MICROPHYSICS in AROME

26
MICROPHYSICS in AROME C.Lac , S.Malardel (CNRM/GMME) J.-P.Pinty (Laboratoire d’Aérologie) 2 nd AROME training course, Lisboa, March 2008

Transcript of MICROPHYSICS in AROME

Page 1: MICROPHYSICS in AROME

MICROPHYSICS in AROME

C.Lac

, S.Malardel

(CNRM/GMME)J.-P.Pinty (Laboratoire d’Aérologie)

2nd AROME training course, Lisboa, March 2008

Page 2: MICROPHYSICS in AROME

IntroductionIntroduction

A classical bulk mixed

microphysical scheme developped in Meso-NH (http://mesonh.aero.obs-mip.fr/mesonh/) with 3 ice categories by J.-

P.Pinty based

on Caniaux et al.(1993).

Analogous schemes are :- 3 ice categories : Lin et al. (1983) : ARPS and WRF models- Up to 5 ice categories : Walko et al. (1995) : RAMS model

Developped mainly upon

tropical squall

lines (Caniaux

et al., after

compiling various

published

experimental

observations),

largely validated on Cevenol flood events (Ducrocq et al.), MAP orographic precipitation (Asencio et al., Richard et al.) …

Mainly adapted to β-mesoscales (<5km)

: Resolved

variables :

grid-mean values (no

account

for

subgrid-scale variability) and small time steps (up to

60s) due to local calculations.

Bulk representation →

Unavoidable and necessary assumptions

Page 3: MICROPHYSICS in AROME

OutlookOutlook

1.

General

characteristics of the

categories

2.

Generalities on the

processes

3.

Some details on a few processes

4.

Examples

Page 4: MICROPHYSICS in AROME

Prognostic

Variables:

Mixing

ratios

(mass of water / mass of dry air) assumptions about number concentrations (1-moment)

Number

of

cloud

and

precipitation

variables:

A classical BULK mixed

microphysical scheme

Pristine crystals : Cloud ice

Snow (large crystals), Aggregates (assemblage of crystals)

Graupel (rimed crystals : small to large : hailstone)

Hailstone

and

hailSupercooled cloud

droplets

Cloud water (droplets)

Rain water (drops)

Mixed phase

Warm phase

0°C

Page 5: MICROPHYSICS in AROME

Size distribution (n(D)): Generalized Gamma law

N is the concentration (g(D) is a normalized distribution law) λ

is the slope parameter deduced from the mixing ratio

(α, ν) are free shape parameters (Marshall-Palmer law:

α=ν=1)

dD)D-(λexpDλν)Γαg(D)dDn(D)dD )(1 ααναν −

(== NN

ParticleParticle size distributionssize distributions

Exponential decay : rain, snow, graupel, hail

Modal distribution : droplets, cloud ice

Page 6: MICROPHYSICS in AROME

MicrophysicalMicrophysical characteristicscharacteristics

Mass-Size relationship: m=aDb

Fall speed-Size relationship: v=cDd . (ρ00

/ρa )0.4

Very useful p-moment formula

λ1)(

λ1

Γ(ν))αpΓ(νdDn(D)DM(p)

pp0

p pNG=+

== ∫∞

∫∞

==0

)()()( baNMdDDnDmrdρThe content of any specy :

bxd

baCGr −

⎟⎟⎠

⎞⎜⎜⎝

⎛=

1

)(ρλThe slope parameter depends on the content :

Page 7: MICROPHYSICS in AROME

Aggregates and snowPristine iceRain

Mass of a single

particle (kg)

m=aDb D~10-100μm D~1-10mm ρs ~100kg/m3

V~0,3-1,5m/s

D>7mm ρg > ρs up to 900kg/m3

D<82μm

3

6Dπ

bxd

baCGrwith −

+⎟⎟⎠

⎞⎜⎜⎝

⎛==

1

1x

)(D-λexp λn(D) )( ρλ C

Velocity of a single

particle (m/s)

Size distribution for precipitating

particles

)( D-λexp .108 6 )( D-λexp 5 2λ )( D-λexp 10.5 0.55 λ

V=cDd

. (ρ00

/ρa

)0.4

9.102.0 D5.282.0 D 8.26.19 D

Graupel and hailstoneCloud

D>82μm

3

6Dπ

V~1-5m/s up to 14-15m/s for hail

V~0m/sV~a few cm/s V~3-10m/s

V=5.1D0.27 . (ρ00

/ρa

)0.4V=124D0.66 .

