Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599...

90
A 11 ID 3 PUBLICATIONS RRbMMb NBSIR 79-1599 Microphone Windscreen Performance Robert N. Hosier and Paul R. Donavan Acoustical Engineering Division Center for Mechanical Engineering and Process Technology National Bureau of Standards Washington, DC 20234 January 1979 Final Report Prepared for Office of Noise Abatement and Control U.S. Environmental Protection Agency Washington, DC 20460

Transcript of Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599...

Page 1: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

A 11 ID 3PUBLICATIONS

RRbMMb

NBSIR 79-1599

Microphone WindscreenPerformance

Robert N. Hosier

andPaul R. Donavan

Acoustical Engineering Division

Center for Mechanical Engineering

and Process Technology

National Bureau of Standards

Washington, DC 20234„

January 1979

Final Report

Prepared for

Office of Noise Abatement and Control

U.S. Environmental Protection AgencyWashington, DC 20460

Page 2: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision
Page 3: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

NaHenaP Bj,rean of Standards

MAY 1 5 1979

NBSIR 79-1599

MICROPHONE WINDSCREENPERFORMANCE

Robert N. Hosier

and

Paul R. Donavan

Acoustical Engineering Division

Center for Mechanical Engineering

and Process Technology

National Bureau of Standards

Washington, DC 20234

January 1979

Final Report

Prepared for

Office of Noise Abatement and Control

U S. Environmental Protection AgencyWashington, DC 20460

U S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Page 4: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

J

Page 5: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. WINDSCREENS AND WINDSCREEN PERFORMANCE 1

2.1 Types of Windscreens 1

2.2 Commercially Available Windscreens 2

2.3 Performance of Windscreens 3

3. TEST APPARATUS 4

4. TEST PROCEDURE 6

5. TEST RESULTS 6

5.1 Wind-Induced Noise 6

5.2 Acoustic Insertion Loss 9

6. CONCLUDING REMARKS 9

REFERENCES 11

TABLES 13

FIGURES 16

APPENDIX A: TABULATION OF WIND-INDUCED NOISE LEVELS FOR

GRAZING FLOW INCIDENCE 52

APPENDIX B: TABULATION OF WIND-INDUCED NOISE LEVELS FOR

NORMAL FLOW INCIDENCE 64

APPENDIX C: TABULATION OF ACOUSTIC INSERTION LOSS MEASUREMENTS

FOR GRAZING FLOW AND NORMAL ACOUSTIC INCIDENCE.. 76

Page 6: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision
Page 7: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

1. INTRODUCTION

Microphone windscreens are used in conjunction with almost everyoutdoor noise measurement. As the name implies, windscreens screen or

shield microphones from wind in order to improve the signal-to-noiseratio of an acoustic measurement. Windscreens also serve to protect the

microphone diaphragm from foreign materials carried in the wind (e.g.

dust, insects, or moisture).

In order to empirically characterize a number of microphonewindscreens of the type currently in use and to provide some indication

of the mechanisms of wind-induced noise, measurements of wind inducednoise and windscreen insertion loss were made under laboratoryconditions. Ten microphone windscreens were included in the study.

Eight of these were reticulated polyester or polyether spheres of varyingporosity. The remaining two windscreens were of the

cloth-over-metal-cage type often used in long term outdoor noisemonitoring. The measurements were made at two flow orientations and at

seven wind speeds.

Section 2 of this report presents a discussion of previous workdealing with assessments of windscreen performance along with a

description of the type of windscreens currently in use. Details of the

apparatus and measurement techniques used in the current study are

discussed in Sections 3 and 4. The results of the measurements are

contained in Section 5 and concluding remarks are presented in Section 6.

2. WINDSCREENS AND WINDSCREEN PERFORMANCE

2.1 Types of Windscreens

With a few exceptions, microphone windscreeen design has evolved very littlesince the prototype of Thorne [1]

1 and Spotts [2] which consisted of either

spherical or spheroidal wire cages covered with a silk or nylon gauze.

In an early work Phelps [3] developed an expression for the wind pressure

around a sphere [microphone] placed in incompressible, non-turbulent

flow. He then designed a perforated windscreen to take advantage of the

pressure and phase differences over the surface of the sphere in order to

reduce the wind pressure at the microphone diaphragm. More than twenty

years later Bleazy [4] extended the work of Phelps to relate the

attenuation of wind noise to the enclosed volume of the windscreen. His

experiments were conducted in an anechoic chamber with a paddle-wheel as

the wind source. The wind generated by this device was turbulent, but

controlled in frequency and velocity so as to simulate outdoor wind

conditions. Bleazy found the following relationship to hold over the

wind speed range from 2 m/sec to 13 m/sec:

A = 6.77 log V + 10.4

1 Numbers in brackets indicate the literature references at the end of

this report.1

Page 8: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Where A is the unweighted attenuation in dB and V is the windscreenvolume in units of in 3

.

1

The windscreens tested ranged in volume from 2

in 3 to 800 in 3. Most recently, the U. S. Army [5,6] has used concentric

hemispherical and cylindrical cage windscreens of very large volume (e.g.

0.3 m 3) to reduce the wind- induced noise for low-frequency microphone

systems. Ballard and Izquierdo [5] found that this approach enhanced the

viscous dissipation of turbulent energy in the air stream by creatinglarge velocity gradients (small eddies). Gradually, the cage windscreenshave been replaced with reticulated foam spheres for many outdoormeasurements

.

The only major change in windscreen design came in response to theneed to measure sound levels in air ducts containing turbulent flow.

Nakamura, et. al. [7] and Neise [8] performed extensive theoretical andexperimental studies of long (24 cm) slit-tube windscreen probes. Theirresults indicate that turbulence- induced noise levels due to air flowparallel to the axis can be significantly reduced by using these specialpurpose windscreens. Shorter (3 cm), less sophisticated, nose cones arealso frequently used in very directional flow environments. Becauseomni-directional response is needed for most outdoor measurements, use ofthe slit tube and nose cone windscreens is generally restricted to

acoustic measurements in wind tunnels or air ducts.

2.2 Commercially Available Windscreens

For most outdoor applications today, either spherically orcylindrically shaped windscreens are used. These windscreens arecommercially available in a number of models (see Figure 1). Thesimplest spherical model is made of reticulated polyester foam. It is

available in sizes from 6 cm to 9 cm in diameter and has a hole reachingnearly to the center for insertion of the microphone (e.g. windscreens Aand C in Figure 1).

A second commercially available spherical model is the wire cagetype similar to the one used by Thome and identified as windscreen B in

Figure 1. It is about 11 cm in diameter with a nylon gauze cover andcontains a conically shaped adaptor Inside the cage to receive themicrophone. A multi-spiked assembly is often fitted to the sphere in

order to prevent birds from roosting on the windscreen.

A third, hybrid windscreen is made by one manufacturer (seewindscreen J in Figure 1). This windscreen consists of a number ofcomponents, beginning with a 6 cm diameter polyester sphere which is

placed over the microphone. Both are then inserted about two-thirds ofthe way into a cylindrical, stainless steel, perforated cage and held inplace by a base plate attached to the microphone preamplifier. The cagehas a hemispherical cap at one end and a microphone adaptor plate at the

1 NBS recommends the use of metric units; however, to maintain theintegrity of the cited references, non-metric units were used here.

2

Page 9: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

other. A reticulated polyester cover is fitted over the cage. Theentire assembly is about 22 cm long and 7 cm in diameter. It also comesequipped with a 13 cm "bird spike" which is mounted on the hemisphericalcap. The stainless steel cage serves to prevent rain from impinging on

the internal windscreen by causing it to run off between the cover andthe cage.

2.3 Performance of Windscreens

When assessing the performance of windscreens, it is common practiceto measure two fundamental descriptors: wind- induced noise and acousticinsertion loss. Wind- induced noise is the noise produced by air flowover the microphone and windscreen assembly. As is shown in Figure 2,

wind-induced noise is a function of five parameters: 1) mean flow; 2)

inflow (free-stream) turbulence due to thermal and wind speed gradientsin the atmosphere; 3) self-generated turbulence caused by boundary layerseparation and vortex shedding; 4) flow through the windscreen; and 5)

flow incidence angle. The flow through the windscreen is dependent uponwindscreen characteristics such as porosity and diameter. In a 1976

paper, Oswald [9] showed that inflow turbulence and self-generatedturbulence are major factors in determining the low and high-frequencylevels, respectively, of the wind-induced noise spectrum. This effectwas also substantiated by the work of Kldtzsch [10] which contained anexcellent investigation of the wind-induced noise levels measured by

microphones in flows of varying turbulence levels and with different grid

cap designs. In a subsequent paper [11], Kl'dtzsch measured the

wind- induced noise for cage windscreens of different diameters and withvarious covering materials. He found that the wind-induced noise dependson the mean flow velocity, the degree of turbulence, the direction of the

approach flow, the windscreen diameter and covering material, and on the

arrangement of the microphone within the windscreen. His data show that

the wind- induced noise increases with increasing flow velocity and

increasing turbulence levels in the inflow. Kldtzsch also foundcylindrical and spherical windscreens to perform equally well in reducingwind- induced noise.

Acoustic insertion loss (IL) is the difference between the soundpressure levels measured without (L . ) and with (L ) the windscreen In

w/o wplace. In this test, it was assumed that the flow field around thewindscreen may interact with the incident acoustic field and thereby

affect the insertion loss. For this reason the IL is assumed to dependon the approach velocity according to the following definition:

IL = L . (0) “ L (v) ,dB,

w/o W

where v = the mean flow velocity and where L is a sound pressure leveldescriptor such as one-third octave band level or A-weighted level. Notethat the level without the windscreen in place is measured at v=o.

3

Page 10: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Most windscreen manufacturers provide only a modest amount of dataon wind- induced noise and insertion loss for their type of windscreen.Experience has shown these data to be difficult to convert to one-third

octave, A-weighted, and overall levels over the wind speed rangegenerally considered acceptable for outdoor testing (0 m/sec to 6 m/sec).

Furthermore, little information is available on the effects of porosityand manufacturing variability on the wind- induced noise and insertionloss. Thus, correcting acoustic data for these effects is often not

possible.

With the exception of the studies by Nakamura [7] and Neise [8],

little attention has been given to relating the fluid dynamics of the air

flow field to the sound levels measured when a microphone windscreen is

used. This is particularly true for the porous polyester windscreensfrequently used in outdoor noise measurements today. (Blomquist [12] haspublished some data on the effects of porosity and diameter on insertionloss and A-weighted sound level for a wind speed of 40 km/hr.) Theexperiment described in the remainder of this report was designed to

provide a preliminary indication of the physical mechanisms contributingto the wind- induced noise and insertion loss of windscreens.

3. TEST APPARATUS

The ten windscreens tested are shown in Figure 1. The windscreensare shown in greater detail in Figures 3 through 6. Windscreens A, C, D,

E, and F are commercially available polyester windscreens (see Figures 3

and 4) . They differ in that A and C were selected at random from themanufacturers’ stock, while D, E, and F were selected to cover the rangeof porosity judged acceptable by one manufacturer. Windscreens G, I, andH, shown in Figure 5, were specially made to cover the porosity rangefrom 400 ppm to 2200 ppm. 1 B and J (see Figure 6) are commerciallyavailable cage windscreens with bird spikes. B is covered with a nylongauze and J with a polyester foam. When J is assembled, windscreen C is

placed over the microphone and the two are placed inside the perforatedcage. An adaptor (shown next to windscreen J in Figure 1) is used tohold the microphone in place. Table I summarizes the physicalcharacteristics of these windscreens.

1 Foam porosity is commonly measured in units of pores per unit length,in this case pores per meter (ppm). Thus, a high porosity foamwould have many pores per unit length, but the open area of each porewould be small. Conversely, a low porosity foam would have fewer poresper unit length, but their open area would be larger. In terms of flowresistance, low porosity would imply low flow resistance and high porositylarge flow resistance.

4

Page 11: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

The measurements of wind- induced noise and insertion loss were madein the 450-m 3 NBS anechoic chamber. For the wind-induced noisemeasurements, each windscreen was placed on a "half-inch” 1 diametermicrophone which was mounted at the end of a 1.57 m rotating arm. The

rotating arm was constructed out of symmetric airfoil tubing and orientedfor zero lift. Thus, air recirculation in the test facility wasminimized. The microphone could be swiveled in the mounting bracket to

allow normal and grazing flow incidence to be simulated. This assemblywas then placed on a precision rate table (see Figure 7) capable ofproviding a specified angular velocity to within one-half percent. To

measure insertion loss, a loudspeaker of known directionalcharacteristics was mounted at the center of the rotating assembly. Thedirectivity pattern of the speaker was calculated to be distorted by lessthan two degrees in the horizontal direction, at the microphone position,for the maximum rotational speed' used in these tests.

Figure 8 shows a block diagram of the data acquisition system. Twomicrophones were used in these tests. The primary microphone was mountedon the rotating arm and the stationary microphone was supported in theanechoic chamber 2.4 m from the closest approach of the arm. This second

microphone was used to monitor the test and proved useful in verifying ,

that no spurious signal, such as that due to vortex shedding from therotating arm, was present. The signal from the rotating microphone wasrecorded on two channels of the FM recorder. The first channel consistedof the pressure signal as obtained directly from the rotating microphoneafter amplification, while the second channel consisted of a 150 Hzhigh-pass-filtered version of the Channel 1 signal. The Channel 2 signal

was amplified relative to the Channel 1 signal in order to increase thehigh-frequency dynamic range of the wind- induced noise measurements since

most of the acoustic energy fell below 150 Hz, All data were recordedfor a minimum of 60 seconds in order to determine the sound level within+ 1 dB with 95 percent confidence for the lowest one-third octave band of

interest (6.3 Hz). Both signals were monitored by peak level detectorsto assure the maximum use of the tape recorder dynamic range. The

microphone signals were also monitored during recording with a one-thirdoctave band real time analyzer and an oscilloscope. A digital data coderwas used to log test parameters such as run number, windscreen number,

microphone orientation, and speaker activation.

For the insertion loss data, the loudspeaker mounted at the centerof the rate table was driven by a pink noise signal which had been passedthrough a 150 Hz high pass filter. The high pass filter was necessary to

make the input signal comparable with the loud speaker frequencycharacteristics and thereby avoid speaker signal distortion. Thespeaker excitation voltage was set as high as possible to assure that the

wind- induced noise would be negligible over as large a frequency range as

possible. Using this technique, insertion loss measurements could be

made up to 4000 Hz. Above this frequency the difference between the loud

speaker signal level and the wind-induced noise level was less than 10 dB

and the data were not used. To assure a constant electronic signal level

to the loudspeaker, the voltage of the input signal was constantlymonitored.

1 Commercial designation of microphone type.

5

Page 12: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

4. TEST PROCEDURE

The apparatus described in Section 2 were used to measure the

wind-induced noise and insertion loss for each of the windscreens shown

in Figure 1. The wind induced-noise was measured at normal and grazing

flow incidence. After mounting each windscreen on the rotating

microphone, the levels were recorded at zero air flow speed. The

microphone and windscreen were then rotated at tangential speeds up to 14

m/sec in 2 m/sec increments and recordings were made of the wind-induced

noise. The recorded data were then reduced to obtain overall (flat

frequency response 20 Hz to 20 kHz), A-weighted, and one-third octave

band levels.

As shown in Figure 9, insertion loss measurements were made for

three combinations of acoustic and flow incidence angles. To make these

measurements, the noise from the loudspeaker , as excited with the

high-pass- filtered, pink noise signal, was recorded. Insertion loss was

calculated for each windscreen by computing the difference between the

levels measured with and without the windscreen in place. In each case,

the level without the windscreen in place was a static (v=0) measurementwhile the levels with the windscreen in place were measured over thespeed range from 0 to 14 m/sec in 2 m/sec increments.

5. TEST RESULTS

5.1 Wind-Induced Noise

Plots of the overall and A-weighted wind-induced noise levels as a

function of wind speed and windscreen type for grazing (parallel to

microphone diaphragm) and normal (perpendicular to microphone diaphragm)flow incidence are presented in Figures 10 through 13. The curves shownin these figures were determined by using a third order regressionanalysis, the equations for which are presented in Table II. Theone-third octave band wind-induced noise data are presented in Figures 14

and 15 for each windscreen and wind speed. It will be noted in theseplots that some data points for the lower speeds have been omitted. Thiswas done because narrow band frequency analysis revealed that structuralresonances in the arm assembly were sufficiently excited by the ratetable governing system to contaminate some of the small amplitudeacoustic signals through excessive vibration of the microphone. Thisphenomenon was examined thoroughly, and only those data where suchcontamination did not occur are presented.

