Microwave and Millimeter e Wave NDT&E - Missouri S&T Applied

117
C o p y ing , r e p r o d u c t ion a n d r e t r a n s m is s ion o f a n y p o r t ion o f t h is p r e s e n t a t ion is N OT p e r m it t e d w it h o u t e x p r e s s e d w r it t e n c o n s e n t o f t h e d ire c t o r . MicrowaveandMillimeter WaveNDT& E Prin ciples,Methodsand App lications No te: I f vi ew ingt his pr es entation inS afari, righ t clic k and clic k on Open withP re vi ew .

Transcript of Microwave and Millimeter e Wave NDT&E - Missouri S&T Applied

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Microwave and Millimeter Wave NDT&E

Principles, Methods and Applications

Note: If viewing this presentation in Safari, right click

and click on Open with Preview.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

This presentation is based on the results of research and activities in the areas of microwave and millimeter wave NDT&E performed at the:

Applied Microwave Nondestructive Testing Lab. ( amntl)Electrical and Computer Engineering Department

Missouri University of Science and Technology (S&T)

Rolla, MO 65409

For more information contact professor R. Zoughi (Director)

[email protected]

(573) 341-4656 (office)

(573) 341-4728 (lab.)

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

OutlineÉBackground.

ÉMaterial characterization.

ÉMulti - layer composite inspection.

ÉCorrosion and corrosion precursor pitting detection under paint.

ÉSurface crack detection and evaluation.

ÉReal- aperture, synthetic aperture and holographical imaging for inspection of several different types of composites.

ÉFuture.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

BACKGROUND

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Frequency Spectra300 MHz

1000 mm

300 GHz

1 mm

30 GHz

10 mm

m- Waves mm- Waves

Q- Band33- 50.5

V- Band50- 75

W- Band75- 110

Ka- Band26.5 - 40

D- Band110 - 170

X- Band8.2 - 12.4

Ku- Band12- 18

K- Band18- 26.5

Waveguide Bands

G- Band140 - 220

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Waveguides & Horn Antenna Examples

K- Band10.7 x 4.3

Ka- Band7.11 x 3.56

V- Band3.8 x 1.9

W- Band2.54 x 1.27 (mm x mm)

10 mm

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

BackgroundÉThese signals penetrate into dielectric

materials, as a function of their dielectric properties and frequency.

ÉSensitive to dielectric property variation:

Vabrupt (boundaries)

Vlocal (inclusions)

Vgradual (gradient in material change).

ÉPolarization, frequency, measurement parameter (near - field vs. far - field) & probe type diversity - degrees of freedom.

ÉSensitive to conductor surface properties ðcracks, impact damage, etc.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Advantageous FeaturesÉ Coherence properties ðmagnitude & phase.

É Large available bandwidth.

É Life - cycle inspection possibilities.

É Electromagnetic modeling (analytical, numerical and empirical).

É On- line and real - time inspection.

É Operation in industrial environments.

É Little to no need for operator expertise.

É Relatively inexpensive.

É Applications to where òstandardó NDT&E techniques have limited applicability.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Advantageous FeaturesÉMeasurement systems are:

Vnon- contact

Vone- sided

Vmono- static

Vcompact and small

Vlow power

Vin- field & operator friendly

Vadaptable to existing scanning platforms

Vrobust & repeatable

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

What Can Be Done?ÉMaterial characterization - evaluation of

dielectric properties of materials.

ÉEvaluation of moisture in composites.

ÉCure- state monitoring.

ÉRelating microwave properties to physical & mechanical properties of materials.

ÉComprehensive inspection of thick composite materials and structures.

ÉDielectric coating evaluation.

ÉThickness variation/quality control.

ÉDetection and evaluation of disbond, delamination, void & porosity.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

What Can Be Done?É Detection of defect/inhomogeneity in

dielectric composites.

É Evaluation of defect size and properties.

É Production of high - resolution defect images.

É Detection and evaluation of properties of surface cracks, anomalies & perturbations (impact damage) in metals and graphite composites.