(ρ00

/ρa

)0.4V=800D . (ρ00

/ρa

)0.4V=842D0.8 . (ρ00

/ρa

)0.4V=cD2 .

(ρ00

/ρa

)0.4

Page 8: MICROPHYSICS in AROME

Resolved processes : no subgrid-scale variability. Thresholds used independtly to the grid scale or to the cloud fraction.

All concurrent processes involving an exchange of heat and water vapor on the condensed particles are computed independently each other.

The condensation/evaporation of cloud species (implicit adjustment of temperature, water vapor, cloud and primary ice) is performed after to introduce consistency with a strict saturation criterium. It is the key process to produce clouds.

Calculation are done locally (eulerian budget in a grid) : Limit of the time step (60s could be considered as a limit)

And semi-sequentially : each process is computed with the prognostic variables defined at the current time step leading to microphysicaltendencies (guess of the next instant) BUT is limited by the current state of the guess :at the end of each step, guesses are checked for positivity. In some circumstances, some specy may be available or not for the next process, depending on the chosen order in the sequence of integration

GeneralGeneral considerationconsideration on on processesprocesses

Page 9: MICROPHYSICS in AROME

The saturation

adjustment

and the

sedimentation

are

particular because

they redistribute directly

the

guess.

The sedimentation

is

only

a «

fall

» process, that redistributes vertically

the hydrometeor.

It computes

the budget of the

species

in the grid

(entrance –

exit) due to the fall, based

on the guess of the

next instant. It

doesn’t take into

account any process that could occur during

the

fall : the

other processes are calculated locally before.

GeneralGeneral consideration consideration on on processes processes

Page 10: MICROPHYSICS in AROME

Vapor

Cloud

Rain

Ice

SnowGraupel

Hail

Aut

ocon

vers

ion

Aut

ocon

vers

ion

Acc

réti

on

Agg

rega

tion

Freezing Riming

Snow collection

Saturation adjustmentSaturation adjustment

Evaporation

Bergeron

Dry,wet Dry,wet

Dry,wet Dry,wet

WetWet

Melting

Melting Melting

Melting

Sedim

Sedim

Sedim

Sedim

Sedim

Sedim

Dep

osit

ion/

subl

imat

ion

Deposition/sublimationHeterogeneous nucleation

Homogeneous nucleation

Hom.nucleation

Présentateur�
Commentaires de présentation�
Pristine ice crystals: instantaneously melted into cloud droplets Graupel particles raindrops: heat budget equation (analogy with wet growth) Snow/aggregates graupel (as melting snow tends to densify) raindrops: heat budget equation and conversion into graupel �
Page 11: MICROPHYSICS in AROME

VC

R G S

I

H

AUTOCONVERSIONA crude but efficient parametrization

to initiate

raindrops or snow aggregates.

No phase change.

- Still subject

of active research

(to

include Nc

,Dc

,σc

,turbulence )

-

Thresholds independent of the

grid size. The single microphysical process that can take into account cloud fraction coming from

turbulence/convection.

( ) ( ) ( )

( )iceformgidcloudformgcd

iceforscloudfors

with

jdjdMax

critcrit

critjd

AUT

kd

AUT

33

1t

313

.02.0rρ;.5.0rρ:Threshold

)TT(025.0exp10K;10K:scaleTime

rρrρ,0.0Kt

)r(ρt

)r(ρ

−−

−−−−

==

−××==

−×=∂

∂−=∂

Chaboureau and Pinty, 2006

Page 12: MICROPHYSICS in AROME

VC

R G S

I

H

COLLECTIONBased

on

continuous

collection kernels

(geometrical

swept-out concept)

E)D(v)D(vDD4π)D,DK( xyyyxxyx

2yx )( −+=

Collection efficiency(poorly known !)