In considering the results of the wind-induced noise measurements,it must be remembered that the windscreen was mounted one meter above therotating arm so that the incident free-stream turbulence was only due to

the windscreen intersecting its own wake on each revolution (a distanceof more than 100 windscreen diameters) . Therefore, the laboratoryenvironment, compared to outdoor conditions, was relativelyturbulence-free. For this reason, the results cannot be directly applied

6

Page 13: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

to the outdoor wind environment as characterized solely by a mean windspeed. To apply the results of the laboratory wind- induced noisemeasurements to estimating outdoor wind- induced noise, the turbulenceintensity and length scale present in the outdoor environment must beconsidered in addition to mean wind speed. Realizing this limitation,the data of Figures 10 through 13 can still be useful when consideringoutdoor noise measurements. These data indicate that commerciallyavailable windscreens can provide on the order of 15 to 25 dB reductionof wind- induced noise, depending on the wind speed and flow incidenceangle. The graphs can also be used by an experimenter as an aid in the

selection of the most appropriate windscreen for a given measurement if

there is some knowledge of the wind environment to be encountered andthe frequency content of the noise to be measured. Furthermore, the dataof these figures can be used to .roughly estimate the wind-induced-noisecontent in existing data if wind speed information is available.

For both grazing and normal incidence, the curves for eachwindscreen are more tightly grouped for the overall levels than for theA-weighted levels. This suggests that the wind-induced noise is

dominated by low-frequency components. These components can be relatedto vortex shedding in the subcritical Reynolds number range encounteredin these tests (8,000 <_ Re 90,000) through the Strouhal number S = fd/V

for spheres of varying surface roughness as measured by Achenbach [13].

His data show that, S>0.18 with S becoming smaller as surface roughnessis increased. Using S = 0.18 for a sphere of diameter d = 0.095 m gives

a Strouhal shedding frequency f = 27 Hz at a wind speed V = 14 m/sec. Anexamination of the spectral data obtained during these tests (Figures

14(a) through 15 (i)) reveals that the maximum wind-induced noise levels

occur in the 16 Hz band at v = 14 m/sec for most of the windscreenstested. This lower peak frequency seems to suggest that a Strouhalnumber lower than S = 0.18 is characteristic of porous spheres. Also,

the smooth distribution of levels about the spectrum peak indicates that

complex interactions are occurring between the flow over and through the

porous windscreens and that the wind-induced noise cannot be totallyattributed to vortex shedding from the windscreen.

The spectra from a number of the windscreens tested (e.g. D, E, F,

G, H, and I) show a secondary velocity-dependent peak in the frequencyrange between 1 kHz and 10 kHz. This peak is believed to be related to

the flow through the windscreen pores, with the magnitude and frequency

of the spectrum peak being inversely proportional to pore size. Because

a one-third octave bandwidth analysis was used in Figures 14 and 15, it

was not possible to determine the exact dependence of peak frequency on

porosity; however, the magnitude of the spectrum peak seems to decreaseabout 8 dB to 10 dB per doubling of porosity.

Although it did not prove possible to relate the secondary peakfrequency to porosity, the overall and A-weighted levels do show a

porosity dependence. For example, the data from Figures 10 through 13 at

v=12 m/sec for the spherical foam windscreens have been replotted in

Figure 16. It can be seen that the overall levels increase as the

7

Page 14: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

porosity increases. A possible explanation for this dependence is that

as the windscreen porosity increases the windscreen flow characteristicsapproach those of a smooth, solid sphere and the acoustic signal is

dominated by low-frequency, discrete, vortex-shedding noise. In this

case turbulence fluctuations are restricted to the boundary layer becausethey are of insufficient energy to propagate through the windscreen to

the microphone. As the windscreen porosity is decreased the boundarylayer becomes more intense and the wake becomes increasingly turbulent.

Flow through the windscreen is also Increased. The spectra in Figures

14(g) and (i) for grazing flow and 15(g) and (i) for normal flow show

predominating low-frequency energy for the high-porosity windscreens and

increased high-frequency energy for the low-porosity windscreens. It is

not possible from these tests to absolutely determine whether thehigh-frequency noise is attributable to increased flow through the

windscreen, increased turbulence intensity in the boundary layer and

wake, or a combination of these effects; however, it seems that thehigh-frequency peaks may scale to a reduced frequency based on an

effective velocity through the pores and an effective pore size.

In contrast to the overall levels, the A-weighted levels (Figure 16)

decrease with increasing porosity. This dependence is not related to a

new flow phenomenon but rather to the A-weighting filter characteristics.

The spectra in Figures 14 (k) and 15 (k) are from the microphone withno windscreen at grazing and normal flow incidence. Both spectra showintense low frequency content; however, the spectrum shapes are

dissimilar. With the windscreen removed, the flow impinges directly on

the microphone diaphragm-grid cap assembly. When the microphone is

oriented for grazing flow incidence, boundary layer fluctuations aresensed directly by the microphone. This effect is mitigated when the

microphone is oriented for normal flow incidence because the flowstagnates at the microphone diaphragm. For grazing flow incidence,however, the vortex shedding frequency for a 1.27 cm diameter cylinder is

about 160 Hz at a flow speed of 10 m/sec and the spectra of Figure 14 (k)

show a velocity- dependent peaking in that region. Oswald's data [9] seemto indicate that the low frequency portion, below the 100 Hz region, maybe attributed to inflow turbulence. However, no measurements of

turbulence were made in these tests to verify that hypothesis. It doesseem reasonable that such an effect would be much more noticeable in the

measurements without the windscreen since the windscreen would shield themicrophone from low intensity turbulence.

In general, the performance of the cage windscreens was not as goodas most of the foam windscreens. This was particularly true for thespherical cage windscreen (see Figure 6). For grazing flow incidence,the cylindrical windscreen also did not provide as much wind inducednoise reduction as most of the foam windscreens; however, for normalflow, the cylindrical windscreen performed better than any of the foamwindscreens over most of the wind speed range.

The data in Figures 10 through 15 (k) have been tabulated inAppendices A and B. Tables A1 through All contain the data for grazingflow incidence and Tables B1 through Bll for normal flow incidence.

8

Page 15: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

5.2 Acoustic Insertion Loss

As part of this study, measurements were made of the acousticinsertion loss for each windscreen as a function of wind speed. The testwas designed to acquire insertion loss data at each of the combinationsof flow and acoustic incidence angles shown in Figure 9 in order to

identify not only the magnitude of the insertion loss, but also itsdependence, if any, on air flow. Pink noise emitted by the loudspeakerat the center of the rate table was measured by the rotating microphone

over the speed range 0 <v< 12 m/sec with the windscreen in place and at

v=0 without the windscreen. The insertion loss was computed for

one-third octave bands between 250 Hz and 4 kHz (the range of usefulsignal-to-noise ratio) as well as for the overall and A-weighted levelsby subtracting the levels measured without the windscreen in place at v=0from the levels with the windscreen in place over the speed range of 0

m/sec <v< 12 m/sec.

The results of the insertion loss measurements for Orientation B in

Figure 9 (grazing flow and normal acoustic incidence) are tabulated in

Appendix C. It can be seen from these data that the insertion loss is

small (0.1 dB to 0.6 dB, generally). Also, in most cases the insertionloss for each one- third octave band, overall, and A-weighted level variesonly by one or two tenths of a decibel over the entire wind speed range.These data may be used to correct a measured broadband noise signal bysubtracting the tabulated value from the measured level.

This measurement was found to be very difficult to make for a numberof reasons. First of all, the frequency range was limited at the low endby speaker response and at the high end by wind-induced noise. Secondly,wind- Induced noise also precluded any insertion loss measurements at v=l4m/sec. And, finally, uncertainties in the source level monitoring were

found to be too great during a large portion of the testing to allowaccurate computation of the small insertion loss level differences. As a

consequence of these difficulties, successful insertion loss measurements

could only be made for grazing flow and normal acoustic incidence. The

results are tabulated in Appendix C.

6. CONCLUDING REMARKS

Measurements of the wind-induced noise and acoustic insertion loss

have been made on ten microphone windscreens at wind speeds from 0 m/sec

to 14 m/sec for both grazing and normal flow incidence. The data show

that the windscreens are very different in the amount of

wind- induced-noise reduction they provide, with some achieving more than

25 dB reduction. In general the foam windscreens provided more

wind- induced-noise reduction than the cage windscreens; however, the

cylindrical cage windscreen performed better than any of the foam

windscreens for normal flow incidence. For both grazing and normal flow

incidence, the A-weighted wind-induced noise levels for all the

windscreens covered a larger range (about 20 dB at 14 m/sec) than did the

overall levels (about 15 dB at 14 m/sec).

9

Page 16: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

The insertion loss measurements prc /ed difficult to make because of

the small values (0.1 dB to 0.6 dB) encountered and, at least for thecase of grazing flow and normal acoustic incidence, the data show nostrong velocity dependence for any of the windscreens tested.

The wind- induced noise and insertion loss sound pressure levels havebeen tabulated in the appendices of this report. These data and those in

the graphs and tables of this report provide a basis for studying thenoise generating mechanisms associated with flow incident upon a poroussphere. For example, it was observed that the wind-induced-noise levelsfor foam windscreens showed a clear dependence on porosity, and thereforemanufacturing variability. It was also observed, however, that thisdependence was reversed for the A-weighted and overall levels (increasingporosity yielded increasing overall sound pressure levels but decreasingA-weighted levels.) This reversal is believed to be associated with anincrease in low-frequency (16 Hz), vortex-shedding noise as the foamporosity increased.

Examination of the wind-induced noise spectra revealed ahigh-frequency (1 kHz to 5 kHz), velocity-dependent peak. Flow throughthe windscreen pores seems to be the noise source for this peak. Thishypothesis is confirmed by the fact that the spectra for the microphonewith no windscreen show no high-frequency peaks; however, they do show alow frequency, velocity-dependent peak due to vortex shedding around themicrophone preamplifier (160 Hz at 10 m/sec). It was also for theno-windscreen case that inflow turbulence effects seemed observable inthe frequency range below 20 Hz.

10

Page 17: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

References

1 . Thome

:

U. s. Patent No. 588,034, August 1897.

2. Spotts

:

U. s. Patent No. 1,901,065, March 1933.

3. Phelps, William D„: Microphone Wind Screening. RCA Review, vol. 3,

1938, pp. 203-212.

4. Bleazey, John C.: Experimental Determination of the Effectivenessof Microphone Wind Screens. Joum. Audio Eng. Soc., vol. 9, no. 1,

Jan 1969, pp. 48-53.

5. Ballard, Harold N., and Izquierdo, Mike: Reduction of MicrophoneWind Noise by the Generation of a Proper Turbulent Flow. U. S. ArmyElectronics Research and Development Activity Report 262, DDC no. AD455966, Feb. 1965.

6. Breeland, A. H., and Bonner, R. S.: Results of Tests InvolvingHemispherical Wind Screens in the Reduction of Wind Noise. ECOMReport no. 5119, DDC no. AD 653005, April 1967.

7. Nakamura, Akira; Matsumato, Rimpey; Sugiyama, Akira; and Tanaka,Tadami: Some Investigations on Output Level of Microphones in AirStreams. Joum. Acous. Soc. Am., vol. 46, no. 6, part 1, March1969, pp. 1391-1396.

8. Neise, W.: Theoretical and Experimental Investigations ofMicrophone Probes for Sound Measurements in Turbulent Flow. Joum.Acous. Soc. Am., vol 39, no. 3, 1975, pp. 371-400.

9. Oswald, Lawrence J. : The Wind Noise of Nose-Cone-ProtectedMicrophones. Proc. of Inter-Noise 76, Washington, D. C., April5-7, 1976. pp. 141-144. 1976. pp. 141-144.

10. Kldtzsch, Von P.; and Bauer, H. J. : Das Wingerausch vonKondensatormikrophonen. Mitteilung aus der Leitsteile fur

Larmschutz in der Industrie im VEB RFT Meszelektronik und der

Technischen Universitat Dresden Sektion Informationstechnik, BereichKommunikation und Meszwerterfassung.

11. Klbtzsch, Von P.: Zur Windgerauschdampfung von Windschirmen.Hochfrequenztechnik u. Elektroakustik, Leipzig 80 (1971), 1, s. 1-9.

11

Page 18: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

12. Blomquist, Donald S.: An Experimental Investigation of FoamWindscreens. Proceedings of Inter-Noise 73, Technical University of

Denmark, Copenhagen, August 22-24, 1973, pp 589-593.

13. Achenbach, Elmar: The Effects of Surface Roughness and TunnelBlockage on the Flow Past Spheres. J. Fluid Mechanics (1974), vol.

65, part 1, pp 113-125.

12

Page 19: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

TABLE

I.

-

WINDSCREEN

PHYSICAL

CHARACTERISTICS

Porosity,

BCMCM

2618 2461 2303 1102945

0000r-~

4931023 2205 2520

/ smCsJ

mli

u 42e) 4J

4-1 LO CM in m m 00 00B • O • • • • • • • a

s o m v£> CT1 CT> 00 00 00 r>. ft)

cd *—

i

rH'—

^

o

rH d i—

1

4) ft) a)

41 > a)

4-4 o 4-J

d « o to

4)

J-4 > w u }M d d d d d d to

rH 41 o « V <0 0) 4) 4) 0) 4) 4) w4-4 O 0) 4-4 42 42 4M 4-J •u 4M 4J ft)

•H m 1—

1

« 4M 4M 10 « to on 50 rHd o d d <u ft) ft) 41 41 ft) ft) ci) fn o -h 41 >> •H ft)

4-4 rH rM Cd 00 rH rH rH rH rH r—

1

rH 11 Ctf 00

cd o ^ +-> cd o o o o o o o O 4-J cd

s PM !Z CA o PM Pm Pm Pm Pm PM Pm Pm CA a

11

cd

s—

1

rH 11

11

11 rH l 1 rH o

cd cd cd cd cd cd cd cd cd •H

o o a o o o o a o d*H •H •H •H •H •H •H H •H T2

<u d e )M 9) u B d 0 d B d S d s d B d B C 0)

CM 4) cd «) 00 <D cd a) cd ft) cd 6) cd 4) cd 8) cd 4) cd •H 00>> 42 o rd cd 42 o 42 o 42 o 42 O 42 o 42 O 42 O rH cd

H a- mm Pm O CM MM Cm mm PM MM CM MM CM MM CM MM PM MM tn CJ

CA CA CA CA CA CA CA CA CA CJ

e<u

a)

uo C PQ U o W U-i O 22 Hwm3diH12

13

Page 20: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

TABLE

II.

-

WIND-INDUCED

NOISE

EQUATIONS

<3

+CN

<3

+>r—

<3

+

•K

M4-1

da)HO•H>4-1

>4-4

03

OCJ

cn

u <3 CM ^30)

Cfl

I—

1

rH rH

n \ V1 V V

fj £ > > >£cd Vl V VP^4 > CM CM CM

li—li—Ir—li—It—| i—I rH OO rHI I I I I I I I I IOOOOOOOOO o

X XXXXXXXXXCJV

vOmCN

N'DOOUIliriO\-jooHOOMN^HiDO-JO' CO O CN >D (N in vO vOnii—i to (O n i—i

cn cn ,—

i

X X X X X X X X X X X XCM CN CN VO *<3 00 oo OV vO COtH vO O' cn *<3 CN CO 00 cn VO Oh O00 1—

1

CN 00 vO OV oo cn vO 00 <3CM m CN CN rH CN O' CN CM cn

CN

o rH O tH rH O O OrHO rHo oooocoooooX X X X X X XXX

rH vO O' i—1 00 CN O OrH M -J CO >D N O' HO' O vO O O 00 r—I 00QJV rl N H H CO m 00

CN vOO vOo cni—i cn

i i i i i i i i i

rH

d<L>

4

3

CJ

03

X)d•H&

CN CN CN CN CN CN rO O O O O O> I

'—I1—I I—I

1—I t—

I

H CN CN rH CNo o o o o«“I rH rH rH rH

X XXXXXXXXX XMOdmo'>ooocNinn ‘noocN^j-ooOCT'O'in

cn -^rHCncnrHCNrHCnOrH I—I i—It—li—It—I O' 1—| I—I OV

n-m-<r

CNCNCNCNCNCN CN CN CN CN CNoooooo o o o o

XXXXXX X X X X

<f CM

Vl V I v

I

> > >V I V I v I

<r Nt-

H i—I i—I t—

1

i—I CNI I I I I Io o o o o orH rH i—I i—I rH i—

I

H CN rH CN rHI

I i I Io o o o o

i_0 rH O rH O rH 1 O O rOOOOOO o oo o

X X X X X X X X X X X Xo ov rH *<3 CN O <3* CNvO o cn m m vO r^. O 00 rH oO vO vO o cn o O VO O cn CO CNi—

1

rH rH VO l—

1

vO CN in ov rH !1

I I ! I I I

CN CN CN CN CN CN CN ,OOOOOO O H CN .o o H CNo o

rH i—

1

\—

1

11

\—

1

i—

1

i—

1

1—

1

11

X X X X X X X X Xcn CN <3- <3 m cn <3 ^3r^. O <3 CN r- CO vO Oh<3 rH in cn <3 CN CN vOi—

1

«—

1

rH 1—

1

CO rH vO tH

t—

1

O cnnT CM h. rs O',

oo in cn ov cd ovH rl CN H H H

i—I n- n-

cnCN

r^- O <j-

ov cn o00 N 00t—I i—I CN

o o o o O O o O o o o o1—

1

1—

1

t—

1

i—

1

I 1 rH 1—

1

11 rH 1—

1

1—

1

1—

1

X X X X X X X X X X X Xo rH o "3- vO CO VO 00 vO CM LOo •<3 <3 OV r^. >3* O 00 <3 LT) LO<3 00 00 o CN 00 1—

1

CO CN OCO CM cn CN t 1 CN CN 00 ov t 1 t—

1

m

S-i

o4

-

1

CX PQ•H

5-

4

U *

03 J4)

Q

a)

CJ

dai

T3

<S)UQWhOj] w l-j

I

TOd•H&

os

d

a)

>o

ood•HNd5-4

O

CN H CM CM CM CN

J 1 1 L_L

<3 PQ O Q W (h o H!

