S, S̊, S(2), S(3), . . .TEQ

We would like to have ‘nice’ convergence...

Theorem: If S̊ ⊆ S, TEQ ⊆ S and TEQ is unique, then TEQ ⊆ S(k+1) ⊆ S(k) forall k ≥ 0.

In particular,TRIV ⊇ TC ⊇ T̊C ⊇ TC(2)

⊇ · · · ⊇ TEQ .

Thus, TEQ can be ‘approximated’ by an anytime algorithm.

As uniqueness of TC(k) implies uniqueness of TC(k−1), we have an infinitesequence of increasingly difficult conjectures.

15 / 17

Page 67: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

‘Approximating’ TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

Theorem: S̊ is efficiently computable if and only if S is.

S, S̊, S(2), S(3), . . .TEQ

We would like to have ‘nice’ convergence...

Theorem: If S̊ ⊆ S, TEQ ⊆ S and TEQ is unique, then TEQ ⊆ S(k+1) ⊆ S(k) forall k ≥ 0.

In particular,TRIV ⊇ TC ⊇ T̊C ⊇ TC(2)

⊇ · · · ⊇ TEQ .

Thus, TEQ can be ‘approximated’ by an anytime algorithm.

As uniqueness of TC(k) implies uniqueness of TC(k−1), we have an infinitesequence of increasingly difficult conjectures.

15 / 17

Page 68: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

‘Approximating’ TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

Theorem: S̊ is efficiently computable if and only if S is.

S, S̊, S(2), S(3), . . .TEQ

We would like to have ‘nice’ convergence...

Theorem: If S̊ ⊆ S, TEQ ⊆ S and TEQ is unique, then TEQ ⊆ S(k+1) ⊆ S(k) forall k ≥ 0.

In particular,TRIV ⊇ TC ⊇ T̊C ⊇ TC(2)

⊇ · · · ⊇ TEQ .

Thus, TEQ can be ‘approximated’ by an anytime algorithm.

As uniqueness of TC(k) implies uniqueness of TC(k−1), we have an infinitesequence of increasingly difficult conjectures.

15 / 17

Page 69: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

‘Approximating’ TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

Theorem: S̊ is efficiently computable if and only if S is.

S, S̊, S(2), S(3), . . .TEQ

We would like to have ‘nice’ convergence...

Theorem: If S̊ ⊆ S, TEQ ⊆ S and TEQ is unique, then TEQ ⊆ S(k+1) ⊆ S(k) forall k ≥ 0.

In particular,TRIV ⊇ TC ⊇ T̊C ⊇ TC(2)

⊇ · · · ⊇ TEQ .

Thus, TEQ can be ‘approximated’ by an anytime algorithm.

As uniqueness of TC(k) implies uniqueness of TC(k−1), we have an infinitesequence of increasingly difficult conjectures.

15 / 17

Page 70: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

‘Approximating’ TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

Theorem: S̊ is efficiently computable if and only if S is.

S, S̊, S(2), S(3), . . .TEQ

We would like to have ‘nice’ convergence...

Theorem: If S̊ ⊆ S, TEQ ⊆ S and TEQ is unique, then TEQ ⊆ S(k+1) ⊆ S(k) forall k ≥ 0.

In particular,TRIV ⊇ TC ⊇ T̊C ⊇ TC(2)

⊇ · · · ⊇ TEQ .

Thus, TEQ can be ‘approximated’ by an anytime algorithm.

As uniqueness of TC(k) implies uniqueness of TC(k−1), we have an infinitesequence of increasingly difficult conjectures.

15 / 17

Page 71: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

The Minimal Top Cycle Retentive Set

TRIV ,TC , T̊C ,TC(2),TC(3), . . .TEQ

Theorem: T̊C is unique.

Consequence:

T̊C satisfies MON, SSP, WSP, and IUA

T̊C lies between TC and TEQ

T̊C is efficiently computable b1

b0 c0

c1

...

c2i

c2i+1

...

16 / 17

Page 72: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

The Minimal Top Cycle Retentive Set

TRIV ,TC , T̊C ,TC(2),TC(3), . . .TEQ

Theorem: T̊C is unique.

Consequence:

T̊C satisfies MON, SSP, WSP, and IUA

T̊C lies between TC and TEQ

T̊C is efficiently computable

b1

b0 c0

c1

...

c2i

c2i+1

...

16 / 17

Page 73: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

The Minimal Top Cycle Retentive Set

TRIV ,TC , T̊C ,TC(2),TC(3), . . .TEQ

Theorem: T̊C is unique.

Consequence:

T̊C satisfies MON, SSP, WSP, and IUA

T̊C lies between TC and TEQ

T̊C is efficiently computable b1

b0 c0

c1

...

c2i

c2i+1

...

16 / 17

Page 74: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Conclusion

Retentiveness as an operation on tournament solutions

Inheritance of basic properties by minimal retentive sets

Convergence and ‘approximating’ TEQ

T̊C first new concept in sequence with desirable properties

Future work: Prove (or disprove) uniqueness of TC(2), M̊C , . . . ,TEQ

Thank you!

17 / 17

Page 75: Minimal Retentive Sets in Tournamentsresearch.illc.uva.nl/COMSOC/estoril-2010/slides/Brill.pdf · Minimal Retentive Sets in Tournaments ... Set, Copeland Set, Banks Set, Minimal Covering

Conclusion

Retentiveness as an operation on tournament solutions

Inheritance of basic properties by minimal retentive sets

Convergence and ‘approximating’ TEQ

T̊C first new concept in sequence with desirable properties

Future work: Prove (or disprove) uniqueness of TC(2), M̊C , . . . ,TEQ

Thank you!

17 / 17