• 3 components :

-

Raindrop contact freezing : falling raindrops capture ice

to form graupeln (Vi

negligible)

-

Snow

riming with cloud droplets, giving snow or graupel (Dslim>7mm)

-

Snow collection with raindrops, giving snow or graupel (Dlimbased

on a mixture of snowflake

and raindrop)

( ) ( ) accrrrccd

ACC

rd

ACCEcN )2d(MEr4t

)r(ρt

)r(ρacc +=

∂∂−=

∂∂ π

• 2 components :

Accretion,

Aggregation

Collection : the

most difficult task

(uncertainties on collection efficiencies)

Page 13: MICROPHYSICS in AROME

VC

R G S

I

H

EVAPORATION-DEPOSITION/SUBLIMATION- BERGERON

Evaporation

derived from heat balance equation

P)(T,A(D)fDS4tm(D) w/iw/iv,/ ×××=∂∂ πSUBEVA

Supersaturation for depositionSub-saturation for evaporation/sublimation

Ventilation coefficient

Thermodynamical function

( ) ( )∫∞

∂∂=

∂∂

0Dd)D(n

t)D(m

t)r(ρ

rrrr

EVA

rd

EVA

EVAPORATION : a fully analytical

and

accurate parameterizationNo account of partly saturated grids

Page 14: MICROPHYSICS in AROME

WET/DRY GROWTH OF GRAUPEL

WET

growth

( Hail) (Heat

balance equation, Musil,1970)DRY

growth

( Graupel) (Sum of collection rates)

Graupel

with Tsurf

< 0°C

liquid

film

Shedded

drops

Graupel

with Tsurf

= 0°C

WET growth = Maximum freezing rate of the

graupel. The minimum growth rate must be taken

Wet growth regime leads to conversion to hail

And

any excess of liquid

water

at

the surface of the

graupel is shedded

and converted into raindrops

WETDRYDRY

tr

tr gd

WET

hd

+×⎟⎟

⎞⎜⎜⎝

⎛∂

∂=⎟

⎠⎞

⎜⎝⎛

∂∂

∗ρρ

Page 15: MICROPHYSICS in AROME

MeltingMelting of the of the iceice particlesparticles (T>0°C)(T>0°C)

Pristine

ice

crystals:

instantaneously

melted

into

cloud

droplets

Graupel

particles raindrops: heat budget equation taking into account

the fall

and the collection capability

of the particles

Snow/aggregates graupel raindrops: heat budget equation andconversion into

graupel

T=0°C

mixed-phase~ graupelPristine

crystals Graupel Snow/Aggregate

Page 16: MICROPHYSICS in AROME

SedimentationSedimentation

Fallout of a specie: vertical flux of the specie relative to the air Sedimentation rate from sedimentation flux :

∫∞

+

=

××=

0

dba00

0.4

0

Dd)D(nD )ρρ(caSed_flux

Dd)D(n)D(m)D(vSed_flux

rrrrrr

rr

rrrrr

2 techniques available in AROME :

1.

Time-splitting

for numerical

stability: the

particle doesn’t cross more than 1 vertical grid during

the

sub time-step (appropriate for small time

steps

like

Meso-NH, expensive for AROME)

2.

The local approach

of Bouteloup

and Geleyn as in ARPEGE-ALADIN : appropriate for AROME

Page 17: MICROPHYSICS in AROME

P0

= Proportion of particles

that

cross the distance z

during

a time t (w=fall speed) ⎪

⎪⎨

<=

11

10),(0

zwtifz

wtiftzP

1 : Drops which

are in the

level at

the

begining

of the time

step:∫Δ

⎟⎠⎞

⎜⎝⎛

ΔΔ

=ΔΔ

=z

xtwMindztzP

zP

001 ,1),(1

2 : Drops which

come

from

the

upper level: ⎟⎠⎞

⎜⎝⎛

ΔΔ

−=ΔΔ

= ∫Δ

twzMaxdttzP

tP

t

1,0),(1

002

3 : Drops which

are

produced continuously during

the time step : For AROME included in P1

SedimentationSedimentation : the local : the local approach approach ((Bouteloup Bouteloup et al.)et al.)