I dto a)

d ai-

r| h& o

03

O33

d)03

4-1

rd00 rH•H «J

g >& ai

1 r-i

<3

ood*HNdHC3

03

0) -H> CJ

d 03

-d ua

034-1 4-1

d dai oj

•h 6o ai

•H >-i

MH 3<4H 03

03 dO 0)

o e

been

provided

to

four

significant

figures

for

computational

purposes,

however,

sound

level

to

ion

was

only

good

to

0.1

dB.

Page 21: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

TABLE

II.

-

CONCLUDED

H Range

v,

m/sec

<Tr—\

VI

2<

v<

14

VICM

1—1 1 1—

1 i—1 rH H i

1 i

1 rH rH H 1—

1

H iH rH CM CM iH —

1

1

1—

1

1 1

o o O o o o o o o o O o o O o o 1o O 1 o 1o 1o 1 OI—1 rH i—

1

rH 1—

1

1—

1

1—

1

1—

1

iH 1—

1

rH r—

1

r—

1

i—

1

t—

1

1—

1

rH r—

1

r—

1

rH r—

1

rHCO> X X X X X X X X X X X X X X X X X X X X XCO

<J VO rH CM 00 00 cn in 00 m <d- m CM in 0 CM CM CT\ CO 00 00 LT)

CO <Tv 00 o CO CO CM o CO o CM 0 00 O o <r o 00 c* rH

+ <1 CO 0 m 0 in r- »—

1

0 m rH 0 CO 00 rH o co co 00 COCM CO r

—1 CM CM CM CM CM co CM CM CO m 1—

1

CM 00 CO 0 1—

1

CM CNCM • •

>CN

<3 —

1

+ rH rH O rH O o o o —1 cD o tH cH o 1 1 O tH o —

1

1 oo o o O O o o o o O o O o o o o O o o o o o

> rH iH 1—

1

1 1 rH iH rH r—

1

t—

1

r—

1

t—

1

!1

1—

1

r

! r—

1

r—

1

rH r—

1

1—

1

rH r—

1

rHrHc X X X X X X X X . X X X X X X X X X X X X X X

+ CM O'. 0 r—

1

00 CM i—

1

CM cy> a-i o r- i—

1

CM in o o 0<d* r^* m CO o o CO 00 co <d* 0 "d

- CM 00 co 00 00 o COo o CM o o o 00 1—

1

CO i

l r—

1

CM O CO CO CO in 0 i—

1

0<d rH rH r—

1

CTi 00 cr

i

tH 00

I

00 (—

1

rH 0 t 1 rH <T CM 0 r—

1

rH 00

II

.J

1 1

'w'

ID CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM —

1

CM CM CM CM CM CM4-1 O o O o o O o o O o O O O O o o o o o o O oC tH rH 1 1 rH rH rH r—

1

s—

1 rH r—

1

1—

1

1 1 r—

1

1 1 I—

1

r—

1

t—

1

r—

1

r—

!

rH r—

1

rH4)

•H X X X X X X X X X X X X X X X X X X X X X XO

<Tv m <0 CM i—

1

rH in 00 0 o m o 0 r—

1

r—

1

4-1 c CM d CO I 1 00 i

i o CO CO CO r—

1

o CM CT\ CM t 1 00 r—

1

o m CM

M—

1

m m i—

1

*<T CM CM CM CM m o o 0 in 1—

1

<r t 1 CM o CO 1—

1

in CO

c 1 1—

1 i—

1

r—

1

rH 1 1 1 1 rH 1—

1

r—

1

r—

1

1 1 CM t—

1

r—

1

rH CO i—

1

CN rH 1—

1

ou

CM CM CM CM CM CM CM CM CM CM CM CM CM CM CN r—

1 CM CM CM CM CM rHO O O o o O O o o o o O o O o o O o O O O orH rH 1 1 r

—1 rH \ 1 1 1 1

—1 i—

1

rH rH 1 1 1—

1 I 1 r—

j

rH 1 1r—

1 r—

1

r—

1

r—

1

t—

1

X X X X X X X X X X X X X X X X X X X X X X

<J co 0 i—

1 0 CO co o rH 0 m r^. m i—

1 in CM CTv oin m 00 rH 1 1 O rH co 00 CM CTN 00 0 rH CM in CO <y\

pH CO CM m <J\ ON a\ CM in CM O'! o CO 0 CO m m IT) o m corH «H CM rH i—

l

^ 1 rH rH rH CM -d- CM

1

<d-

i

1—

1

1

CM

L. J_

CM

i_

CM

u L-

CN

i_

CM

0*)

t)0 0

o i &) 1 41

« <3 PQ o Q w IH o X H H) X 4) <1 CQ o Q W o x M 0 4)

x) 0 0 0 0qj •H O •H O•H s m s m3

o oS3 s

1—

1

0 «o >•u pq *) T)O- T) \

—i

4)

•H 4-J

S-lr\ rH

O 0 rH 00 pH« cd 4)

4) 0 4) >Q 4)

>£1

a)

X6 <

vu0

•H

pH

Page 22: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

16

Figure

1.

-

Photograph

of

windscreens

tested

Page 23: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Flow

Through

Pores

17

Figure

2.

_

Elements

of

wind-induced

noise.

Page 24: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

18

Figure

3.

-

Commercially

available

polyester

windscreens

A)

9.5

cm

in

diameter,

C)

6.2

cm

in

diameter

Page 25: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

19

Figure

4.

Windscreens

of

acceptable

porosity

for

one

manufacturer.

See

Table

I

for

physical

characteristics.

Page 26: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

20

Figure

5.

-

Windscreens

specially

made

to

span

porosity

range

from

500

ppm

to

2200

ppm.

See

Table

I

for

physical

characteristics.

Page 27: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

21

Figure

6.

-

Commercially

available

cage

windscreens

tested

in

this

study.

See

Table

I

for

physical

characteristics

.

Page 28: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

22

Figure

7.

-

Photograph

of

experimental

apparatus.

Page 29: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

23

Figure

S.

-

Block

diagram

of

data

acquisition

system.

Certain

commercial

equipment

is

identified

in

this

paper

in

order

to

adequately

specify

the

experimental

procedure.

In

no

case

does

such

identification

imply

recommendation

or

endorsement

by

the

National

Bureau

of

Standards,

nor

does

it

imply

that

the

material

or

equipment

identified

is

necessarily

the

best

available

for

the

Page 30: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Figure 9. - Windscreen Test Configurations, (A) Grazing flow and

grazing acoustic incidence angle, (B) Grazing flow and

normal acoustic incidence angle, (C) Normal flow and

grazing acoustic incidence angle.

24

Page 31: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

OVERALL

SOUND

PRESSURE

LEVEL

VS

WINDSPEED

oo

oCD

ooo

ot>

oco

CDLO

oCD

ud 7* 02 3d ga'i3A3i 3dnss3dd qnaqs ribddAo

25

figure

10.

Overall

wind

induced

noise

as

a

function

of

wind

speed

for

grazing

flow

incidence.

Page 32: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

-WEIGHTED

SOUND

PRESSURE

LEVEL

VS

WINDSPEED

CE

o O O o o o oCD CO c—

oz 3d aa‘"i3A3iLO

QND0SM-

Q31HD I 3M _ti

CO

-JooCM

26

Figure

11.

A—

weighted

"wind—

induced

noise

level

as

a

function

of

wind

speed

for

grazing

flow

incidence

Page 33: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

OVERALL

SOUND

PRESSURE

LEVEL

VS

WINDSPEED

o oooCD

DCD

Oo oCD

oLO

Ud 7* 02 3d 90‘ 13A31 3df)SS3dd ONA0S 11Bd3A0

-1 oo-3-

27

Figure

12.

-

Overall

wind-induced

noise

level

as

a

function

of

wind

speed

for

normal

flow

incidence.

Page 34: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

(O\

oUJUJQ_CO

28

Fig.

13.

A—

weighted

wind—

induced

noise

level

as

a

function

of

wind

speed

for

normal

flow

incidence.

Page 35: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

00

90

80

70

60

50

40

30

1

FREQUENCY, HZ

(a) Windscreen A - grazing flow

.- One-third octave band wind-induced noise spectra as a function of

wind speed for grazing flow incidence.

29

Page 36: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

THIRD-0CTRVE

BAND

LEVEL

IN

DB

RE

20

piPA

00 1 1 r—i1 1 1—i

1—i

1 i ' i ' i r

90

80

70

60

50

40

30

A 2 M/SEC+ 4 M/SECX 6 M/SEC<!> 8 M/SEC

10 M/SECX 12 M/SECz 1 4 M/S EC

J__j i i

FREQUENCY. HZ

(b) Windscreen B - grazing flow

Figure 14 . - Continued.30

Page 37: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

90

80

70

60

50

40

30

i t i i i i i i i i i i i i r i1 1 1 1 1 1 r—i

1 1 1 r r

a 2 M/SEC+ 4 M/SECX 6 M/SEC<3> 8 M/SEC* 10 M/SECX 12 n/SECZ 14 M/SEC

(c) Windscreen C r- grazing flow

14. - Continued.31

Page 38: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

90

80

70

60

50

40

30

t 1 1 1 1 1 1 1 1 1 1 1—

t

1 1 1 1 1 1 11 i I 1 i i i i r

A 2 M/SEC+ 4 M/SECX 6 M/SEC<J> 8 M/SEC* 10 M/SECX 12 M/SECz 1 4 M/SEC

14. - Continued. 32

Page 39: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

1 00

90

80

70

60

50

40

30

T T l l 1 I1 1 1 1 1 1 r 1

A 2 M/SEC+ 4 M/SECX 6 M/SEC<5> 8 M/SEC* 10 M/SECX 12 M/SECZ 14 M/SEC

(e) Windscreen E t- grazing flow

- Continued, 33

Page 40: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

THIRD-0CTAVE

BAND

LEVE

1 AO r T i—i1—i— i—

r

i

r

90

80

n 1 r l1 1 r

A 2 M/SEC+ 4 fi/SEC

X 6 m/sec<J> 8 M/SEC

10 M/SECX 12 M/SECz 1 4 M/SEC

(f) Windscreen F - grazing flow

Figure 14. - Continued.

34

Page 41: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

•to

90

80

70

60

50

40

30

1

A~T 1

-

2

—11 1

M/SEC+ 4 M/SECX 6 M/SEC<!> 8 M/SEC* 10 M/SECX 12 M/SECz 1 4 M/SEC

FREQUENCY, HZ

(g) Windscreen G - grazing flow

14. - Continued,35

Page 42: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

90

80

70

60

50

40

30

t 1 1 1 1 1 1 1 r—i—i1 1 1 1 1 1 1 1 1 1 1 1 1—i

11 1 1 i r

A 2 n/SEC+ 4 n/SECX 6 n/SEC<J> 8 h/SEC

10 n/SECX 12 n/SECz 14 n/SEC

(h) Windscreen H - grazing flow

14. - Continued.

36

Page 43: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

100

90

80

70

60

50

40

30

t i i i i i t i r~ t i i i i i i i i i | i | 1 1— | , 1 1 1——r—

r

A 2 M/SEC+ 4 0/ SECX 6 M/SEC<J> 8 M/SEC

10 M/SECX 12 M/SECz 1 4 M/SEC

(i) Windscreen I - grazing flow

14. Continued* 37

Page 44: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

10G

90

80

70

60

t 1 1— i1 1 r~

—1—

1

11 1 1

1 1 l

|

A 2 M/SEC+ 4 M/SECX 6 M/SECo 8 M/SEC

10 M/SEC _

X 12 M/SECz 14 M/SEC

rrc tor

FREQUENCY. HZ

(j) Windscreen J - grazing flow

38Continued

.

Page 45: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

1 00

90

80

70

60

50

40

30

1

gure

(k) No Windscreen - grazing flow

14. - Concluded .

39

Page 46: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

THIRD-OCTfiVE

BAND

LEVEL

IN

DB

RE

20

/*Pfl

00 1 1 1 1 1 1 1 1 1 1 1 1—i1 1 1 1 1 1 1 1 1 1

1 i i i i i r~

r

90

A 2 M/SEC+ 4 M/SECX 6 M/SEC

8 M/SEC* 10 M/SECX 12 M/SECz 1 4 M/S EC

i I 1 i_

TuTT

Figure 15. -

FREQUENCY, HZ

(a) Windscreen A - normal flow

One-third octave band wind-induced noise spectra obtained as a

function of wind speed for normal flow incidence.

40

Page 47: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

] 00

90

80

70

60

50

40

30

1 1 1 1 1 1 i i i i I i i i I i 1 i1 1 1 1 1 1 1 1 1 1 1 1 r

^ 2 M/SEC+ 4 M/SECX 6 M/SEC<S> 8 M/SEC* 10 ri/sec

X 12 M/SECZ 14 M/SEC

FREQUENCY. HZ

(b) Windscreen B - normal flow

. - Continued*41

Page 48: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

90

80

70

60

50

40

30

t

i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r t

A 2 M/SEC+ 4 M/SECX 6 M/SEC<5> 8 M/SEC* 10 M/SECX 12 M/SEC2 1 4 M/SEC

(c) Windscreen C - normal flow

15. - Continued.

42

Page 49: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

] 00

90

80

70

60

50

40

30

t i I i i I I I I i I i i I i i i i i i i1 1 1 1 1 r—t

t1 r

2 M/SEC4- 4 M/SECX 6 m/sec<J> 8 n/sEC* 10 M/SEC

12 h/secz 1 4 M/SEC

I

J I I I L. j 1 1 1 1 1 1 1 1 1 1 ^_| 1 1 1 1 1

font-i—i—

i

. j .. . i

FREQUENCY. HZ

(d) Windscreen D - normal flow

. - Continued .

43

Page 50: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

100

90

80

70

60

50

40

30

—r~

Ai r~

2

~i

—i

—i

—m/sec

+ 4 m/secX 6 M/SEC<J> 8 M/SEC* 30 M/SECX 12 M/SECz 1 4 M/SEC

FREQUENCY, HZ

(e) Windscreen E - normal flow

. - Continued.

44

Page 51: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

100

90

80

70

60

50

40

30

1

1 1 1 1 1 1 1 i i i i r i i i i1 1 1 1 1 1 1 1 1 1 1 1 1 1 r

A 2 M/SEC+ 4 M/SECX 6 M/SEC<$> 8 M/SEC* 10 M/SECX 12 M/SECz 1 4 M/SEC

(f) Windscreen F - normal flow

. - Continued •

45

Page 52: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

1 00

iW-^ J--frr

FREQUENCY. HZ

(g) Windscreen G - normal flow

Figure 15. - Continued. 46

Page 53: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

1 00

90

80

70

60

50

40

30

1

i 15

t i i i i i i i i i i i i t i i i i i1 1 1 1 1 1 1 1 1 1 r

A 2 M/SEC+ 4 M/SECX 6 M/SEC<J> 8 M/SEC* 10 M/SEC

12 M/ SEC

z 1 4 M/SEC

(h) Windscreen H - normal flow

Continued . 47

Page 54: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

100

90

80

70

60

50

40

30

i r—

t

1 1 1 1 1 1 1 1 1 1— i1 1 1 1 1 1 1 1 1 1 1 r—i

1 '—

t

r

A 2 M/SEC+ 4 M/SECX 6 M/SEC

8 M/SEC10 M/SEC

X 12 M/SECz 14 M/SEC

FREQUENCY, HZ

(i) Windscreen I - normal flow

Continued • 48

Page 55: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

cro_a.

oCM

LUQd

CDO

_JLUd>LU

CD2crCO

LU>cr

uo

i

CDQd

] 0 0 I I ! i i i—i—i—i—i—i—

r

90 -

1 I i S i I1 1

i! 1 1 1 1 1 ! T

a 2 M/SEC+ 4 M/SECX 6 M/SECO 8 M/SEC* 10 M/SECX J 2 M/SECZ 14 M/SEC

80

€0 -

FREQUENCY, HZ

(j ) Windscreen J - normal flow

Figure 15. - Continued .

49

Page 56: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

THIRD-OCTAVE

BAWD

LEVEL

IN

OB

RE

20

/li

PA

T T T T1 00 |- r~ r i—

r

t

i—r -i

A 9 0/ oEC+ 4 n/sE:X 6 n/SEC<5 8 n/SEC* 10 M/SEC

12 11/SEC

z 1 4 n/SEC

FREQUENCY, H7

(k) No Windscreen - normal flow

Figure 15. - Concluded •

50

Page 57: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Figure

16.