É Conductor & dielectric sheet surface profiling.

É Detection and evaluation of corrosion and precursor pitting under coatings.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Stratified Composites - Examples

. . .

Thermal Barrier CoatingCorrosion

Under Paint

Probe

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Life -Cycle Inspection ðRubber Products

Carbon Black, EPDMZinc Oxide, OilCuratives, etc.

BeltHose

Process

MixerUncured Cured

HeatSheet

MultipleSheets

Adhered

ProcessProcess

Indicates where microwaveevaluation can be implemented.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

MATERIAL CHARACTERIZATION

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Material CharacterizationÉ An insulating material becomes polarized in

the presence of an electric field.

É Although the process occurs at atomic and molecular level, polarization vector is used to describe the process macroscopically through dielectric constant or properties.

É The ability of a material to store energy (microwave) is denoted by its (relative to free - space) permittivity, eõr .

É The ability of a material to absorb energy (microwave) is denoted by its (relative to free - space) loss factor, eór .

É These two parameters are the basis for material characterization.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Material Characterization

p =qd CÖm( )

P = limDv­0

1

Dvp

i=1

è

ê é é

ø

ú ù ù

C / m2( )

e=eo 1+ce( ) F / m( )

e=e'-je"=e'-jse

w

å

ç æ õ

÷ ö

er =e

eo

=e'r -je"r

tand=e"

e'

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Material Characterization ÉDetermine a mixture constituent makeup

via dielectric mixing models.

ÉControl mixture properties.

ÉCorrelate measured dielectric properties to chemical, physical & mechanical properties.

ÉCure- state monitoring.

ÉDetermine porosity level in TBC, ceramics, refractory, plastics, etc.

ÉDetermine moisture content in materials.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Material CharacterizationÉMeasured dielectric properties, as a

function of frequency, yields valuable information about material properties.

ÉFor mixtures (i.e., porosity in TBC) various dielectric mixing models may be used to extract a particular information such as porosity level.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Material CharacterizationÉMeasurement considerations:

VMaterial type, i.e. liquid, solid, gas, etc.

VOn- line or off - line

VRequired measurement accuracy

VLoss tangent of the material

VNondestructive vs. destructive

VNon- contact vs. in - contact

VMaterial geometry

VParticular information sought

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Measurement MethodsÉ Loaded transmission line:

VCompletely - filled waveguides.

VCompletely - filled coaxial lines.

VPartially - filled waveguides.

VOpen- ended waveguides and coaxial lines into either finite - thickness or infinite half - space.

ÉCavity resonators.

ÉMicrostrip patches.

ÉFree - space transmission and/or reflection methods.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Porosity in PolymerFrequency (GHz) 0% 48.9% 58.7% 68.5%

8.2 2.80 1.87 1.69 1.48

10 2.87 1.84 1.63 1.46

12 2.83 1.88 1.70 1.47

14 2.87 1.83 1.70 1.50

16 2.84 1.82 1.68 1.47

18 2.84 1.84 1.67 1.47

Frequency (GHz) 0% 48.9% 58.7% 68.5%

8.2 0.086 0.032 0.020 0.013

10 0.086 0.034 0.023 0.015

12 0.082 0.033 0.022 0.014

14 0.083 0.033 0.027 0.022

16 0.077 0.026 0.021 0.019

18 0.068 0.027 0.025 0.014

ñReproduced with permission, Materials Evaluation, vol. 53, no. 3, 1995, ÉAmerican Society for Nondestructive Testing.ò

Relative Permittivity

Relative Loss Factor

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Salt Water Permeation in Mortar

Open-Ended Rectangular Waveguide Probe

Specimen Under Test

Successive Chloride Penetration

Approximate Depth to which Microwave Signal Irradiates the Specimen

er1 er2

erNOpen-Ended Rectangular

Waveguide Probe

t1 2

t

Infinite Half-Space

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

Day 2Day 3Day 6Day 9Day 13Day 17Day 22Day 28Day 33

Distance from Surface (mm)

