MiniBooNE

31
MiniBooNE MiniBooNE MiniBooNE Motivation LSND Signal Interpreting the LSND Signal MiniBooNE Overview Experimental Setup Neutrino Events in the Detector The Oscillation Search Studying MiniBooNE Hadron Production at HARP The HARP Data Set HARP Analysis Outline V th Rencontres du Vietnam 2004 David Schmitz Columbia University

description

MiniBooNE. V th Rencontres du Vietnam 2004 David Schmitz Columbia University. Outline. MiniBooNE Motivation LSND Signal Interpreting the LSND Signal MiniBooNE Overview Experimental Setup Neutrino Events in the Detector The Oscillation Search - PowerPoint PPT Presentation

Transcript of MiniBooNE

Page 1: MiniBooNE

MiniBooNEMiniBooNE

• MiniBooNE Motivation• LSND Signal

• Interpreting the LSND Signal

• MiniBooNE Overview• Experimental Setup

• Neutrino Events in the Detector

• The Oscillation Search

• Studying MiniBooNE Hadron Production at HARP• The HARP Data Set

• HARP Analysis

Outline

Vth Rencontres du Vietnam 2004David Schmitz

Columbia University

Page 2: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 2

MiniBooNE Motivation : The LSND Result• The Liquid Scintillator Neutrino Detector was the first accelerator based neutrino oscillation experiment to see a signal.

• LSND saw a 3.8 excess (above expected background) of e in a beam.

)%045.0067.0264.0()(Prob e

• The KARMEN experiment was a similar experiment that saw no signal neutrinos. KARMEN had less statistics and a slightly different experimental L/E.

•A combined analysis of LSND and KARMEN leaves a substantial allowed region.

combined analysis allowed region

Page 3: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 3

MiniBooNE Motivation : Interpreting the LSND Signal

m13

m12

m23

m13

m12

m23

• What to make of 3 independent m2 values?• solar exp. (Super-K, K, SNO, KamLAND, …)

m2 ~ 10-5 eV2

• atmospheric exp. (Super-K, K, …) m2 ~ 10-3 eV2

• accelerator exp. (LSND) m2 ~ 1 eV2

Page 4: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 4

MiniBooNE Motivation : Interpreting the LSND Signal

• What to make of 3 independent m2 values?• solar exp. (Super-K, K, SNO, KamLAND, …)

m2 ~ 10-5 eV2

• atmospheric exp. (Super-K, K, …) m2 ~ 10-3 eV2

• accelerator exp. (LSND) m2 ~ 1 eV2

m13

m12

m23

• One of the experimental results is incorrect. Must verify each m2.

• atmospheric and solar results are well confirmed.

• accelerator and reactor based exp. in the atmo. and solar ranges (K2K, MINOS, KamLAND)

• LSND requires confirmation.

m13

m12

m23

Page 5: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 5

MiniBooNE Motivation : Interpreting the LSND Signal

m13

m12

m23

m13

m12

m23

• What to make of 3 independent m2 values?• solar exp. (Super-K, K, SNO, KamLAND, …)

m2 ~ 10-5 eV2

• atmospheric exp. (Super-K, K, …) m2 ~ 10-3 eV2

• accelerator exp. (LSND) m2 ~ 1 eV2

• Addition of 1 or more “Sterile” neutrinos to the 3 neutrino standard model.

• LSND could be explained by oscillations to sterile neutrinos.

• One of the experimental results is incorrect. Must verify each m2.

• atmospheric and solar results are well confirmed.

• accelerator and reactor based exp. in the atmo. and solar ranges (K2K, MINOS, KamLAND)

• LSND requires confirmation.

Page 6: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 6

MiniBooNE Motivation : Interpreting the LSND Signal

• What to make of 3 independent m2 values?• solar exp. (Super-K, K, SNO, KamLAND, …)

m2 ~ 10-5 eV2

• atmospheric exp. (Super-K, K, …) m2 ~ 10-3 eV2

• accelerator exp. (LSND) m2 ~ 1 eV2

• Other possibilities• CPT violation

• CP violation + sterile neutrinos

• others…

?

• One of the experimental results is incorrect. Must verify each m2.

• atmospheric and solar results are well confirmed.

• accelerator and reactor based exp. in the atmo. and solar ranges (K2K, MINOS, KamLAND)

• LSND requires confirmation.

• Addition of 1 or more “Sterile” neutrinos to the 3 neutrino standard model.

• LSND could be explained by oscillations to sterile neutrinos.

Page 7: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 7

MiniBooNE Motivation : Interpreting the LSND Signal

• What to make of 3 independent m2 values?• solar exp. (Super-K, K, SNO, KamLAND, …)

m2 ~ 10-5 eV2

• atmospheric exp. (Super-K, K, …) m2 ~ 10-3 eV2

• accelerator exp. (LSND) m2 ~ 1 eV2

• Other possibilities• CPT violation

• CP violation + sterile neutrinos

• others…

• One of the experimental results is incorrect. Must verify each m2.