-

Dependence

of

overall

and

A-weighted

levels

on

windscreen

porosity

and

diameter,

v=12

m/sec.

SOUND PRESSURE LEVEL, dB re. 20pPa

—> w tn vj too o o o o

51

110

Page 58: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

APPENDIX A: Tabulation of Wind-Induced Noise Levels for Grazing Flow Incidence

This appendix contains a tabulation of the one-third octave band A-weighted,and overall wind-induced noise levels (dB re 20 yPa) measured at grazing flowincidence over the wind speed range 0 m/sec <y<_ 14 m/sec for each windscreenshown in Figure 2 as well as for the microphone with no windscreen. Zeroshave been inserted in the tables when the signal-to-noise ratio was insufficientto obtain meaningful data.

Page 59: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table Al. - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Windscreen A

(Grazing Flow Incidence)

SPEED (M/SEC

!

OCT p A M

D

2 4 6 8 1 0 1 2

1 2 38 .

8

54.4 67.7 73.9 77.9 79.01 6 36.0 52.7 64.4 72.3 77.7 79.720 33.5 51.7 6 1.2 . 69 . 0 .. .

.

7 5.5 78.925 3 1.0 49.9 60 .

4

6 6 o 3 7 1.1 75.531 29.6 4 7 . 0 - 58.9 64 .

8

. - 6 8.2 - 71.6 —40 27.2 44.6 57 . S 64 .

1

67 .

1

69.0SO .0 4 2 . 6- — 5 3 . 6 . 6 1-^2 . 6 6 .0 - 67.563 .0 .0 50 .

8

58.2 64.7 6 6 ® 6

80 .0 38.2 - 48.4 55.3 6 1.5 64 .

7

1 00 .0 .0 46 .

4

52.0 57.0 60.7125 .0 — 3 3 . 0- - 4 3 o 8 - 49 .- 4 . . 5 4.0— 56.9160 .0 29.4 4 1.3 47.2 5 1.7 54.0200 .0 2 6 *~7 38.3 4 4-.

2

48.7 51.3250 .0 2 1.6 34.4 4 1.6 45 • 6 48.23 1 5 .0 20.0 .0 39.3 - . - - .0 - 46.3400 .0 .0 .0 36.5 .0 44.9500 .0 . 0 - 25 . 8 3 3.9 . 40.0 - - 43 , 6 - -

630 .0 . 0 23.0 3 S .6 .00 42,7800 .a .0 2 2 . 1

- 29 . 9 36.7 4 8.31 000 .0 .0 25.0 30.7 .0 40.81 250 .0 . 0- . — .0 2 7 . 3 - . 0 39.71600 • 0 .0 .0 26.6 .0 38 • 7

2000 .0 .0 . o - - 25 »-2- - .0— - - .02500 .0 © 0 .0 23.2 .0 .03 1 50 - -. 0 - .0 — - .0 - - 22.2 e 0 . o -

4000 .0 .0 .0 20.9 .0 .05000 .0 .-0 -.0 .0 .0 --- .06300 .0 .0 .0 .0 .0 .0

8000 * ft .

.

0 . _ o .. 0 - . - -- - Q _ . ,0 ..© ty?“

1 0000 .0 • 0 .0 .0 .0 .012500 .0 , 0 ... *0 .0 _ - - .0 -- -- . 0

AWT .0 23.5 36 .

3

44.0 48.0 52.5LIN - 42 . 2 - 59 . 1 - 7 1^1 7 7.9 ___ 82.8— 85 . 1 -

l 4

80.8.8 1.38 1.2 .

78.

7

-7-6 e~2

7 1.46-9 e-5~

68 .

2

66.964.06 0 © 9

57.5- 5 4 • 4- -

S 1 • 2

4 9.4 __

47.947.0-46.84 5.544.64 3.843.3

.. 43 .4—4 3.845^247.24 4 . 9 —45.9

-4 6^0

43.04 0. 8

58.

3

87.3

53

Page 60: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table A2

.

- One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Windscreen B

(Grazing Flow Incidence)

SPEED (M/SEC )

OCT BAND 2 M 6 8 1 0 1 2 I M

1 2 37.7 55.3 ... . 6 7 . M 76 . M 8 1.8 83 . M .0

1 6 3 M • 6 52.6 66.2 7 M .9 82.3 86 . 1 .020 30.2 5 1 • 3 __ 6 3.6 73,0 80.7 87.5 • o

25 26.8 M 8 • 6 6 1.3 69.9 77.0 84 .

7

.0

3 l 2 M • 7 M 5 . 0 .... 59.8 6 7.7 . 7 M . 7 80.6 .0MO 22.6 M 2 . M 56.2 66 .

3

73.2 78 .

8

.050 .0 3 9.. M 5 2.3 6 3 .

9

7 1.2 77.0 , 0

63 .0 .0 50.9 6 1.4 69.6 74 .

7

.08 0 33.8 4 9.6 59.6 67 .

2

73 .

M

_ .0

1 00 .0 .0 M 7 * 5 58 . I 65.7 71.9 .0

1 25 ... ... . 0--— 30.

3

- ... MS . 2 - -- 56.7 - 6 4 . 3 - 69.9 - ...0

1 60 .0 30.0 MM .

6

55.2 63.2 68.7 .0200 .0 - 30.6 - M 3.

6

— —5 M , 3 62.6 67.0 - . 0—250 20.5 28.2 M 0 e 0 53.5 63.4 66 . 2 .03 15 • 0 34.2 —— 3 7 . 6 - 53.3 60 . 5— 65.6 — „oMOO .0 37.2 37.3 4 8.

9

6 1.9 65 . 3 • 0

500 -- • 0 - 30.2 -- M 2.

7

M 6.0 60.7 64 . 8 -- . 0 -

63 C .0 29.8 M 6 • 3 M 7 • 7 55.0 62.9 .0800 .0 35.8 - M 7 . 2 - M 7.5 53.0 59 . 5 - .01000 • 0 22.9 35.5 M 3 .M 50.3 57.9 .0

1 250 .0 --— • 0 —— 30.3 39.1 47.6 54 .8— - . 0

1 600 • 0 9 0 27.3 36 .

7

MM .

2

51.8 .02000 .0 - . _ .0—— 2 6*1 36.1 4 1 .9 52 . M .02500 • 0 .0 29 . M .0 M 5 • 7 52 . M .03150 .0 .0 .0 MO .

3

• 0— .0M 0 00 .0 .0 .0 .0 36.7 .0 .05000 . «

n

_n . - . o . n 3 5^3 © 0 . 0

6300 .0 .0 .0 .0 .0 .0 .08000 .0 .0 .0 -.0 # o- -———— « 0 .0

1 0000 .0 .0 .0 .0 .0 . 0 . 0

12500 .0 - . 0 - .0 — • 0 — . 0- .0AWT 11.9 38.5 M 9 • 9 55.0 6 M • 3 69.5 .0LIN MO.M 59.1 7 1.9 80.8 87.7 92.6 .0

54

Page 61: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table A3. - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Windscreen C

(Grazing Flow Incidence)

SPEED ( M / SEC )

OCT BAND 2 8 6 8 1 0 i 2 1 8

I 2 HO • 2 5 7.6 —

-

66.

1

- 7 3.7 79 .

1

8 1.3 82.6 -

1 6 39.2 53.9 65.9 7 1.6 77.7 8 1.7 83.320 36.3 5 1 . 9 6 3 . 6 - 7 1.2 76.3 80.0 82.8 -

25 33.3 50 .

1

59 .

8

69.2 75.2 78 .

3

80.33 1 _ -30 • 8 8 8 . 1 - 57 . 1 .— 65.8 72.9 7 6 . 6 - 7-7 * 5—*10 28 • 3 8 5.7 55.7 63.

1

68 .

9

73.9 7 5.85 D . 0- 8 2.3 5 3*6 . 61-.1 65.9 6 9 . 7- -- 7 2 . 5 -

63 .0 . U 5 1.6 59.2 68.9 6 7 o 6 69.980 . 0 3 7 .

6

8 9.3 5 7.2 - 6 3.3 - 66.2 6 8.3 -I 00 . 0 .0 8 8 . 8 5 8.

6

6 1.1 6 8.6 67 e Q

» 25 • — .0 32.8 83.6 - 52 .

1

58 . 6 - 61 . 9 - 65.6 -

1 60 ® 0 29.3 HO . 7 89.9 5 5 ® 1 59.6 6 3 « 0

2 00 - -- .0 - 26.0 3 8.2 8 7 . 2 52.1 55.9 59.7 -

250 .0 22 . 8 3 8 . 8 83.8 89.6 53.6 57.73 1 5 .0 2 1 oS- - .0 8 1.0 8 7.7 51 . 2 - 56.6<100 .0 .0 .0 37.9 85.2 88.7 58.85 00 — * 0. —

- . 0 —

.0 35 . 0 - — 42.7 8 6.-7 - 53.2 -

630 • 0 .0 .0 32.6 80.3 88.9 5 1.58 00 ..... .0 . 0 .0 3J .0 37.8 8 2 . 6 - 8 9.3

I 000 • 0 .0 .0 3 1.5 37 . 3 8 1,5 87.31 250 .0 — • 0 .0 .

28.3 36.1 39,7 85.98 600 .0 .0 .0 27.8 35.3 39 , 1 88.62000 - . 0 .0 .. ... .0 - 2 6.7 — . 0 - 38.

7

8 8.0 —2500 a 0 .0 .0 26 .

1

.0 38.3 88.23850 . . 0 ... .0 .... .0 25 .3 .0 .0 88,7*1000 ®0 .0 .0 .0 .0 .0 88 . 8

5000 - 9 0 ---—.a— - -.0 .0 • 0 — . 0 - 85.66300 «0 .0 .0 ®0 .0 0 0 88,78000 „ Q_ • 0 - - 6 0 .0 . o - - - .. ..0 8 2.7

1 0000 .0 .0 .0 .0 eO 0 0 82.21 2500 .0- . .. . o . .0 _ .... . 0 - *0 _ . 0- - - 80.0AWT .0 2 3.5 35.9 85.9 51.9 55.9 6 1.2L l N H 8-. 3 60.8 7 1 .0 7 8 . 8 88.t 87.8 89.2

55

Page 62: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table A4 . - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Windscreen D

(Grazing Flow Incidence)

SPEED ( M / SEC )

OCT BAND 2 8 6 8 10 I 2 1 8

1 2 39 . 1 5 2.9 __ 65.8 71.7 7 5.5 7 7.9 82 . 1

1 6 36.3 52 . 1 6 1.2 69.5 73.8 77.8 80 .

9

20 33.

1

50.9 58.6 66 . 0 - 7 1.6 76 . 1 80.825 30.8 88.9 57 .

6

62 .

9

68.8 73.3 78.33 l 2 8 • 6 _ - 8 6.1 _5 6 .8 6 1.5 65.8 7 0.6 75 . 8 .

80 26 .

8

83.0 58.5 60.8 68 .

3

67.9 72.6so . 0- 40.7 5 l .9 . 5 8 62.8 66.7 69.963 • 0 • 0 88.7 55.6 6 1.3 66.0 69.38 0 — — . 0 - - 36 .5— 8 6.5 51.9 5 8.3 - 6 3.7 67.9

1 00 • 0 .0 88.7 89.0 58 .

3

60 . 1 65.8I 25 - .0 — 30*9 - 80.9 86.2 51.0 56.5 6 1 .-9

1 60 .0 27.8 38.8 83.0 88.2 53.0 58 . 1

200 .0 28.4 3 5 .7 80 . 3---- 8 5.5— 89.9 58 -8-

250 • 0 20.8 32.0 37.6 82.3 86.8 52.0315 • Q — 20.2 . 0 _ ... 36 *-2 -— .0 -- - 85.5 50 . 2-8 CO .0 • 0 .0 38 . 3 .0 88.3 88.8500 _ .0 .0 — ,28 . 8 - 32.6 39.0 83.7 8 7.9630 .0 .0 22.6 3 1.7 37.8 83.0 87.8800 — .0 .0 22.2 — 32.2— - 37.3 -- 8 2.8 8 6.8

1 000 • 0 .0 25.7 3 1.5 37.5 82.6 86.31 250 .0 *o__ 20.0 29 U— 36.8 8 2.2 - 8 6.11 600 .0 .0 22 . 1 28 . 7 36.9 82.6 86 . 6

2000 - -- .0 • 0 -

.0 27.3 39.2 8 8.3 .88 . 1 -

2500 • 0 .0 .0 26 . 1 39 . 6 85.8 89.93 150 o . o .0 3 9.6 8 6.6 50 . 7

HOOD • 0

_ .

.0 .0 .0 38.5 86.8 51.85000 • 0 . *Q .0 - .a- 36.2 86.3 52.16300 • 0 • 0 .0 .0 33.9 85.

1

51.86000 . o ... .0

— -.0— . 0—- 31.3 8 2.7 _ 50.-8 -

I 0000 .0 .0 .0 .0 29 . 1 80.3 87.612500 . o * 0 . . o . .0 27.3 36.7 83.8AWT • 0 2 1.9 35.0 82.2 50.2 56.9 61.8LIN 8 2.3 58 . 0—

-

. 68.6 75.3 79.6 83.2 87.8

56

Page 63: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table A5 . - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Windscreen E

(Grazing Flow Incidence)

SPEED ( M/SEC

)

| / 3 OCT BAND 2 M 6 8 1 0 1 2 1 M

1 2 3 5.3 52. 1 _6Z. i 6 8.9— 72.9 ... 76.0 78.91 6 3 M • 2 50.6 58 .

3

66.

2

70.8 75.5 77.92C 3 I .0 _— M 9 • M 56.

M

63.5 68.2 73.7 -- 7 7 oM-2 S 27.9 M 7 • 6 55.0 60 .

1

65.5 7 1.2 7 M . 6

31 2 6.4 MM m-6 -53.8 59 .1 62.8 6 8 ® 6 72.5 .

MO 2M.M M2.

3

52.2 58.0 62.3 66 .

1

68 .

9

50 .a- 3 9 . 9. M 8 e 9 5 6.1— 6 0 » l— . 6 M » 8 6.6 . 6_

63 .0 .0 M 6 • 5 52 .

9

58 . M 63.5 6 6.680 .0-—3M .5

- M 3 .

7

M 9 * 1 - SM.7 - 6 1.1 6 M . 9 -

1 00 .0 .0 M l . 9 M6.5 5 1.0 57.6 6 1.8125 .a-— 2 9„M -38.9 M2 ^9 M7 .5 53.

6

58.6 —

1 60 .0 27.8 37.8 39.5 MM . 2 50 .

9

5 5 o M

200 - .0- .0 — . 0- -37.9 M | .8 M 8 e 5 - —52.0250 • 0 .0 30. S 33.5 39 .

6

MM • 9 M9 .

3

3 ! 5 .0- .0 — .0 -33.0 .0 - MM . M - M8 .

2

MOO .0 .0 .0 32.3 .0 M3.

3

M7 .

6

500 .0-——..a -2 a. s 30.8- 37.6 M3. 1 M7 .

8

630 • 0 .0 28.

1

29.9 36.8 M2.

9

M 8 o 6

800 .a - .0 -27.8 2 9 .6 -36.5 M2.

7

M&.91 000 .0 .0 28.5 3 5.8 37.8 M3 .

8

50 .

5

12 50 --- .0 . 0 23.2 2.9.6-— 37-6 M 5 ® I 5 1.2 -

1 600 .0 .0 2 5.1 32.3 39 .

7

M 5 © 9 52 .

3

2000 • a~ .o

-22.M 33.5 M 1 .6 M7 .2 52 . M

2500 .0 .0 21 .M 31.5 M3.

2

M 9 © 0 53. M

3 I 50 .0- . 0

.0 3Q.-H - --MM . 2 50.6 SM .6 -

M000 • 0 .0 .0 28 .

1

M3.

6

50.9 55.950 00 — *0- .0 . o 25.-0

M 1 .M 50.3- 55.8 -

6300 .0 • 0 .0 22.5 39 .

6

M 9 .

2

55 . M

8000- — - .0 - * o__ * 0 20.3

36.5 -M6.9 53.81 0000 • 0 .0 .0 .0 32.7 M3 .

8

51.01 2500 — - - 9 Q .0 .0 .C- 2 9.0 39.9 M 7 . 1

AWT .0 18.7 35.9 M2.

8

52.7 59,7 65 .

0

LIN 3 9. M - -56. a —-6 5.6 — 7 2 . M. — 7 6 . 8 8 1.2- 8 M . 3-

57

Page 64: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table A6 .- One-Third Octave Band Wind-Induced Noise Levels

(dB re 20 yPa) for Windscreen F

(Grazing Flow Incidence)

OCT BAND 2 M

S P E £ D ( M/SEC

)

6 8 1 0 1 2 8 4

1 2 35. M 51.1 59 .

1

66.9 72. I 75.2 78.51 6 33 . M M 8 • 9 56.

1

6 M . 7 69.9 7 M • 1 78.220 30.7 M 8 • 7 5 M . M 6 1 .M 67.5 72.2 76 .

0

25 28 .