Wate

r C

on

ten

t D

istr

ibution

(g

m/m

m)

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

Day 2Day 3Day 5Day 8Day 12Day 17Day 23Day 29Day 35

Distance from Surface (mm)

Wate

r C

on

ten

t D

istr

ibution

(g

m/m

m)

ñÉ 2004 IEEE. Reprinted, with permission, from IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 2, pp. 406-415, April, 2004.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Salt Water Permeation in Mortar

0

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30 35 40

Day 3

Day 5

Day 8

Day 12

Day 15

Day 20

Day 28

Day 33

Distance from Surface (mm)

Cry

sta

l S

alt

Recalculation of Cyclical Crystal Salt Deposition in Mortar Blocks

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r. GENERAL MULTI -

LAYERCOMPOSITES

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

General Multi -Layer Structure

Open -Ended

Waveguide

Stratified Composite

Conductor

or

Infinite Half -

Space

Standoff

Distance

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

General Multi -Layer Structure

E x ,y , 0( )=Vi oe o ( x, y )+ Vr n

n =0

¤

ä e n ( x , y)

H x, y, 0( )=YoVi oh o ( x ,y )- YnVrn

n=0

¤

ä h n( x , y)

Vr n= E x, y, 0( )¶e n ( x, y )dxdy

S

ññ

Y =G + jB =

E x, y, 0( )³W x , y, 0( )[ ]¶) a z dxdy

S

ññ

E x , y, 0( )¶e o( x ,y )dxdyS

ññè

ê é

ø

ú ù

2

W x, y( )=H x , y, 0( )+ Yn

n=0

¤

ä h n( x , y) E h,z, 0( )S

ññ ¶e n (h,z) dhdz

G=Ge jf =1-Y

1+Y

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Coating Thickness - Contact

Rubber with 12.4 - j2.4

ñReproduced with permission, Materials Evaluation, vol. 51, no. 6, 1993, ÉAmerican Society for Nondestructive Testing.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Coating Thickness

ñReproduced with permission, Materials Evaluation, vol. 51, no. 6, 1993, ÉAmerican Society for Nondestructive Testing.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Non -Contact Disbond

7.55 mm -Thick Rubber with 8.4 - j0.9

10 GHz @ 5 mm Standoff

ñÉ 1994 IEEE. Reprinted, with permission, from IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 3, pp. 389-395, March, 1994.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r. IMAGING FOR

NDT&E

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

NDT&E Imaging ConstraintsÉYou can simulate and measure changes in

complex reflection and transmission coefficients and deduce much about the characteristics of a structure.

ÉThis is generally time - consuming, off - line and not real - time.

É In many NDT applications it is first and foremost important to know whether something is wrong (i.e., NDT) and then maybe evaluate its properties (i.e., NDE).

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

NDT&E Imaging ConstraintsÉOperators and technicians need quick

qualitative tools first ðan image of a composite showing an area of potential damage.

É In some applications slight damage may not be tolerated, while in others it may be OK until the next inspection or when a threshold is crossed.

ÉConstraints on imaging capabilities and attributes vary widely in practice ðcorrosion in rebar vs. crack in aircraft fuselage, or disbond in a heat tile!

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

NDT&E Imaging ConstraintsÉOther important constraints include:

VCost

VEase of use

VPortability

VRapid image production

VReal- time image production

VResolution ðspatial and depth

VPersonnel training

VOn- line needs

VLevel of technical comfort ðcommercial scanners, UT, EC, etc.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r. NEAR -FIELD

TECHNIQUES

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Near - Field MethodsÉNear -field imaging using òstanding-waveó or òsingleó reflectometers:

VSimple, inexpensive, small, handheld, portable

VCommonly CW

VHigh spatial resolution ðresolution is probe size dependent

VNo depth resolution

VEasily adaptable to commercially - available scanning platforms

VProvides a great deal of information

VEvaluation of properties not readily possible

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Near -Field ImagingÉNear - field imaging using coherent imaging

systems or reflectometers:

VComplex in design

VCommonly CW but not always

VHigh spatial resolution ðresolution is probe size dependent and also synthetic aperture focusing is possible

VProvides depth resolution

VRelatively costly and larger

VGenerally not handheld, but yet portable

VNot always easily adaptable to commercially - available scanning platforms

VEvaluation of properties is possible using proper forward and inverse formulations.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Near -Field ImagingÉGreat usefulness for a variety of

applications.