• atmospheric and solar results are well confirmed.

• accelerator and reactor based exp. in the atmo. and solar ranges (K2K, MINOS, KamLAND)

• LSND requires confirmation.

• Addition of 1 or more “Sterile” neutrinos to the 3 neutrino standard model.

• LSND could be explained by oscillations to sterile neutrinos.

The LSND signal must be confirmed or ruled out to know how to proceed in the neutrino sector.

Page 8: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 8

MiniBooNE Overview : Experimental Setup

• MiniBooNE receives 8.9 GeV/c protons from the Fermilab Booster.

• Protons are focused onto a 1.7 interaction length beryllium target producing various secondaries (p’s, ’s, K’s).

• Secondaries are focused via a magnetic focusing horn surrounding the target. The horn receives 170 kA pulses at up to 10 Hz.

Decay region

25 m50 m 450 m

Page 9: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 9

MiniBooNE Overview : Experimental Setup

• Secondary mesons (’s, K’s) decay in the 50m decay region to produce the MiniBooNE neutrino beam.

• A removable 25m absorber can be inserted. A great advantage for studying backgrounds.

• The horn is capable of running with the polarity reversed…anti-neutrino mode.

Decay region

25 m50 m 450 m

e

0

0

0

0

K

eK

eK

K

K

e

e

e

( )

( )

Page 10: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 10

MiniBooNE Overview : Experimental Setup

• Neutrinos are detected ~500 m away in a 12 m diameter Čerenkov detector.

• 950,000 liters of mineral oil

• 1280 photomultiplier tubes

• 240 optically isolated veto tubes

Decay region

25 m50 m 450 m

Page 11: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 11

MiniBooNE Overview : Neutrinos in the Detector

• We look for remnants of CC events in the detector producing a ring of prompt Čerenkov light and a small amount of delayed scintillation light.

epne

0

l

pZ 0

• NC 0 events are characterized by the double rings produced by 0 . These events can look like electron events when the photons overlap or the decay is asymmetric.

pn

Page 12: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 12

MiniBooNE Overview : More About CCQE Events

• Reconstruct the lepton angle with respect to the beam direction.

• Measure visible energy from Čerenkov light and small amount of scintillation light.

• ~10% E resolution at 1GeV with no background

Page 13: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 13

MiniBooNE Overview : More About CCQE Events

ell

llQE

PEMmMEE

cos2

21 2

CCQE Event Reconstruction

• Reconstruct the lepton angle with respect to the beam direction.

• Measure visible energy from Čerenkov light and small amount of scintillation light.

• ~10% E resolution at 1GeV with no background

PRELIMINARY PRELIMINARY PRELIMINARY

Page 14: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 14

MiniBooNE Overview : eOscillation Sensitivity

• Recall that the MiniBooNE e appearance analysis is a blind analysis.

• eCCQE events suffer from larger backgrounds than events.

• Use measurements both internal and external to constrain background rates.

Page 15: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 15

MiniBooNE Overview : eOscillation Sensitivity

• Recall that the MiniBooNE e appearance analysis is a blind analysis.

• eCCQE events suffer from larger backgrounds than events.

• Use measurements both internal and external to constrain background rates.

• With 1x1021 protons on target

• Average ~5% uncertainty on background rates.

Page 16: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 16

MiniBooNE Overview : eOscillation Sensitivity

• Recall that the MiniBooNE e appearance analysis is a blind analysis.

• eCCQE events suffer from larger backgrounds than events.

• Use measurements both internal and external to constrain background rates.

• With 1x1021 protons on target

• Average ~5% uncertainty on background rates.

Page 17: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 17

m2 = 0.4 eV2

m2 = 1 eV2

MiniBooNE Overview : eOscillation Signal

SignalMis IDIntrinsic e

Page 18: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 18

MiniBooNE Beam : Hadron Production at HARP

• The first goal is to measure + production cross sections for Be at pproton = 8.9 GeV/c.

• Additional measurements include:• - production (important for running)

• K production (important for intrinsic e backgrounds)

MiniBooNE has cooperated with the HARP experiment (PS-214) at CERN to measure hadron production from the MiniBooNE beryllium target.