3

*t6 . 6 53.9 57.6 6M .5 70 .

1

73.631 25.8 M3.

6

-52 • 5_ ... -5 8.3 - 6 1 .6 67 .

2

7 2.M ...

MO 22.9 MO. 1 50.9 56.6 6 1.8 65.3 68 . M

5 Q

63• 0 3&*4 4-7 .2 . 5 M - 59 *-& - 6 4.7 6 7.1_

.0 • 0 MM . 6 51.8 58 . M 63.2 66.2- -- 80 .0 -—-33^3 M 1.8 — -M7.6 55.1 — 60.5 - 6 M . 7

1 00 • 0 .0 M 1 .5 M 5 • 6 50.9 57.

M

62.3125 • 0 2 7.9 35. 7—-M2.

7

M7.6 5M • 1 59*11 60 .0 26.5 33 . M MO.

6

M 5 • 8 51.8 56.

1

20C .0 .0 — 30.9 -3 9.0 MM . 1 M 9 • 9 53 *M .

25C .0 .0 28.0 36.0 M2.

1

M 7 • 6 52.

1

3 15 .0 .0 .0 35.0 .0 M 7 . 5 — 5 2.0MOO .0 .0 .0 33.8 .0 M 7 . 1 52.

1

500 .0 o 2 2.9- 32.5 39.5 M 7 • 3 52.7 -

63C • 0 • 0 22.0 3 1.8 39,2 M 8 . 2 53.8800 .0 .0 - 2 3.8 3 1.5 39 .

8

M 9 .

9

- 5 5.78 000 • 0 .0 25. M 33.6 M S . 7 5 1.5 57.01250 .0 .0 23.9 -3M.9 - M 2 « 9 5 1.6 — 5 8.31 600 .0 .0 2M.2 36.

1

M3.

8

50.9 57.62000 .0 — . 0 _ . .0 38 . M M5.3 5 1.1 — 5 7.02500 .0 .0 .0 37 . M M 7 * 2 52.5 57.03 150 .0 .0 — .0 3 5.2_ - -M8.0 53.5 57.9M 000 • 0 .0 .0 33.6 M 6 • 9 5M .0 58.55000 »Q -- .0 . . o 3 8.2 -MM . 7 53.2 5 8.8

58.06300 .0 .0 .0 28.5 M2. M 51.28 0 00 - .,0 ... o .. . . .0-.-. - *0. 39 . H- M 9 . 0- 56.0

1 0000 .0 9 0 • 0 .0 35.5 M 5 • 8 53.21 2500 .0 _ • o __ .0 . .0 30.6 M 1 . 2 M 9 .

0

AWT .0 17.3 33.2 M6.5 56.2 63.3 68 . 9

L I N 39.

1

55.7 __ 63.3 70.6 76.0 80.2 83.9

58

Page 65: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table A7 . - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 pPa) for Windscreen G

(Grazing Flow Incidence)

.

SPEED ( M /SEC >

o c T BAND 2 4 6 8 10 1 2 l 4

1 2 35.6 - —

4

7.4 — 57.4 — 64.

8

69.6 73.4 76 .

8 6 33.9 46.5 5 5 ® 0 6 2 © 5 6 7 o 9 73.1 7 S .

20 3 I .6 46.0 52.2 - 61.8 66.1 70 ® 5 74 .

2 S 27.9 44.6 50 o 9 57.9 65 .

4

68.7 72 .

31 2 4.6 -~ 4

2

* 7 - . -5 U 3 - 56.5 . 62.7 ..... . 67 * 8 71 ,

40 22.3 39.4 49.3 55.3 6 1 .5 63.9 69 ,

SO .0—-36 • 3——

4

6 . 1 5 4 . 0— 59 . 9— 63.8 67 .

£ 3 . 0 .0 43.2 5 1,9 58 .

5

63 .

0

67 .

80 .0 — -30.2 4 1 . 7 49.7 56*1 6 8.6 66 .

100 .0 .0 40 .

8

48.3 53 .

9

59 . 7 64 .

1 25 _ .0 ... 26.2 36.0 46*3 52 * 9 ..... 57.9 ......- 62 .

1 60 .0 25.0 34 .

8

46.

3

52.4 57.3 6 i .

200 -—-a- -- 22 . 1 - 33.

3

4 6.8 .. 53.2 57.5 60 .

250 .0 20.2 32.

1

47 . 6 54.4 57 . 9 6 1 .

3 1 5 •a—— O - .0 49 . 2 55.9 59 . 4 - 62 .

400 .0 • 0 .0 49 . 9 56.9 60.

8

63 .

500 — *0— . 0—- 34.4 5 i e 4— 58.2— • 6 1 . S - 65 .

630 .0 .0 33.9 53.5 59.8 63 . 1 6 6 .

800 — . 0- - .0— 3 4.4 S3 . 0 59.9 - 63.9 66 ,

1 000 • 0 .0 37 .

6

51.2 59,

9

64 , 4 67 .

125 a --- .0 - .0— 3 8.5 49 . 5 - 58.9 c*-E

a 0 1 68 .

1 600 .0 .0 34 .

2

48.6 57.0 63.4 68 .

2000 .0— .0 - 31.6 47.7 55 . 7 - 62.

1

67 .

2 5 00 eO .0 29 . | 46.5 55.4 60.9 6 6 .

3150 — . a— . 0 - - 26.0 4 4 e-C 54.5 60.2 65 .

4000 .0 .0 22.5 4 1.2 52.4 59.4 64 .

5000 • 0—

-

.a - .0 38.

1

49.8 57.5 63 .

6300 .0 • 0 .0 33.9 46.9 55.0 6 1 .

8000 - • 0— .0 - - — .0 .—29 . 9 . 43.4 5 2.3 59 .

I 0000 *0 .0 .0 27.9 39.9 48.5 56 ©

1 2500 •0— .0 *0 * 0 . . 3 6*5 .43*9 52 .

Art T .0 17.9 44.

3

59.9 68 ®0 73.2 77 .

L I N 39.4 5 3 . 1 - 6 1.8 69 • 8 7 5 . 6 - . 80.0 83 ,

6

4

8

5

3

8

5P

l

8

1

l

9

6

9

9

0

4

9

6

9

2

4

4

2

6

5

7

5

4

5

6

6

59

Page 66: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table A8 . - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Windscreen H

(Grazing Flow Incidence)

SPEED ( M/SEC )

OCT BAND 2 8 6 8 1 0 1 2 18

1 2 35 .

3

50.6 60 .

6

67 .

3

72.8 76.7 78.81 6 33.5 88.6 57,

8

68.5 70.1 75 .

8

78.820 30.8 8 8.0 55.3 ..... 62.8 . 6 7 * 8 72.6 76.625 28 .

M

86.8 53 .

8

58 .

9

65.5 70.8 78.03 1 26.8 8 .8.5 , 52.

1

... 5 7.2 .... - 63.1 68.2 72.2HO 23.8 82.2 5 1.2 57.0 61.2 65 .

8

69.550 .0 3 9 ._8 .... 8 8 .

3

55 .

3

6 0.5 ...

.

63.9 6 6.

8

63 • 0 .0 86.8 52.5 59.0 63.0 66 .

3

80 • 0 - 3 8 .-2— 8 3.2 88.8 56.3 6 1 .6 _- 65.51 00 .0 .0 82.1 86.5 52.9 58.6 63.21 25 .0 2 9 ^0 - ... 37 .

6

83.6 50.3 55.2 60 . 2- -

1 60 • 0 27.9 35.8 8 1.5 88.5 53 .

3

57.8200 .0 .0 32.5 3 9.9 87.3 50.9 55.8250 .0 20.8 29.8 37 . 1 83.0 89.0 53.7315 .0 - 20^3 .0 - 36.5 • 0 - - 88.3 53.38 00 • 0 .0 .0 38 .

9

• 0 87.7 52.6500 - .0 . 0 - — - 28 . 7 ™- 33.3 80.8 87.5 - - 52 . 5 -

630 , .0 .0 23.3 32.6 39 .

7

87.7 53.

1

800 .0 .0 — 22 . 8 -- 3 1.7 80.0 — 8 8.1 - 53 . 8 .

! 000 .0 • 0 26.2 33.5 81.3 50.8 55.31 250 .0 . 0 - 2 2.8 3 I . 7 _ 82 . 1 - 5 1.7 56.85 600 .0 .0 22.8 35.3 83.0 5 1.3 58.

1

2000 • 0 .0 20.2 38.0 85.0 5 1.1 5 7.6 .

2500 • 0 .0 .0 33.5 87.0 52.

1

57.

1

3 150 - .0 .0 .0 32.6 86.9 53.8 57.68000 • 0 .0 • 0 32.8 86.9 58 .

3

58.55000 • 0 .0 .0 29*8 85.0 53.9 59.06300 • 0 • 0 .0 26.8 82.1 5 1.7 57.98000 ..... .0 ,.0 .0 -.0 39.8 --8 9.3 -— 56 . L ._.

1 0000 .0 .0 .0 • 0 35.3 86.2 53.31 2500 o 0 .0 .0 - .0 31.1 8 1.9 89.3AWT • 0 20.8 33.9 85.5 55.9 63.8 68.7L I N 39.2 .55.5 6 8.3 .... 7 1.0 . 76.3 8 1.1 88.2

60

Page 67: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table A9

.

One Third Octave Band Wind—Induced Noise Levels(dB re 20 yPa) for Windscreen I

(Grazing Flow Incidence)

SPEED ( M /SEC

)

OCT BAND 2 4 6 . 8 SO 1 2 1 4

1 2 37 * 7 . .. 5 4*5 —.6 6 ® 8 - -7 4 a 0 . .. 78*5 78.8 .. 81.39 6 35.2 52*5 6 3 a 8 7 2 o 5 76 .

7

78.9 8 1.320 32.2 50.

8

- 59 . 0 - 70 * 3 - — 75 « 2 78.3 - 80*825 30*0 48.4 57*6 64*5 71*9 75.4 7 8*331 2 8 . 8— 4 7 * 4 -.. - 5 6 & 8 ~— 6 3*8 67.4 72*3 7 5.840 26.3 44.0 54.6 62.3 66.2 68 9 8 72*250 .0 - 4 1-.-9 - 5 1.9 - -5 .9 . 9 . 6 4 * 8— 6 6.-7 6 -9.263 .0 .0 49.3 58 .

2

63 * 3 66*5 67.980 . n — - 38 . 0 - 47*4 - 55*8 - 6 1 - e. 4 64 * 4 66.

9

I 00 .0 • 0 45.3 52.8 58.5 6 S © 3 64 .

5

I 25 - * o — 32.7 43 . 0 - 5 0*1 55 . 6 - 58 * 3 - 61.88 60 • 0 30.3 4 1*8 48 .

1

53.2 55.8 58 * 6

200 .0— 2 7.3 38 .

9

- 45*8 5 0*8 5

3

o 3 . .. 56.5250 .0 22.3 3 4.0 42.8 48.0 50 * 9 5 4 ® l

3 9 5 .0 -- 2 l .4 ~ - .0 - - 40*6 46.5 4 9.4 53.0*100 • G 20.0 .0 38.0 *0 47.5 51.4500 . 0 • . 0 26*4 -. - 35.4 — 4 2 * 0- - 46*0 49.9630 .0 .0 24 * I 33.4 40.3 44.9 49*0800 - - .0 - - .0 - 23*3 38 *a_ -38.5 4 3.1 — - 47.81000 .0 20 .

1

25.9 32.2 .0 4 3 ® S 47.59 250 .0 .0 - 20 ® 6 - 29.0 - *0 42*5 46.01 600 .0 .0 21.2 27.9 .0 40.3 44 * 4

2000 ... . .. *0 ... .0 - 20 * 3 -. 2 7 -e 3 --.a 39*9 44 . 1

2500 .0 *0 a 0 *0 .0 *0 44*63 150 • Q-- .0 - *0 • 0 - .a- *0 ... 45.04000 .0 *0 *0 .0 *0 *0 45*55000 *0 —.— « 0 — *0- O 0 ® 0— ----- 0 0 — 46*26300 .0 *0 *0 *0 *0 *0 4 5.18000 .0— . 0—— *0 —- — • Q .0 « 0 44*6

1 OOCO .0 *0 .0 .0 .0 .0 43.1I 2500 — . .0 .0—

-

- * 0 .. . 0 . .0 • 0 — 39.

5

AWT *0 25.8 36.5 44.9 49.

6

54 » 4 59*4L i N 4 I * 2 . 5 8.8_. ... 6 9 * 8_ 7 8 . 0 ...— 82 ® 6 8 4*6 87*3

61

Page 68: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

table A10. - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 pPa) for Windscreen J

(Grazing Flow Incidence)

SPEFD ( M/SEC )

OCT BAND 2 M 6 8 10 I 2 1 M

5 2 Ml . 8 5M • 7 63.7 _ 73 .5 7 8 « 2 8 l . 8 83.9I 6 38.9 5 3 « 0 6 3 ® I 7 2 c 9 77 © M 7 9 a 6 8 1.5

20 3 M . M 51.7 6 1.1 7 8 o 7 7 7.9 M 7 9 a M .... 7 9 ® M

25 3 1.9 M 9 « 8 59.0 7 1 « 0 76 ®0 78 © M 78. M

31 30.3 M 7 « 3 .. ... 57. M.. . .69 .8 .7 M a 6 77a 1 77 o 2*10 30 a M MM® 1 55 » 3 6 8 © 7 73.7 76© M 7 7 o 5

50 .a MO . 9 52.8 66.8 7 2 . M 7 5a-6 .... 7 6.M63 .0 .0 M8 .

9

6 M e 6 7 0 » 6 7 M a 5 73.08 0 .0 3 9 e 5 M 6 .

5

6 8 .9 ..... 69©0 73©M 7 3 a 3 --

1 00 »o .0 M 6 o 9 5 8 © 9 6 6 © S 7 0 © 9 71 ,8

.--125 - -.0 -—MM.O - M 6 © 3 - -55 © 9 63.3 6 8 © 3 6 9® 6—1 60 90 3 9 ® 8 M 7 e 5 5 3 o 8 59 .

7

6 M ® 5 67.3200 ©0 - 36 ^-2 50 o 9 5 1 o 8 56 © 7 & 0 ® M 6 3. 8

250 .0 37*0 MM .6 50 © 2 5M©9 58 « 3 60,03 15 • 0

-3 2 © 9 M 1 ,2 —M 8 ® 9 — 5M.0 5 7 © 6 58 a 8

MOO e 0 26 e M 37 .

2

M 7 ® M 5 3 e 3 56 o 9 5 8.6-500 .0 — ®-0—

30.6 M5a0- - 52.

1

56 © M ... 59 » 2 -

630 .0 .0 27 .

3

M 1 a 9 50 a 2 55.3 59.0800 ©0 .0 .... .0 3 8 © 0 M6-. 7 5 3 a M _ 57 » 2

1 000 .0 oO oO 36.6 M 3 a 5 51 aO 5 M « 9

I 250 .0- .0- — .0 .0 MO.O - M 8 o 6 . 52a l

1 600 .0 .0 .0 ©0 36.6 e 0 M 8 e 6

2000 - eO «0 - ©0 - - • 0 — » 0 9 0 M6.62500 oO o 0 .0 .0 .0 .0 .0

3150 .0 .0 ,0 ® 0 .0 .0 _ *0

MOOD .0 o 0 • 0 0 0 ® Q ®Q © 0

5000 • 0 - .0 _ .0 © 0- __ ,0. _ 3 0 - .06300 .0 ©0 .0 o 0 ®0 0 0 oO

8000 a 0 —

-

*o~. .0 ... .0 .... .... .0 ....... aO _

1 0000 .0 © 0 .0 ©0 aO .0 o 0

! 2500 • o

.

..... .0 ©0 sO Q 0 . . .0AWT .0

_

3 M e 3 M 3 9 9 5 I ®7 58a2 6 2 © 9 6 5 o 6

LIN MM.

7

5 9 ® 5 . 69®0 79 e 9 8 5 © 0 87.8 8 9 c 0 .

62

Page 69: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table All One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Microphone With No Windscreen

(Grazing Flow Incidence)

SPEED ( M/SEC >

OCT BAND 2 4 6 8 1 0 S 2 I 4

1 2 55.2 6 9.0 .8 5.2 88.6 92.1 . . 95,9 100.3i 6 53.9 67.6 85.3 89.8 92.4 96 . 1 99 .

2

20 5 1.9 67 • Q. ...8 2.6 . ...9 1 a 2 . 93.0 . 96.0 98.725 50.2 66.4 78 .

7

90.6 93.6 95.6 97.73 8 47 ® 6 .. 6 6..4 .-7 . 6 .. 7 87 . 0 ........-,9 3.4 ... 95.7 97.840 44.3 65.7 74.6 84,2 9 1.7 96.0 97.850 .a 6 4 . a_ _ 7.4 *.7- 8 1 *JH 8 8 . 2— 93.4 _ - 9 6 . 3-63 .0 6 1.3 7 S .2 8 C » 4 95.9 90 .