Fall speed rFluxSedW

dρ_

=

)1(_)(_ 21 ++Δ

Δ= kFluxSedPtrzPkFluxSed dρ

( ) ( )Sed_fluxρ1

t)r(ρa

zd

r

SED ∂∂

=∂

∂:

Upstream differencing scheme

Page 18: MICROPHYSICS in AROME

U

W θ

Cloud water

Rain water

Snow

Graupel

Cloud ice

Supercooled cloud

water

2D Tropical 2D Tropical SquallSquall Line Line with Mesowith Meso--NHNH

Page 19: MICROPHYSICS in AROME

Mixing ratiosConvective part (according to instantaneous precipitation

rate)

Mixing ratiosStratiform

part

ice icesnow snow

graupel graupel

cloudcloud

rain rain

θBudgetConvective part

AdjustmentGraupel sublimation

Rain evaporation

Snow sublimationGraupel melting

Dry G

Riming :c+s→g

Vapor

budgetConvective part

AdjustmentGraupel sublimation

Snow sublimation

Rain evaporation

Page 20: MICROPHYSICS in AROME

Rain

budgetConvective part

Riming Graupel melting

AccretionRain evaporation

Autoconversion

Graupel

budgetConvective part

MeltingDry G

Snow

melting

Heavy riming : c+s →g

Snow budgetConvective part

Snow budgetStratiform

part

Light riming : c+s →s

Autoconversion

SublimationAggregation

Accretion

: r+s →s

Melting

Dry GLight riming : c+s →s

Autoconversion

SublimationAggregation

Accretion

: r+s →sMelting

Dry G

Page 21: MICROPHYSICS in AROME

V_r

V_g

V_h

V_s

Sedimentation Splitting Local sedimentationV_r

V_g

V_h

V_s

Rain

Max=7m/s

Graupel

Max=3m/s

Hail

Max=10m/s

Snow Max=1.8m/s

Page 22: MICROPHYSICS in AROME

IOP 2A

Strong Convection

IOP 8

Stratiform rain

F.Lascaux and E.Richard, 2005

Orographic precipitationOrographic precipitation

3D (MAP) : 3D (MAP) : MesoMeso--NHNH

Page 23: MICROPHYSICS in AROME

IOP2aIOP2a

Z > 60 dBz

100 kmTabary, 2002

(x) hail

+ graupel

(o) hail

( ) rain

graupel 20H

Lascaux et Richard, 2005

SnowGraupel

Hail

Cloud Rain

IceIOP2a

IOP2a ( Strong convection)-

Deep system (unblocked unstable case, high Fr)- Large amount of hail and graupel

Présentateur�
Commentaires de présentation�
Un exemple de comparaison entre une restitution radar de paramètres microphysiques et une simulation numérique: La simulation restitue correctement l’apparition de la grêle entre 18h et 19h et l’étagement des hydrométéores: mélange grêle/graupel, grêle, mélange pluie/grêle, et pluie. Les paramètres restitués par l’algorithme radar sont: les cristaux orientés verticalement (VC) et horizontalement (HC), la neige mouillée (WS) et sèche (DS), les mélange graupel/grêle (GH) et grêle/pluie (HR), la grêle (HL), et la pluie de différentes intensités (LR,MR,HR). �
Page 24: MICROPHYSICS in AROME

IOP8IOP8

Meso-NH simulationIOP8

( Stratiform

event)-

Shallow system (blocked case, low Fr)- Large amount of snow

IOP8

SnowGraupel

HailCloud

Rain

Ice

S-Pol retrieval

rain

snowmelting snow

Medina et Houze, 2003

Lascaux et Richard, 2005

Page 25: MICROPHYSICS in AROME

MesoMeso--NH :NH : Comparison initializationComparison initialization//coupling coupling ALADIN/ECMWFALADIN/ECMWF

ALADIN init/coupling

ECMWF init/coupling

20th of June 2007 : Convective cells on NE producing hail on Haut-Rhin

24h cumulated surface precipitation

Page 26: MICROPHYSICS in AROME

Comparison MesoComparison Meso--NH/AROME : Aladin NH/AROME : Aladin initializationinitialization//couplingcoupling

AROME

Meso-NH

Max 70mm

Max>100mm