ÉParticularly suitable to inspect:

VDielectrics for embedded flaws

VMetals for surface cracks

VStratified composite structures

VCorrosion under paint

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

General Reflectometer Schematic

Divider/Combiner

Comparator/DetectorPhase &/or Mag.

Amp. + DVM

AntennaOscillatorIsolator

ToScanner

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Glass with Aluminum Inclusion

ñReproduced with permission, Materials Evaluation, vol. 53, no. 8, 1995, ÉAmerican Society for Nondestructive Testing.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Standoff Distance Influence 1. Contact measurement, max.

signal difference.

2. High level of signal difference, but very sensitive to standoff distance change.

3. Crossover, no distinction between inclusion and no inclusion.

4. Sufficient signal difference while able to tolerate some standoff distance change.

5. Similar to 4, but image gray level flips.

ñReproduced with permission, Materials Evaluation, vol. 53, no. 8, 1995, ÉAmerican Society for Nondestructive Testing.ò

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15 20

Vo

ltag

e (V

)

Over

Inclusion

Devoid of

Inclusion

Standoff distance (mm)

1

2

5

3

4

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Disbond in Thick Composite

44.5 mm

40.1 mm

44.4 mm

Foam

Foam

Foam

3.85 mm

3.85 mm

4.9 mm

3.9 mm

425 mm

310

mm

N-5

Disbond 0.6mm

235 mm18

0 m

m

1.5 mm

2.5 mm3.5 mm

ñReproduced with permission, Materials Evaluation, vol. 60, no. 2, 2002, ÉAmerican Society for Nondestructive Testing.ò

Using Standoff Distance Compensator and at Three Different Standoff

Distances

Disbond Area

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

CORROSIONand

PRECURSOR PITTING

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Background

Open- EndedWaveguide

Paint- Primer or Composite Coating

StandoffDistance

Conducting Plate

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Corrosion under Paint

~2õ by 2ó Corrosion patch in steel plate (painted

over several times in the picture to the left)

Click on the above picture to view video

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

PittingÉDetection of corrosion precursor pit is

important since if detected initiation of corrosion process is detected.

ÉOnce a pit is detected its dimensions, and in particular information about its depth can be very useful maintenance decision process.

ÉIn some applications, a pit can be òsanded off ó to inhibit stress corrosion initiation.

ÉPits are very small and hence difficult to detect when exposed and particularly under paint.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Pitting - Microwave & EC

ECMicrowave

Reprinted with permission from D. Hughes, R. Zoughi, R. Austin, N. Wood and R. Engelbart, ñNear-Field Microwave Detection of Corrosion

Precursor Pitting under Thin Dielectric Coatings in Metallic Substrates,òReview of Progress in Quantitative Nondestructive Evaluation 22A,

AIP Conference Proceedings, vol. 657, pp. 462ï469, 2002, Copyright 2002, American Institute of Physics.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Dual Differential ProbeÉCapable of automatic removal of standoff

distance variations.

ÉSensitive to the presence of small anomalies.

ÉProduces image of boundaries of spatially extended anomalies.

É Indicates non - uniformity of spatially extended corrosion or anomaly.

ÉSimple, rugged and scanner adaptable.