2

94.28 0 ....... . .. -. o. 58 « 8_ 73.2 80.9 85.2 88 ® 0 9 1.3

1 00 • 0 58.9 7 1.0 80.0 84.8 87.4 89.61 2 5 .... - - --. 0 - 5 2 -8— . 6 8.4 - 7 8,4 . 3 4 . 3 - CD 9 KS 8 9 . 4 . -

8 60 .0 48.7 65 ,

8

75.5 83.

1

87.1 89 .

8

200 .0 - -45.1— 6 2 .

6

- 72.3 80.2 - - 85.3 88 ^9 -250 • 0 4 1.5 59.8 69.8 77.5 83.3 87.7385 .0 38.5 5 6- 9-3 - 67.6 . ... 75 .3 --.8 1 .6 8 6 o-O .

400 .0 34.6 52.5 64.7 73 . 1 78.8 83.5500 .0 3 1 -8-—

-

--4 8 .9 6 1,3 - 7 0.4 - - 7 6.5 8 l .-2 -

630 • 0 29.0 45.5 57.4 67.2 74 .

3

79.5800 .0 —- 2 8.1 4 3.5 53 . 0— 6 4.2—— 72.0 7 7.-7

9 000 .0 .0 42.4 50.7 6 1.5 70.7 77.31250 - -* a - *0 - 38.

1

- 47.9 __ -59 . S 69.2 77.11 600 .0 .0 35.6 45 .

8

56.5 68.3 76 .

6

2000 .0 .0 .

. . 0 - 40.6 — 55.

1

- 66.9 7 8 »-5 -

2500 .0 .0 .0 3 8 ® 1 52.5 65.6 75.93150 .0 *0 .0 - 3 6 »-4— 49.7 - . 63.9 75 ^9

4000 • 0 • 0 .0 .0 49 .

4

62.5 74 . 1

5000 - *Q.. -0 .0 . 0—- 47.6 —-- 64.5 — 73 . 6 -

6300 • 0 .0 .0 .0 47.0 58.

8

76.38 000 . .... o - -0 - - „. 0 . ..... . .0 . —.0 -. - 5 3 . 9 . . .7 1 . a-7-

1 0000 • 0 .0 .0 .0 .0 53.5 67 . 2

1 2500 . .0 0 ... . 0 ...... . 0 -- . ... . 0 . 51.6 . .... 6 3 . 7 -

AWT .0 45.6 6 1 .0 70.8 78.3 84.3 90 .

1

LIN 59.6 75.7 9Q..S _97.4 IQ1...4 1 0 4 • 7 107.6

63

Page 70: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

APPENDIX B: Tabulation of Wind- Induced Noise Levels for Normal Flow Incidence

This appendix contains a tabulation of the one-third octave band,A-weighted, and overall wind-induced noise levels (dB re 20 yPa) measuredat normal flow incidence over the wind speed range 0 m/sec <v<_ 14 m/secfor each of the windscreens shown in Figure 2 as well as for the microphonewith no windscreen. Zeros have been inserted in the tables when the

signal-to-noise ratio was insufficient to obtain meaningful data.

64

Page 71: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table Bl. — One Third Octave Band Wind—Induced Noise Levels(dB re 20 yPa) For Windscreen A

(Normal Flow Incidence)

SPEED ( M / SEC )

o

C

T QAMD 2 8 6 8 1 0 1 2 1 8

1 2 33.3 53.6 67.8 76.0 78.9 77.8 77.51 6 32.8 52.5 6 1.6 73.9 79.8 79 .

7

78.720 29.8 50 .

8

59.2 67,8 76.9 79.7 7 9.625 28 . 1 87.5 5 9 ; 1 64.0 69.8 76 .

0

79 .

3

3 l 25 .

8

45 . 1 56.8 64 .Q 66.9 70.7 76.14 0 23.

3

4 1.6 53.1 62.1 67.5 68.3 70.850 .0 39.3 8 9.4 58 .

3

65 .

2

68.1 69.16 3 • 0 39.1 87.2 55.8 6 1.9 66.1 68.38 U .0 37 .

G

85.0 52 .

9

59.0 6 3.3 65.81 00 .0 .0 .C .0 56.0 6 G . 1 63.01 25 .c .0 .0 88.5 53.8 56 .

8

60.8I 60 .0 .0 .0 86.1 .0 .0 58.8200 . 0 .0 .0 48.7 89.8 53.2 . 0

250 .0 22 . 4 32.7 8 1.0 86.1 50 .

2

53.63 1 5 .0 .0 .0 38.9 . 0 89.2 52.84 00 . 0 .0 ;o 36.3 .0 47.6 5 1.8500 .0 .0 25 .

2

34.0 8 Q .7 86.2 50 .

6

6 30 .0 . 0 24.3 32.7 38 .

9

88.6 49.3800 .0 .0 28 .

6

32.0 37 .

6

82.9 47.5i OCG . 0 • 0 25 .

8

32.2 37.8 82.7 86.6I 250 .0 .0 20.8 29 .

7

36,1 82 . C 85.716 0 0 .0 .0 20.5 28.7 35 . 1 80 .

8

85 . 1

2 C 0 D • G .0 2 1.1 27.5 33.8 80 .

1

48.62500 Vo .0 .9 . 0 32.2 38.7 83.53 1 5 C .0 .0 .0 .0 32.0 38.1 43.14 COC .0 .0 .0 .0 3 1.1 37.5 82.25000 .0 • G . 0 .0 27.5 36 . 7 82.26300 .0 “VO .0 .0 .0 .0 83.38 QC 3 .0 .9 . 0 .0 .0 .0 8 1.7

1 u 0 0 0 .0 .0 .0 .0 .0 .0 80 . 8

1 2500 .0 .0 .0 .0 .0 • 0 . 0' AWT

'

VC i 9Vo " 33 . 0 43.3'

48.7 54.3 58.5L I N 37.9 58.1 70.0 78 . 9 88.0 85.1 85 . 8

65

Page 72: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table B2. - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Windscreen B

(Normal Flow Incidence)

SPEED ( li / 5 E C )

0 c T R A N D 2 M 6 8 1 0 l 2 1 M

1 2 35.8 M 8 .

8

5 M . 9 60 .

9

66.1 70 .

3

73.11 6 36 . ! 50 . M 55 .

3

6 1.0 66 . M 70 .

6

73. M

2 n 3 1.5 50 .

6

56.9 60 . M 6 5.6 70 .

7

73.025 27.5 5 1.1 6 1.5 6 1.3 65 .

3

69.8 72.23 1 25.8 5 1.8 59 .

7

65 .

8

65 .

8

68.1 7 > . 3

MO 23.

G

52.1 59.8 67 • 7 69 . M 69.1 7 C . M

so .0 52 . M 6 1.0 66.3 o s CD 72.1 70.56 3

r\• o 5 1.2 62.1 68 .

4

70.9 7 2.2 72.7e c . C M 9 .

1

6 1.2 69 .

9

73.1 73.6 73.9i c-o .0 .0 60. M 68 .

5

7 M . 8 76.5 75.81 ?s • 0 .0 59. 1 67.3 73.3 76.9 78.01 60 » 0 .0 57 . M 65 .

9

72.0 75 .

7

77.82 0 0 .0 .0 55.0 6M .5 69.9 7 M . 3 76.92S J • c 29.8 52.0 62.6 69.

0

73.0 76.23 1 S .0 25 . M M 8 • M 60.7 68.0 72.6 76.0MOO .0 23.6 M2 .

6

57 . M 66.2 7 1.6 75 . M

SOU .0 2 0*8 37 .

5

53.7 63.6 70.0 7 M . 8

630 .0 20.1 33.5 M 8 • 6 59 .

7

67 . M 73 .

2

800 • c .0 3 0.8 M3 .

8

55 .

2

63 . M 70. 1

1000 . 0 .0 30 . I MC • 5 5 1 . M 59 . M 66 .

3

S 2 S 0 .0 .0 28 . 1 38.1 MB. 1 5 M . 8 6 1.81600 .0 .0 27.5 36 . 7 .0 50 . 8 57.02000 .0 .0 26 . 7 . 0 .0 M 8 . 1 53.52 S 0 0 • 0 .0 .0 . 0 0 0 . 0 5 S . M

3 150 .c .0 .0 . 0 . 0 • 0 50.

1

M 00 0 .0 .0 . 0 .0 .0 . 0 51.15000 .0 .0 .0 .0 .0 .0 5M .0

6 30 0 .0 .0 .0 . 0 .0 .0 52.

M

8000 .0 .0 .0 .0 .0 .0 51.11 3000 • o' .0 .0 .0 .0 .0 50.58 2500 .0 .0 .0 .0 .0 .0 .0AWT .0 3 1.3 5 1.7 62.0 69 . M 7 M • 6 79.0L I N MC • 2 60.5 70.7 77.7 82 . M 85 . M 87 . M

66

Page 73: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table B3 • - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Windscreen C

(Normal Flow Incidence)

SPEED ( N/SEc >

OCT BAND 2 4 6 8 1 0 1 2 1 4

1 2 38.9 53.4 65 . 1 72.3 76.1 77.9 79 . 1

1 6 38.0 5 J .8 62.4 70.

3

76 .

0

78.3 79 .

6

20 33.0 50.6 59 . 1 67 .

8

74.3 77.8 79.225 3 1.0 48.8 58.4 64 .

3

7 1.9 76.3 78.13 1 29 . G 47.1 56 . S 63.5 68.5 74.0 76.940 26.0 44.1 5 4*5 62.1 67 .

3

71.3 73.950 . G 4».6 52.3 59 .

3

65 .

3

69.9 72.46 3 • ii 4 1.0 4 9.5 58.1 6 3 .

8

63.0 7 1.180 .0 37.4 47.3 54 .

8

62 .

1

66.0 68.31 00 .0 .0 46.5 .0 58.5 64.0 66.61 25 .c . 0 .0 49.8 56 . I 60 .

9

64 . 1

1 6 0 .0 .0 . 0 47.3 .0 .0 6 1.6200 .0 .0 .0 45.6 50.9 55 .

3

.0

250 .0 2 1.8 32.4 4 1.6 47.5 52 .

5

56 . S

3 1 5 .0 .0 .0 39 . 0 45.6 50 .

8

54.24 00 .0 .0 .C 35 . 8 .0 48.7 52.5500 . 0 .0 24.3 32.9 40 . 4 46.6 5C . 8

6 3 G .0 2Q . 3 23.6 3 1.4 37.9 4 4.6 48.9800 .0 * 0 24.0 30 . 8 36.2 42.4 46.8

1 000 .0 .0 24 .

6

3 1.1 35 . 6 4 1.7 45.41 250 .0 .0 20.8 29 . 2 34.6 40.8 44.41 600 .0 .0 23.5 28.1 33 . 6 39.7 43.62000 .0 .0 .0 26 . 7 32.4 39 . 2 43.12500 .0 .0 . 0 . 0 30.4 37.5 42.43 1 50 .0 .0 . C .0 30 .

8

.0 4 1.44 0 00 To ".0 .0 .0 30.4 .0 40.5

500C .0 .0 . 0 .0 26.2 .0 38 . S

6300 . 0 .0 .0 .0 26 .

3

.0 .0

8000 • c .0 .0 .0 27.5 .0 .0

rod do .0 • 0 To .0 29.6 . 0 . 0

1 2 5 C 0 . 0 .0 .0 • 0 24 , 1 . 0 . 0" A '.V T • e 22.2 34.0 43.7 49 .

7

55 . 1 58 .

9

L I N 42.7 58 .

3

68.8 76 .

3

8 1.6 8 4.7 86 .

4

67

Page 74: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table B4 ,- One-Third Octave Band Wind-Induced Noise Levels

(dB re 20 yPa) for Windscreen D(Normal Flow Incidence)

SPEED { M/SEC 5

OCT BAND 2 M 6 8 1 0 1 2 1 M

8 2 3 M * 8 SC . 3 6 M « 9 72.9 7 M « 9 7M . 8 76.7t 6 34.8 SO. 3 6 U • 3 70 o 9 75 .

1

75 • 3 77.320 30 • 8 49.7 57,

3

65 „ 8 72.3 75.

3

77.52 S 29 . S 47.5 58 • 0 6 1,5 6 6.8 72.

S

75 .

8

3 1 27® 7 MM . 7 56 .

7

62.9 63.5 68.9 73 . M

MO 24 » 8 M3.0 5 M ® 0 6 1.2 64,

5

65 .

3

69.8so .0 39 .

8

5 1.1 58 .

3

62 • M 6 5.

8

67 .

3

6 3 . D 39.3 M 8 .

6

55.5 60 .

3

6 3.8' 6 7.06 0 « 0 3 6.3 MS . 6 S3 • 3 57.1 60 . S 6 M . M

100 .c .0 oO o 0 5 M . 3 57.7 6 1.8i 25 • c . 0 .0 M8 .

7

S 2 .

0

55 . 1 59 .

3

8 60 .0 » G .0 45,1 .0 . 0 57.1200 . 0 . 0 .0 M 3 • M 47,1 5 1.0 .02 SC *0 2 1.2 32 . S 39 o 7 MM .0 M 8 . 2 52.53 1 S .0 .0 .0 37 . S .0 M7 .5 5 1.8MGO .0 .0 .c 34,9 .0 M 5 • 9 50.7SCO .0 9 0 2 M « 7 32.8 39.3 MM . 8 M 9 .

5

630 .0 «0 23.7 3 1.8 3 8*0 M 3 • M M 8 .

3

800 .0 .0 24, 1 3 1 . M 37 .5 M2.

5

M 6 .

9

1 000 .0 .c 2 M ® 3 3 1 • M 37 . S M2.M M 6 .

5

8 2 5 0 ® 0 . 0 .0 29 . S 36.

S

M 2 * 0 M 6 .

3

1600 • o ®G . 0 28 . 2 35 . M M2.

8

M6 .

5

2GG0 ®o ® o © 0 26 • M 36.0 4 2,0 M 7 . 1

250Q ®o ®0 • 0 25 . 3 3 S • 9 MM , 1 M 9 . 2

3 ISO .0 ®o . a 24 o 5 35.8 MM . 5 50.3MOOO .0 .0 .0 23.0 33.7 M 5 ® 2 51.5S 0 G 0 .c .0 .0 22 . 8 3 1.7 MM . E 51.36 30 0 .0 *c . c 2 M • 1 30 . 2 M 1 . M 50.98000 . 0 © G . 0 26.0 29 . 1 MO . 3 M 9 . 7

8 0 0 0 0 ®o .0 .0 28 . 2 29 . M 37.5 M 7 . 5

8 250 0 .0 . c .0 2 3® 2 23.9 28.5 39.2A WT *0 18.6 3 1.8 M3 o 1 48,6 55.6 6 1.3L I N 39,

6

56 • S 68.0 76.2 79,

7

8 1.3 83.9

68

Page 75: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

One—Third Octave Band Wind—Induced Noise Levels(dB re 20 yPa) for Windscreen E

(Normal Flow Incidence)

S P E E <"> (M/SEC )

H 6 8

48.3 62.3 69.2

Table B5

1/3 OCT B ANO! 2

1 6

202 5

3 I

HOSO6 3

801001 2 S

1 602002 SO3 1 S

HOO500630800

1 000I 2 SO1 600200025003 1 SOhooo50006 3 008000

l 0000I 2 S C 0

A i« T

L I N

H 8 • 5 56 . R 65 .

5

H 7 • 5 SS. 1 62.0HH . 8 55 .

3

59.

Q

H2 .

7

S3 .

5

58 .

5

4 G . 1 50.9 57.538 .

8

H 8 .

3

5 H • 3

4 1.1 H 6 .

5

52 .

4

3 H . ! H 3 • 3 H 9 . 1

.0 . 0 . 0

.0 .0 H 5 • 7

.0 .0 H 1 . H

.0 . 0 HO . 9

20.9 29.

S

36.7.0 .0 3 H . 7

.0 .0 32 .

7

.0 23.8 3 1.6

.0 23.3 3 1 .<j

.0 2 H • C 3 1.3

.0 2 H . 3 3 1.5

.0 .0 3 1 . H

• 0 . 0 3 1.5• 0 .0 28 . 1

.0 .0 29 .

5

• G .0 29 .

9

.0 .0 25.0

.0 .0 23.7

.0 .0 2 H • 1

.0 .0 26.0

.0 .0 28 .

2

.0 . 0 23.31 8 . H 3 0.6 H 2 • 5

5 H • H 65 .

2

72.1

1 0 1 2 l R

73 .

2

72 .

7

75.669.9 7 3.2 75.168.5 72.8 76. 1

65 .

7

70.8 7 R . 1

6 1.9 67.9 72.56 1.3 6 R • 8 69.158 .

9

6 R ® 1 66 . R

55 .

9

67.3 6 5.35 H • 2 58.8 63.65 1.6 56.8 60.8H 9 « 8 5 R • 3 58 .

9

~. 0 .0 56.9

HR . 1 R 9 • 5 .0

H 1 . 2 R 6 • 5 5 1.1

.0 R 5 • 8 50. R

.a HR . 6 H 9 .

