Millimeter-Wave Harmonically-Tuned Silicon Power ... · PDF file Millimeter-Wave...
date post
14-Aug-2020Category
Documents
view
4download
0
Embed Size (px)
Transcript of Millimeter-Wave Harmonically-Tuned Silicon Power ... · PDF file Millimeter-Wave...
Millimeter-Wave Harmonically-Tuned Silicon
Power Amplifiers for High Efficiency
Seyed Yahya Mortazavi
Dissertation submitted to the Faculty of
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in
Computer Engineering
Kwang-Jin Koh, Chair
Dong. S. Ha
Sanjay Raman
R. Michael Buehrer
Vinh Nguyen
June 23, 2016
Blacksburg, Virginia
Keywords: Harmonic Tuned Power Amplifier (PA), Inverse Class-F Power
Amplifier (PA), Millimeter Wave (mm-Wave), Power Amplifier (PA)
Copyright @ 2016, Seyed Yahya Mortazavi
Millimeter-Wave Harmonically-Tuned Silicon
Power Amplifiers for High Efficiency
Seyed Yahya Mortazavi
ABSTRACT
This research utilizes the Class F-1 harmonic tuning approach to improve the power efficiency and
power added efficiency (PAE) of the silicon power amplifiers (PAs) at mm-wave frequency bands.
This work tunes the 2nd and 3rd harmonic componets of voltage and current waveform over active
device to improve the efficiency of the PA. The potentials and limitations of the class-F-1 technique
in achieving a high PAE at microwave and higher frequencies, especially for integrated PAs based
on silicon process have been analyzed. To demonstrate effectiveness of the Class-F-1 approach a
multi-resonance 6th order load network is proposed which achieves 50% power added efficiency
with 18dBm output power at 24GHz. By optimizing this network for 38GHz, based on the loss of
passive components, PAE of 38.5% achieved. The design methodology developed for this network
and extensive small signal, large signal, and linearity performance of both PAs presented. To
further improve power efficiency of Class F-1 PAs, coupled inductor based harmonic tuning load
network proposed. The load network, utilizes coupled inductors to enhance quality factor of the
inductors and make wide bandwidth high impedance at 2nd harmonic and very low impedance at
3rd harmonic, which improves both efficiency and efficiency bandwidth. By using this load
network and optimizing for 28GHz, 2-stage PA implemented with PAE~42% with 16.5dBm
output power. As frequency increases to >30 GHz, the complexity of load network degrades the
power efficiency improvement of the Class-F-1 PAs. A simple /4 transformer based load network
proposed to tackle this issue and achieve high power efficiency. Using this load network, PAs
implemented with exceptional PAE performance of 43% at 41 GHz and 23% 94 GHz with output
power of 18 dBm and 11 dBm, respectively. To increase peak PAE bandwidth of PA, a simple
LC-based multi-resonance network proposed which provides in band mode transition from
Continuous-Class-F-1 to Continuous-Class-F. The PA operated at Continuous-Class-F-1 mode at
low signal frequency band and Continuous-Class-F mode at high signal frequency band. By using
mode-transition, PAE > 36.5% achieved over 25% fractional bandwidth (25 GHz~31 GHz).
In summary, this research presents different harmonic tuning load networks for Class F-1 operation
to address different issues and improve efficiency of mm-wave silicon PAs.
iii
To my dear parents and my lovely wife Shirin
iv
Attribution
This dissertation is composed of an introduction, five main chapters and a conclusion. The
main chapters are published in four conference papers and and either have or will be submitted to
archival journals for separate publication. Chapter three is published in a journal paper.
Dr. Kwang-Jin Koh, Ph.D., Assistant Professor in department of Electrical and computer
Engineering (ECE), Virginia Tech, Served as the committee chair and provided advice on the
works presented in each chapter. Dr. Koh is a coauthor on each and all of the papers.
v
Table of Content
1 INTRODUCTION ................................................................................................................... 1
MOTIVATION ............................................................................................................................................. 1
PROBLEM STATEMENT ................................................................................................................................. 4
CONTRIBUTIONS OF THIS RESEARCH AND ORGANIZATION OF THE DISSERTATION ...................................................... 5
2 TECHNICAL BACKGROUND ................................................................................................... 8
THE MERITS FOR MEASURING EFFICIENCY PERFORMANCE OF PAS ......................................................................... 8
CLASSES OF PAS ....................................................................................................................................... 10
2.2.1 Linear power amplifiers (Class A/AB/ B) ..................................................................................... 10
2.2.2 Switching power amplifiers (Class D/E) ...................................................................................... 12
HARMONIC TUNED POWER AMPLIFIERS: CLASS F-1/CLASS F .............................................................................. 13
MM-WAVE SILICON POWER AMPLIFIERS ....................................................................................................... 14
HARMONIC TUNING PA AT MM-WAVE .......................................................................................................... 15
SUMMARY ............................................................................................................................................... 17
3 HIGH EFFICIENCY MM-WAVE CLASS F-1 PA WITH LC HARMONIC TUNING LOAD ................. 18
INTRODUCTION ......................................................................................................................................... 18
INVERSE CLASS-F POWER EFFICIENCY LIMITING FACTORS ................................................................................. 19
3.2.1 Finite Number of Harmonics Control .......................................................................................... 20
3.2.2 Finite Knee Voltage, Vknee ........................................................................................................... 21
3.2.3 Transistor Breakdown Voltage, VBK ............................................................................................ 22
3.2.4 Resistive Losses from Passive Load Network .............................................................................. 24
3.2.5 Other Non-Idealities ................................................................................................................... 25
INVERSE CLASS-F LOAD NETWORK ............................................................................................................... 26
3.3.1 Multi-Resonance Parallel Load ................................................................................................... 26
3.3.2 Dual-Resonance Series Load ....................................................................................................... 30
TWO-STAGE CLASS-F-1 POWER AMPLIFIER DESIGN ......................................................................................... 31
3.4.1 Inverse Class-F Output Power Amplifier ..................................................................................... 31
3.4.2 Class-AB Driving Amplifier .......................................................................................................... 35
3.4.3 Experimental Results .................................................................................................................. 37
SUMMARY ............................................................................................................................................... 42
4 HARMONIC LOAD MODULATORS FOR MM-WAVE CLASS-F-1 PA ......................................... 44
vi
INTRODUCTION ......................................................................................................................................... 44
MUTUAL IMPEDANCE MODULATION ............................................................................................................ 45
HIGH QUALITY-FACTOR COUPLED INDUCTORS DESIGN ..................................................................................... 48
COUPLED INDUCTORS BASED CLASS-F-1 LOAD ................................................................................................. 49
INVERSE CLASS-F POWER AMPLIFIER DESIGN ................................................................................................. 53
4.5.1 Inverse Class-F Output-Stage Amplifier ...................................................................................... 54
4.5.2 Class AB Driving Amplifier and Inter-Stage Matching ................................................................ 60
4.5.3 Experimental Results ................................................................................................................