ÉPit sizing.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Standoff Removal

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

Single probe

Dual differential probe

Pro

be

ou

tpu

t (V

)

Standoff distance (mm)

ñÉ 2006 IEEE. Reprinted, with permission, from IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 5, pp. 1620-1627, October 2006.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Dual Probe vs. Single Probe

Natural PitsKa- Band Single Probe

Natural PitsV- Band Dual Probe

ñÉ 2006 IEEE. Reprinted, with permission, from IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 5, pp. 1620-1627, October 2006.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Corrosion under Paint

datawT

datawT

V-Band Single Probe V-Band Dual Probe

Reprinted with permission from M.T. Ghasr, S. Kharkovsky, R. Zoughi, M. OôKeefe and D. Palmer, ñMillimeter Wave Imaging of

Corrosion under Paint: Comparison of Two Probes,ò Review of Progress in Quantitative Nondestructive Evaluation 25B

AIP Conference Proceedings, vol. 820, pp. 447-454, 2006, Copyright 2006, American Institute of Physics.

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

DUAL POLARIZATION

TECHNIQUE

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

CFRP -Strengthened StructuresÉ Concrete structures may be

strengthened or rehabilitated with unidirectional CFRP sheets.

É Transmission through CFRP is highly polarization dependent.

É Two normal polarizations give different & useful information.

É Orthogonal polarization dependent of standoff and disbond.

É Parallel polarization data can be used to monitor and correct for standoff distance change.

ñÉ 2008 IEEE. Reprinted, with permission, from IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 1, pp. 168-175, January 2008.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Dual Polarized Probe

ñÉ 2008 IEEE. Reprinted, with permission, from IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 1, pp. 168-175, January 2008.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Dual Polarized Probe Video

Click on the above picture to view video

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Laboratory Results - Tilted

Parallel Perpendicular

Compensated

ñÉ 2008 IEEE. Reprinted, with permission, from IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 1, pp. 168-175, January 2008.ò

dataxT

dataxT

dataxT

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Dual Polarized Probe

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Field Results Abutment

datax3Tdatax3

T

Parallel Perpendicular

data3( )T

Compensated

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

DUAL MODULATED

APERTURE TECHNIQUE

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

FoundationÉ Switch between two mirror electric field distributions

synthesized over a single aperture.

É Both distributions interact with their surroundings in a similar manner.

É By making one of them ON at a time, two signals can be measured at any point.

É Standoff distance variation can be compensated for by subtracting the measured signals. These signals are measured non- coherently using a standing wave probe.

0 a

b

0 a

b

0 a

b

Shorted Dipoles

(c)(b)(a)

ñÉ 2009 IEEE. Reprinted, with permission, from IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 5, pp. 1273-1282, May 2009.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Prototype Probe Aperture

a

b

s

E

Dipole

PIN Diode

SMT Capacitor DC Bias Line

Dipole Length ~3mm and Dipole Interspacing ~5.3 mm

ñÉ 2009 IEEE. Reprinted, with permission, from IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 5, pp. 1273-1282, May 2009.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

Standoff Distance Response

Conducting plate

aperture

d

ñÉ 2009 IEEE. Reprinted, with permission, from IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 5, pp. 1273-1282, May 2009.ò

0 0.5 1 1.5 2-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

d/l

Re

sp

onse

(V

)

Diode (1) ON

Diode (2) ON

Difference

Conducting plate

aperture

d

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

2D Image ðTilted Panel

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Dual Modulated Aperture Probe

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Single Aperture Probe

ñÉ 2009 IEEE. Reprinted, with permission, from IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 5, pp. 1273-1282, May 2009.ò

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

SURFACE CRACKDETECTION

andEVALUATION

Copyin

g,

repro

ductio

n a

nd r

etr

ansm

issio

n o

f any p

ort

ion o

f th

is p

resenta

tio

n is N

OT

perm

itte

d w

ithout

expre

ssed w

ritt

en c

onse

nt

of th

e d

irecto

r.

FoundationÉ Metals terminating an open - ended probe

aperture, cause total reflection of signal.

É Surface cracks perturb induced surface currents, thereby changing the reflection properties of the surface.

É Detection of changes in the reflection properties yields the presence of a crack.

É Characteristics of the reflection properties yield geometrical information.

É Can detect filled cracks and those under coatings.

É Detection is metal type independent.