3

37.9 H 3 . 3 R 8 . 5

37.4 R 2 . 7 R 7 .

8

37 . H H2.H 4 7.937.8 H 2 • 9 48.437.7 R 3 . 7 49.239,5 RR . 8 50.2H 1 . 1 R 6 , 2 5 1.3H 3 • H H 8 , 5 52.7H 2 • 5 50.

1

54 .

2

H 2 • 3 H 9 • 8 55.3HO.H 50.0 55.737 .

6

H 8 • 5 55.335.2 R 6 • 3 54.232.2 R 3 . 3 51.72 H • H 33.7 42 .

9

52.0 59.1 64.575.5 7 9 . R 82.5

2

3 H • 7

3 H • 7

3 0.328.325.

7

22.9.0. 3

• 0

.0

.c

.0• G

• C

• U.0• C.0.0.0.0.0.0.0• 0.0

.0

.0

.00

. 0

. 039.2

69

Page 76: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table B6. - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Windscreen F

(Normal Flow Incidence)

SPEED ( M /SEc )

3 OCT RAND 2 4 6 8 1 0 S 2 1 4

1 2 35 .

8

49.5 6 1.3 67.2 7 1.2 74.2 76.91 6 35.2 49.9 56.3 65 . B 70.4 74.4 77.220 29.9 48 . S 55 .

9

62.3 69 • 5 73.0 76 .

6

25 28.0 46.4 55 .

7

58.4 66.9 72.2 75.03 1 26 • 8 44.4 5 4 0 4 58 .

7

6 3.9 69.0 73.940 23.3 4 1.6 5 1.8 57 .

6

6 1.9 65 • 1 69.9so .0 38 • 1 49 . 1 54 .

8

6 1.1 65.2 68 . 1

6 3 .0 36.4 45.9 52.9 58 . ! 64.1 67 .

6

BO • 3 33.9 42.8 49.4 55.9 6 1.1 6 6.1

100 .0 .0 .0 .0 52.5 58 .

8

62 .

9

1 ?S .0 ® 0 .0 46.1 50 .

4

55.3 60 .

4

l 6 0 • 0 .0 .0 40 » 8 .0 .0 58 .

1

200 .0 .0 .0 40.7 44.6 49.8 .02S0 .0 2 i .0 29 .

5

36 .

7

4 1.8 47.4 52. 1

3 1 S .0 ® 0 .0 34.5 .0 46.9 51.9400 . 0 .0 .C 32.9 .G 46.6 5 1.6SOG .0 .0 23.6 3 5.9 3-5 . 1 46.3 5 1.5630 "•o' » 0 23.4 3 1.9 39 . S 46.6 52.0800 .0 • 0 24.8 33.2 40.0 4 7.4 52.2

3 COO • o’ .0 2 4.4 33.0 4 l .0 43.4 53.01 2 S G . G .0 20.2 35.6 42.1 49 .

2

54.01 600 .c • 0 2 1.4 35 .

4

43.2 49.4 54. S

2000 .0 • G 2 1.4 36.1 45.0 50.5 54 .

8

2 SO 0 • c .0 .0 3 7.5 47.8 52.3 55.93 1 SO . 0 .0 .0 33.7 46.8 53.4 57.54000 .0 . 0 .0 32. 1 45 .

5

53.

3

58 .

3

SOOO .0 .0 .0 29.9 43.9 52 • 4 58.36 3 00 .0 .0 .0 27.2 4 1.4 50.9 57.88000 .0 • 0 .0 27.0 38 . 8 48.8 56.0ICOOO . o

'

.0 .0 28 • 3 35.2 46.2 53 .

3

1 2500 .0 .0 .0 23.4 26.9 37 . 8 44.4AWT ® 0 3 6.8 32,2 4 6.0 55.7 62.5 67 .

5

L 1 N 39 . 7 55.

5

64.9 7 8,4 76.4 80.5 83.8

70

Page 77: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table B7. — One—Third Octave Band Wind—Induced Noise Levels(dB re 20 yPa) for Windscreen G

(Normal Flow Incidence)

SPEFO (M/SEC

)

OCT BAND 2 M 6 e ! 0 1 2 I M

1 ? 36.3 M 9 . | 6 C • M 66 . M 7 1.0 7 M . 0 77.51 6 3 M • 3 M 9 • 3 57 . M 65 . M 70.3 7 3 . M 77.520 30. M M 9 .

0

5 M . 8 6 M . 1 69 . M 72 . M 76.725 27.8 M 6 • M 55.0 59.8 67.0 7 1.8 7 M . 3

3 i 25.5 M 5 • 3 5 M . 1 59 .

8

63.0 69.7 73.2MO 2 1.6 M2 .

2

5 1.7 59 .

3

62.5 66.0 70 .

8

50 • 0 38.3 M 9 .

3

56 .

8

6 1.9 66.0 68 .

3

S J . 0 36.3 MS . M 55 . 1 5 Q • 6 6 5 . M 6 3.39 0 .0 32 . 1 M 1 . 5 5 1.3 58 . M 6 3.0 6 o . 8

1 00 .0 .0 . 0 .0 55 .

1

6 1.8 6 M . 8

1 25 .0 .0 .0 M 6 . 1 52.9 58 .

3

62 . M

1 60 .0 .0 . 0 M3 .

5

.0 .0 60.5200 • 0 .0 . 0 M3 . M M 9 • 5 55 .

3

.0250 .0 • 0 29.1 M2 . 1 M9 .

6

55.0 59. 1

3 1 5 .0 .0 .0 M2.

6

50 .

9

56 .

2

60 .

2

MOO .0 .0 . 0 M3 . 1 5 1.2 56 .

7

60 .

7

500 .0 .0 29.5 M3 .

7

5 1.2 5 6.6 6 0 .

6

630 .0 .0 29 . 1 MM . 2 5 1.5 56 . M 60 . M

800 .0 . 0 3 1.7 M3 .

3

5 1.3 56.2 60 . 1

1 000 .0 .0 3 1.9 M3.

6

50 .

7

56 .

2

59 .

8

1 250 .0 .0 29.6 MM . 1 50 . M 55 . 7 59.71 600 .0 . 0 29 . M MM . 2 50 .

2

55 .

0

59 .

0

2 0 G 0 • 0 .0 26 .

9

MM . M 5 1.0 55 . 3 59 . 1

2500 .0 • 0 2 M . 8 M2 . 9 5 1.9 56.5 60 . 0

3 l 50 • G • 0 22.0 MO . 7 5 1 . M 57.9 60.8M DOG .0 .0 .0 38 . 7 M 9 • 7 57.2 6 1.65000 .0 • 0 .c 35 . M M 7 • 2 55 . 2 60.86 30 0 .0 .0 .0 31.7 MM . 1 52 . 9 59. 1

8 0 0 0 • c .0 .0 29 . 7 M 1 . 3 5 1.0 57.71 GOOO .0'"

. o .0 .0 37 .

6

M 8 • 0 5 M . 9

1 2500 .0 .0 . 0 .0 28 .

7

39 .

2

M 5 .

9

AWT .0 1 M . 1 38.7 53.9 6 1.8 67.5 7 1.7L I N 39.6 55 .

5

6M .5 7 1.6 76.7 80.5 8 M . 1

71

Page 78: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table B8 .- One-Third Octave Band Wind-Induced Noise Levels

(dB re 20 pPa) for Windscreen H(Normal Flow Incidence)

SPEED (M/SEC )

OCT BAND 2 4 6 8 1 C 1 2 1 4

1 2 36.4 49.8 62 .

0

68.9 72.7 75 .

8

78.11 6 36 . 1 50 .

1

58 .

6

65 .

9

7 S . 3 74.3 76 .

7

20 3 1.5 49.3 57.4 63.1 69.4 74.0 77.425 29 .

3

47. 1 57 . 1 59 .

9

67.0 72.0 76 .

2

3 1 27.2 45.8 55 .

5

60 .

2

64.1 69.5 74.04Q 24.1 42 .

7

53.7 58 .

8

63.6 66.9 70.750 .0 39 .

8

5 1.8 56 .

7

63.0 6 & • 8 69.86 3 3 7.9 48.1 5 q . 3 63.4 65.4 70.080 • 0 34 .

7

44.6 5 1.3 58.4 63.1 67.51 CO .0 .0 .0 .0 54 .

6

6 1.3 64.7i 2 5- .0 .0 .0 45 .

5

5 1.6 56.9 62 .

0

i 6G .c • 0 .0 42.7 • C .0 58.72 G 0 .0 . 0 . 0 42.1 45.8 5 1.1 . 0

250 • 0 20.

1

29 .

7

36 .

8

4?.8 4 8.0 52 .

7

3 1 5 .0 .0 .0 35 .

4

.0 47.4 52.

1

4 00 • 0 .0 .c 33.5 .0 46.4 51.35 CO . 0 • 0 24.3 32. 1 39.2 45.4 50.46 30 .0 .0 23 . 8 3 1.4 38 .

3

44.3 49.6800 .0 ® 0 24 .

3

3 1.6 38.2 44.1 49.2i oca .0 .0 25.

C

32.5 39.0 44.8 49.68 250 .0 • G 2 1.1 3 1.9 39.8 45 .

6

50.48 6 00 .0 • 0 2 1.1 33. 1 40.7 46.4 5 1.02000 .0 .0 2 1.4 32.4 4 1.8 4 7.4 5 1.7

2500 • 0 .0 .0 33.0 43.6 49.0 53.23 1 50 .0 .0 .0 29 .

6

44.8 50.3 54 .

7

4000 .0 .0 .0 27.8 42.6 5 1.1 55.75000 • 0 .0 .0 25 .

9

4 C • 4 50. 1 56 . 4

6 300 .0 .0 .0 24.6 38.2 48.1 55.28000 .0 .0 .0 25.8 35.6 46.6 54.2

1 0000 . 0 . 0 .0'

28.

7

32.9 44.2 5 1.712500 .0 .0 . 0 23.5 24.8 36 . 1 42.9AWT .0 17.4 32.8 43.9 53.

1

60.0 65. 1

L I N 4Q. 6 56 . 1 66.2 72.4 77.4 8 1.2 84.9

72

Page 79: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table B9 . One Third Octave Band Wind—Induced Noise Levels(dB re 20 yPa) for Windscreen I

(Normal Flow Incidence)

SPEED(M/SEC)OCT B A N 0 2 M 6 8 8 G 5 2 1 4

i 2 3 6 • 0 53 .0 69.8 75 . M 78 . 1 78.4 80 .

3

1 6 3M . ? 5 1.7 65.6 73.9 78.8 79.2 80 . 1

20 3 1.5 5G . 8 6 3 . J 69.3 77.8 79.3 80.925 29 • M 49.3 60.5 64 9 8 72.8 7 7 o 5 80.93 1 27 .

6

M 7 « 6 5 9. i 6 5 e 3 68.3 7 2.1 77.8MG 25 .

3

MM .5 5 6.7 6 4® l 68.8 69.9 73.350 .0 M I . 8 53 .

7

6 1.5 67.0 70.2 7 1.0O J . J M 0 * 5 5 1,2 59.7 6 4.8 68.2 7 1.39 0 .0 38.3 M 8 • M 56 .

9

62.7 65 • 7 6 8.81 CC .0 • C M 6 „ M .0 59.5 63.7 66.91 25 .0 • 0 .0 5 1.3 56.7 59 .

9

64.4l 60 .0 • 0 M 5 . 1 49 . I .0 . 0 6 1.02 0 0 . a .0 .0 47.

G

5 1.6 54.4 .02 5 0 .0 2 5.7 35.2 MM .0 48 .

9

5 S . 7 54.93 1 5 .0 .0 .0 Ml.] 47. 1 50 .

3

54.0MOO .0 .0 .0 37 .

8

.0 48.2 52.35 00 .0 .0 25 .

7

3 M « 5 4 1.9 46.5 5 1.0630 .0 .0 2 M . 2 32 .

5

39 .

6

4 M . 4 49.4800 .0 .0 2M .5 3 1 . M 38 .

2

42.7 4 7.4! 00G .0 .0 2 M . 2 3 1.3 38.1 4 1.9 46 .

2

1 2 5 G . 0 • 0 2 0.1 29.2 36.5 40.8 45.41 600 .0 .0 . 0 27.9 35 .

2

39 .

9

44.52 0 GO .0 • 0 . 0 25 • 9 33.7 39 .

0

43.82500 .0 • 0 .0 2 M . 5 32.3 37.7 42.73 5 50 .0 .& .0 23.7 32.5 38.3 42.4M 000 . o .0 .0 2 ! . 8 32.5 36 . 4 42.55000 .0 .0 .0 2 1.5 3 5.2 33.9 4 1.36 3 00 .0 .0 .0 22.8 32 . 8 3 6.0 42.78 0 G 0 .0 .0 .0 25. 1 34 . 9 35 . 4 42.6

10 0 0 0 0 0 .0 . 0 20.1 38 . I 38 . 2 40.91 2500 .0 .0 .0 22 . 8 33.0 32.8 35. 1

A '.*! T .c 20 . 0 36 . M 45 . M 5 1.2 55 . 2 59.4L I N 39.9 58 . 2 72 . M 79.

Q

83.9 85.4 87.6

73

Page 80: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table BIO. - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 yPa) for Windscreen J

(Normal Flow Incidence)

SPEED ( M /SEC )

$ OCT BAND 2 4 6 8 1 0 1 2 1 4

i 2 39.4 48.8 58.3 6 1.2 64.1 68.1 70.

D

1 6 38.6 47.3 56 .

5

6 0.2 63.4 67.0 69 .

4

20 33.8 48.0 54 .

7

59 . 1 6 3.0 66.5 69 . G

25 3 1.9 4 8.Q 53.8 58.0 6 1.4 65.1 69 .C

3 I 29 . 9 46.8 54 .

3

57.3 59 .

8

63.8 67.14C 2 7 .

9

44.0 52.8 57.5 60.3 63.2 66 .

2

50 .0 40 .

8

50.4 55.5 59 . 1 62 . 1 64 .

4

6 3 • u 39.6 4 7.5 53.6 57.2 6 C » 5 63.18 C • G 37 .

9

46.3 52 .

9

57.8 60 .

3

63.2! CO . 0 .0 4 6.4 .0 56 .

6

60 .

9

62.81 25 .0 . 0 .0 50 .

4

55 .

7

59.0 62.01 6 C .0 .0 .0 4 8.5 .0 .0 60.02 0 D .0 .0 .0 46.8 50 .

4

55.2 .0

2 5 0 . 0 24.7 36.1 43.3 48.5 5 1.8 54 .

7

3 1 5 .0 20 .

5

.0 4 1.3 46.7 5 1.3 53.9HOG . 0 .0 . 0 37.7 .0 49.2 52 .

8

5 00 .0 .0 23.6 33.2 4 1.3 47.5 5 1.6630 .0 .G 22.3 29 .

9

37.1 44.0 49.8800 • c .0 2 3.3 29 .

2

34.2 39.9 46.41 COO . 0 « 0 24.5 29 .

9

33.7 38.1 43.2! 250 • 0 • G 20. 1 29 .

0

32.8 36 .

7

4 1.11 600 .0 .0 20.5 28 .

3

33.5 36 .

9

40.62000 .0 .G 20.

7

26.8 33.1 37.8 40.

9

2 5 U 0 . 0"

.0 . 0 26 . 3 32.3 37.2 4 1.93 150 .0 .0 .0 25 .

3

33.2 37.8 4 1.88000 • 6 • 0 .0 23.4 32 .

9

38.2 42.45000 .0 .0 .0 22.5 29 .

4

36 . 5 42 . 4

6 300 7b .0 .0 23.2 27 . 8 35 . 6 42.48000 . 0 . C .0 24 . 9 26 . 9 33.4 4 1.3

1 COCO .a . 0 .0 28.1 28.2 3 1.3 40.51 2500 .0 . 0 .e 23.0 22.8 24.4 34 . 1

A N T .0 2 1.2 34.3 44,4 49.1 54.2 58.0L ! M 43.3 55 . 5 63.8 67 . 8 7 1.2 74.8 77.5

74

Page 81: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table Bll. - One-Third Octave Band Wind-Induced Noise Levels(dB re 20 pPa) for Microphone With No Windscreen

(Normal Flow Incidence)

SPEED { M/SEC »

- OCT RAND 2 ' M 6 8 S Q 1 2 1 M

1 2 5M . 1 65 .

5

72.6 7 6 ® 8 8 0. M 83.7 85 .

9

1 6 53.7 6 M ® 8 7 1.9 76.8 80 • M 83.1 86 .

7

20 52.5 6 M . 9 7 8.5 75.8 79.6 83 . M 8 6.72 S 50. M 62.9 70.9 7 M a M 78.8 82.9 86 . S

3 i M 8 e 1 62.1 69.8 7 M . 9 78.8 82.2 86. 1

MO M 5 • 8 6 S . 3 69 .

2

7 M . 2 78 . M 8 1.6 85.250 .0 60.5 68.0 73 . M 77 • M 8 1 • M 8M . 5

6 3 . 0 59.8 6 1 . J 7 3.0 76.8 80.7 84 . M

80 .0 57 .