No target 1.1 M events Normalization

5% Be 7.3 M events p+Be x-section

50% MB replica 5.4 M events Effects specific to MB target

reinteraction absorptionscattering100% MB replica 6.4 M events

Page 19: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 19

MiniBooNE Beam : Beryllium Target• The MB target is ~71 cm long and 1 cm in diameter

• Cooling fins (also Be)

• Comprised of seven ~10 cm slugs

Page 20: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 20

HARP : Cross Section Measurement

jj

jijtrack

iacci

i NM 111

truep ),( recp ),( pion purity

pion yieldtracking efficiency

migration matrixacceptance

pion efficiency

Page 21: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 21

HARP : Cross Section Measurement

jj

jijtrack

iacci

i NM 111

truep ),( recp ),( pion purity

pion yieldtracking efficiency

migration matrixacceptance

pion efficiency

• Acceptance is determined using the MC (compare to MB requirements)

Page 22: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 22

HARP : Cross Section Measurement

jj

jijtrack

iacci

i NM 111

truep ),( recp ),( pion purity

pion yieldtracking efficiency

migration matrixacceptance

pion efficiency

• Acceptance is determined using the MC (compare to MB requirements)

• Tracking Efficiency and Migration (no time to discuss today).

Page 23: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 23

HARP : Cross Section Measurement

jj

jijtrack

iacci

i NM 111

truep ),( recp ),( pion purity

pion yieldtracking efficiency

migration matrixacceptance

pion efficiency

• Acceptance is determined using the MC (compare to MB requirements)

• Tracking Efficiency and Migration (no time to discuss today).

• Raw Particle Yields and Efficiency and Purity of the selection.

Page 24: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 24

MiniBooNE Beam : Relevant Phase SpaceMomentum distribution peaks at ~1.5 GeV/c and trails off at 6 GeV/c.

Angular distribution of pions is mostly below 200 mrad.

Momentum and Angular distribution of pions decaying to a neutrino that passes through the MB detector.

Acceptance of HARP forward detector

Acceptance in P for |y|<50 mrad & |x|<200 mrad

Acceptance in x for |y|<50 mrad & P > 1 GeV

Page 25: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 25

HARP Detector : Overlapping PID Detectors0 1 2 3 4 5 6 7 8 9 10

pP (GeV)

ek

TOFCERENKOV

TOF ?CERENKOV

CERENKOVCALORIMETER

TOF

CERENKOV

CAL

Page 26: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 26

HARP Detector : Overlapping PID Detectors0 1 2 3 4 5 6 7 8 9 10

pP (GeV)

ek

TOFCERENKOV

TOF ?CERENKOV

CERENKOVCALORIMETER

TOF

CERENKOV

CAL

),,,,|( 21 EENpP pe

2 plane Calin deposited1 plane Calin deposited

)/(*

1

momentum tedreconstruc

2

1

2

EE

LLNN

Ltc

p

pathckovpepe

Page 27: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 27

HARP Detector : Overlapping PID Detectors0 1 2 3 4 5 6 7 8 9 10

pP (GeV)

ek

TOFCERENKOV

TOF ?CERENKOV

CERENKOVCALORIMETER

TOF

CERENKOV

CAL

),,,,|( 21 EENpP pe

)()|(

)()|()|(BPBAPBPBAPABP ii

i

,...,,,

},,,,{ 21

KepB

EENpA pe

Bayes Theorem

Page 28: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 28

HARP Detector : Overlapping PID Detectors

eKppe

pepe pPpEEPpNPpP

pPpEEPpNPpPEENpP

,,,21

2121 )|(),|,(),|(),|(

)|(),|,(),|(),|( ),,,,|(

tof cerenkov calorimetermomentumdistribution

0 1 2 3 4 5 6 7 8 9 10

pP (GeV)

ek

TOFCERENKOV

TOF ?CERENKOV

CERENKOVCALORIMETER

TOF

CERENKOV

CAL

Page 29: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 29

Pion ID : Beam Particles• Use no target runs to determine correction factor for PID. Beam detector ID is considered “true” ID.

• PID Input (for 1st iteration) is found from crude cuts on detector data. But method is quite insensitive to starting input.

• Need MC to determine efficiency and purity for continuous p,

PRELIMINARY PRELIMINARY PRELIMINARY

jj

j 1

Page 30: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 30

Pion ID : Beryllium 5% Target

• Run iterative PID algorithm on Be 5% target data to extract raw pion yields.

• PID efficiency and purity determined using no target data (MC).

• Tracking efficiency determined using both data and MC.

• Acceptance determined from the MC.

PRELIMINARY PRELIMINARY

Page 31: MiniBooNE

Vth Rencontres du Vietnam – 07 August, 2004 David Schmitz – Columbia University 31

Next Steps• Continue to improve particle probability functions for the three detectors using data and MC.

• Implement tracking, PID, and acceptance corrections to raw particle yields.

• Move towards normalized pion cross section measurement.

Next Next Steps• Study pion absorption and reinteraction effects in the thick target by

using data from three different target lengths.

• How well can we do /K separation?

• Finally, generate neutrino fluxes for MiniBooNE using measurements from HARP.