9

66.7 7 8.9 76.8 80 . M 83.51 00 .0 58.9 65 .

2

7 0® 9 75.

8

79.5 82.0S 25 .0 .0 63.5 69 .

9

75.3 78.9 82.

1

160 .0 . 0 6 1.6 68.9 7M .0 78.1 8 1.7200 .0 « a 58 . R 67 .

2

72 . M 77.2 80 .

9

250 • 0 39 . 8 55 .

3

6 5.0 7 5 . M 75.9 79 .

9

3 1 5 .0 33.2 5 1.8 62.6 69.8 75 .

3

79 .

3

MOO .0 26. M M 6 .

3

59.0 67.3 7 3 o 5 78.0500 .0 22 .

2

M 1 .5 55 • 2 6 M ® 3 7 S o 6 76.

3

630 .o' 20.3 36.6 50 • M 60 . M 68 o 5 7 M . 2

800 . c 25.6 36.8 M 7 .

7

57.8 6 M ® 5 7 8.810 00 .0 23.8 3M . 2 MM . 5 5M ®6 60.

3

68 .

2

I 250 .0 2 8.0 3 1.0 M 1 . 6 5 1 .0 55.9 6M .01 6 0 U .0 20 .

3

28.9 39 . M M8.9 52.6 6 8.02000 .0 © 0 27 .

7

36 .

9

M6 • 9 50® 3 58.

3

2500 VC .0 . 0 . 0 .0 M8 .

9

.0

3 150 © 0 .0 .0 .0 .0 © 0 • o

MOCO "Vo .0 . 0 .0 .0 .0 .0

5000 .c e 0 .0 .0 .0 . 0 .06300 "•0

. .0 . 0 .0 ® 0 .0 .0

8000 .0 .0 . 0 .0 • 0 .0 .0

1 GOCO .0 • 0 .0 .0 © 0 « 0 .01 2500 .0 .0 .0 .0 .0 .0 .0

AWT Vo M2 .

8

55.8 6 M * M 7 S . 2 76.7 8 1.5L I N 59.5 72.6 80.

1

84.9 89.2 92.9 96.2

75

Page 82: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

APPENDIX C: Tabulation of Insertion Loss Measurements for Grazing Flowand Normal Acoustic Incidence

This appendix contains a tabulation of the one-third octave band,A-weighted, and overall insertion loss (dB re 20 yPa) measured for grazingflow and normal acoustic incidence over the wind speed range 0 m/sec< v<_ 12 m/sec for each of the windscreens shown in Figure 1. 'the

insertion loss was computed by subtracting the level measured with the

windscreen from the level measured without the windscreen on the microphone.It will be noted that the numbers generally are only a few tenths of a

decibel and that both positive and negative values were measured. ^hus

,

at some frequencies insertion gain, rather than loss, was measured.

76

Page 83: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table Cl One-Third Octave Band Insertion Loss (dB) for

Windscreen A(Grazing Flow - Normal Acoustic Incidence)

SPEED l M/SEe

)

OCT RAND 0 2 M 6 8 1 0

250 . 2 • 6 . 9 . 2 . 2 . M

3 1 5 . 1 . 7 . 9 . 2 . 2 « M

MCO . 1 . 8 1 . 1 . i . 1 . 6

SCO - . 1 . M . 7 1 .0 . 1

630 .0 . M . 7 • 0 -.2 .2

800 .0 .5 . 5 .0 • 0 e 2

i 0 0 0 1 . 3 . 6 • 1 . D

1250 .0 . 5 . 6 . i - . 1 . 1

1 600 • c . M . 7 .0 .0 .1

2000 • c . M .5 .0 .0 . 1

2500 ~ • o - — .3 . M .0 .0- . 1

3 1 50 .0 . 3 . 5 . 2 .0 • 2

M 0 0 0 • t .3 . M . 1 . 1 . 2

AWT .0 .5 . 7 .0 .0 . 2

L 1 N .0 . 7~

. 7 .0 .0 . 1

Table C2. - One-Third Octave Band Insertion Loss (dB) for

Windscreen B

(Grazing Flow - Normal Acoustic Incidence)

1/3 OCT RAND2503 1 5

MOO5006 3080010001 2501600200025003 150M000AWTL I N

0

. M

- • 1

O

t

2

1

2

0

1

0

1

0

0

0

2

0

I

SPEED ( M/5tr )

2 M 6

• M . M .2

• I • 1 • 2

.1 .2 .M

• 1 • 0 • 1

• 0 • 0 • o

• Q • 0 • 2

.0 - » 1 * o

.0 • l • o

. 1 .1 • 1

• 1 • o • 1

• 1 el • 1

.2 .2 .2

.2 .2 .2

• 1 *1 • 1

• 3 • 0 • 1

8

. 0

. 2

. 3

. 3

. 1

• 1

. 0

. 0

. 1

. 0

. 1

. 2

. 3

. 1

• 1

1 2

. 3

. 3

. 5

. 2

. 2

. I

. 0

. . 3

. 1

. 1

. 1

. 3

. 2

. 2

. 1

l 2

. 2

. 2

. 2

.0

« 1

. 1

. 0

. 1

.0

. 1

. 1

. 2

. M

. 1

. 0

77

Page 84: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table C3 . - One-Third Octave Band Insertion Loss (dB) forWindscreen C

(Grazing Flow - Normal Acoustic Incidence)

1/3 OCT BAND2503 1 5

MOO5006 308 0 G

1 000125 0

1 600200025003 1 50M 0 0 0

A AIT

L I N

SPEED l M/SEC >

M 6 8

.1 .1 .0

.1 -.1 -.1

.1 .1 .1

.3 .0 .1

.1 .0 .2

.1 .0 .2~ .2 ~ . 2 .0

. 0 .0 .0

.2 .2 .2

.0 .0 .1

• 0 • 0 • c

.0 .0 .0

. o . o . 0

.1 .0 .1

.2 .1 .1

Table C4 . - One-Third Octave Band Insertion Loss (dB) for

Windscreen D

(Grazing Flow - Normal Acoustic Incidence)

1/3 OCT BAND C

2 5 0 • . 2

3 15 ~ . 1

MOO "*250 0 • C

630 .

0

800 • 0

10 0 0 “ . 2

1250 .0

1600 • 1

2000 ".1

2500 -.1

3150 .0

M000 — *1

AWT .0LIN . 0

2

SPEED ( M/SEC

)

M 6 8 1 0

7 8

1 2

, 1

. 1

. 2

. 1

. 2

. 2

.0

. 2

• 2

. 1

.0

. 1

.0

. 1

. 1

1 2

. 1

. 1

. 3

. 1

. 2

. 2

- , 1

. 2

. 2

. 1

. 1

. 0

. 2

. 1

. 1

Page 85: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table C5. - One-Third Octave Band Insertion Loss (dB) for

Windscreen E

(Grazing Flow - Normal Acoustic Incidence)

SPEEDIM/SEC)1/3 OCT BAND 2 8 6 R 1 0 1 2

250 -a 2 • 1 .0 -a 1 a I a 3 a i

3 l 5 “a 1~ a 1

- a 2 -.2 “ a 1 a 3 - a 1

8 00 “ a 1- . 1

' - a ! .0 .0 a 3 . 0

500 ~ a 1 •o e I a 1 a 1 a 3 a 1

630 a 2 a 2 a 2 a 3 a 3 a 6 *a 8

800 a 2 a 1 a 0 a 1 a 1 a 8 a 2

1000 * u -a ! a 0 a 2 a 1 a 8. 2

1 2 5 G -a 1 .0 .0 a 0 a 2 a 8 a 2

1 600 "a 1 “a I “a l © l .0 a 2 .0

2000 “a 1“ a l

“ a 2 -a 1 .0 a 3 a 1

2500 “ a 1“ a 1

- .0 — .0 a 0 a 3 a 1“

3 150 -.2 .0 .0 .0 .0 a 2 a 1

H 0 00 a 1 a 0 .0 a 1 .0 - ,2 . 2

AWT .0 .0 .0 .0 • 1 a 3 a !

L I N • 0 a 3 .0 a 1 • 1 a 8 a 1

Table C6. - One-Third Octave Band Insertion Loss (dB) forWindscreen F.

(Grazing Flow - Normal Acoustic Incidence)

S P FED (P/SEC )

M 6 8

.1 .0-.1 -. 1

1/3 OCT P A MO

2503 1 5

8 CO500630800

1 OGf)

12 50I 600200025003 1508 0 0 0

AWTL I N

0 2

- . 2

-.3- . 3

- . 2

.0“ . 1

- . 1

"* 1

~ . 2“ .2" .2” .2_

. 1

- . 2

• 1— • 2

-•2 ~.3- . 3 - . 3

- • 1 .0

.2 .2

.0 .

0

-a t-.1

-. 1

- . 1

- . 2 -.1“ . 2

_. 2

“.2 “ .2"

. 2_

. 2—

• 1 • I

— • I— • 1

.2 “ . 1

1 - . 2

.0 .0

.2 .2

• C .0

1 1

“ . 1-

. 1

- . 1 - . 1

~ . 2 ~. 1

- . t~ .2

“. 2 . 0

” e I *"•I

- . 1 -.1

.o . o

10 12

-.2 *0- . 2

- . 2

.0

. 3

.0

.0a 0 a 0

-.1 - a 1

- . 1“ . i

~ o I « 1

.0 - a 2

- a 1- a !

a 0 - a 1

a 0 a C

79

(M

N

«

M

O

O

Page 86: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table C7, One-Third Octave Band Insertion Loss (dB) for

Windscreen G

(Grazing Flow - Normal Acoustic Incidence)

SPEED (M/SEC )

1/3 OCT BAND C 2 M 6 8 1 G 1 2

250 . 1 -.2 -.2 - .2 -. 2 ~.2 ~ . 2

3 1 5 . 2 . 3 . 3 . 3 , M . 3 . 3

MOO . 1 • 1 I - . 1 .0 2 ". 1

500 * 1 . 2 . 1 . 1 . I . 8 . 8

630 ~ . 2 -.2 -.2 .0 .0 .0

800 ~ . i .0 .0 . i • 1 .0 .0

8 000 © 0 ~ .0 . i .0 • 1“ . 1

12 5 0 . 0 ". 1 . 0 . 1 . 0 . 1 . 1

1 600 .0 .0 .0 .0 .0 .0 .0

2000 .0 .0 . 1 . I • I . 1 . 1

2500 • 0 .0 . t .0 . 1 a f— .0

3 1 50 • c .0 .0 .0 .0 .0 .2

M000 - . In n

• 0 “ . 1 © 0 © L • u © u

AWT .0 .0 • 0 .0 .0 . 8 .0

L I N .0 . M . t . i , I . S . i

Table C8 . - One-Third Octave Band Insertion Loss (dB) forWindscreen H

(Grazing Flow - Normal Acoustic Incidence)

1/3 OCT BAND 0 2

SPEED (M/SEC

)

M 6 B I 0 1 2

250 " . 5 " . M - -. 2 " . M “ . 2 - . 1 .5

3 1 5 . 3 . 3 • 5 .3 . 3 • 2 1 . 3

MOO ". 2 ~

. 2 -. 1

‘ .2 “ . ! .0 . 9

SOO .0 .G .0 • 0 © i .2 1 . 1

630 ~ . 2 • 0 -o2 “ .2 .0 .0 .9

800 .0 .0 1 .0 .0 .0 .8

I 000 .0 .0 .0 .0 . s .0 1 .0

1 250 ® is . 0 . 0 .0 . 0 * 1 1 . 0

I 600 .0 .0 .0 .0 .0 .0 • 8

2000 . 0 . 1 . 0 . 8 . 1 . 1 . 9

2500 .0 " .0 . 0 - .0 • 1 . 2 . 9

3 1 50 .0 .0 . 0 .c .0 . 2 . 9

M 000 • 0 .0 .0 1 1 .0 . 5

AWT .0 .0 .G .0 .0 . t . 9

L I M . 0 . 3 -. 0 .0 . I • 1 . 9

80

Page 87: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

Table C9 . - One-Third Octave Band Insertion Loss (dB) forWindscreen I

(Grazing Flow — Normal Acoustic Incidence)

SPEED « M/SEC )

1/3 OCT BAND 0 2 4 6

250 " . I .0 . 7 " . 1

3 1 5 . 3 o 3 l . 3 . 4

400 . 0 1 1 .

0

“ . I

500 • i . 2 ! . i • 2

630 .0 2 . 9 . 1

8 C 0 .0 .0 1 . 0 . 8

1 000 »

e

.0 1 . 0 . 8

1 2 5 0 • 0 . 1 1 . 0 . 1

8 600 .0 .0 . 9 .02000 • i « ! . 9 . 8

2500 . 0 . 2 o 9 . 2

3 l 50 .0 • 0 . 7 • 2

40Q0 • 0 .0 .5 .0AWT .0 . 1 I .0 . 1

L I N • 1 . 4 8 .0 . 8

Table CIO. - One-Third Octave Band Insertion Loss (dB) forWindscreen J

(Grazing Flow - Normal Acoustic Incidence)

OCT BAND 0 2

SPEED ( M/SEC )

4 6 8 1 0 1 2

250 1 . 2 . 6 . 4 . 5 . 3 •

3 1 5 . 3 . 2 . 8 .6 « 5 . 2 ©

400 • 1 . 3 • 6 .6 . 4 . I •

500 • ! .0 .5 .5 . 2 . 2 •

630 . 4 .5 . 7 .9 . 7 .5 •

809 “. I . 2 .5 .5 . 3 • 8 «

8 0 00 . ! . 2 . 6 . 5 . 3 . 3 •

1250 • 3 . 4 . 7 .6 • 6 . 4 •

1600 .0 .0 . 3 . 3 . 2 • 0 9

2 0 0 0 .2 . 2 • 6 .6 .5 . 3 •

2500 . ! . 1 . 4 .5 . 2 . 2 9

3 1 5C . 3 . 3 .5 .5 . 5 . 3 •

4000 . 3 . 3 . 4 .5 . 4 . 4 ©

AWT . 2 . 3 • 6 .6 . 4 . 3 •

L I N © 1 .5 . 6 .5 . 4 . 2 •

8 ]

3

2

2

2

4

2

2

4

0

3

!

3

4

3

8

Page 88: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision

NBS-114A (REV. 7-73)

U S. DEPT. OF COMM.

BIBLIOGRAPHIC DATASHEET

1. PUBLIC ATION OR REPORT NO.

NBSIR 79-1599

2. Gov’t AccessionNo.

3. Recipient’s Accession No.

4. TITLE AND SUBTITLE

Microphone Windscreen Performance

5. Publication Date

January 1979

6 . Performing Organization Code

7. AUTHOR(S)

Robert N. Hosier and Paul R. Donavan

8. Performing Organ. Report No.NBSIR 79-1599

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDSDEPARTMENT OF COMMERCEWASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

2004450

11. Contract/Grant No.

EPA-IAG-D7-41087

12. Sponsoring Organization Name and Complete Address (Street,City, State, ZIP)

Office of Noise Abatement and ControlU. S. Envi rTnmental Protection AgencyWashington, V ^ 20460

13. Type of Report & PeriodCoveredFinal

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

Measurements were made of the wind- induced noise and acoustic insertion loss of tenmicrophone windscreens. Eight of these were reticulated polyester spheres of varyingporosity. The other two were the metal cage type typically used in long term outdoornoise monitoring. The measurements were made under laboratory conditions for normaland grazing flow incidence at wind speeds up to 14 m/sec. The data show that thewindscreens are very different in the amount of wind- induced noise reduction theyprovide, with some achieving more than 25 dB. In general the foam windscreensprovided more wind- induced noise reduction than the cage windscreens; however, thecylindrical cage windscreen performed better than any of the foam windscreens for

normal flow incidence. The insertion loss measurements proved difficult to make be-cause of the small insertion losses encountered. However, data for grazing flow andnormal acoustic incidence show no strong velocity dependence for any of the windscreenstested. Examination of the wind- induced noise spectra provided significant insightinto the noise generating mechanisms associated with flow around a porous sphere.Effects of inflow turbulence, self-generated turbulence, mean flow, flow through thesphere, and flow incidence angle were identified. Test results are provided in theform of curves and tables for easy use in evaluating potential wind noise levels inoutdoor measurements.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons)

Acoustics; flow; insertion loss; microphone; porous sphere; sphere; spheres; windnoise; windscreen; windscreens; windscreen performance

18. AVAILABILITY fT Unlimited

For Official Distribution. Do Not Release to NTIS

Order From Sup. of Doc., U.S. Government Printing HficeWashington, D.f . 20402, SD Cat. No. Cl 3

Order F rom National Technical Information Service (NTIS)Springfield, Virginia 22151

19. SECURITY CLASS(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

81

22. Price

USCOMM-DC 29042-P74

Page 89: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision
Page 90: Microphone windscreen performance - NIST · NaHenaPBj,reanofStandards MAY151979 NBSIR79-1599 MICROPHONEWINDSCREEN PERFORMANCE RobertN.Hosier and PaulR.Donavan AcousticalEngineeringDivision