Micropbial cell5

4
Electricity Generation by Geobacter sulfurreducens Attached to Gold Electrodes Hanno Richter,* ,† Kevin McCarthy,* ,‡ Kelly P. Nevin, Jessica P. Johnson, Vincent M. Rotello,* ,† and Derek R. Lovley Depart ments of Micro biol ogy and Chemi stry, UniVersity of Massachusetts, Amherst, Massachusetts 01003 ReceiVed NoVember 6, 2007. In Final Form: Janua ry 8, 2008 The versatility of gold for electrode manufacture suggests that it could be an ideal material for some microbial fuel cell applications. However, previous studies have suggested that microorganisms that readily transfer electrons to graphite do not transfer electrons to gold. Investigations with Geobacter sulfurred ucens demonstrated that it could growon gol d anodesproducin g cur rent nea rlyas eff ec tiv elyas wit h graphite ano des . Cur rent produc tio n wasassoc iat ed with the development of G. sulfurreducens biofilms up to 40 µm thick. No current was produced if pilA, the gene for the structural protein of the conductive pili of G. sulfurredu cens, was deleted. The finding that gold is a suitable anode material for microbial fuel cells offers expanded possibilities for the construction of microbial fuel cells and the electrochemical analysis of microbe -electrode interactions. Introduction Microorganisms that produce electricity by oxidizing organic compounds with electron transfer to electrodes may be useful agents for current generation from waste organic matter and renewable biomass, as well as for sensors. 1-4 Graphite has typ ica llybeen themateri al of choi ce forthe cons tru cti on of anod es of micr obia l fuel cells. Howe ver, othe r conductiv e materials may be pref erabl e, eithe r becaus e they enhance elect ron trans fer between the microorganisms and the anode material or because they are better adapted to specific applications. For example, incorporation of manganese, iron, quinones, or neutral red in graphiteelect rodesincrease d the outp ut of micr obialfuel cells . 5,6 Gol d is a pot ential ly att rac tiv e anode mat eri al for some microbial fuel cell applications because it is highly conductive andbecaus e gol d pro vid es a hig h deg reeof ver sat ili ty forelect rod e manufacture. However, previous studies with Shewanella pu- trefaciens suggested that bare gold is a poor electrode material for the anode of microbial fuel cells. Current production with gold electrodes was low and increased 100-fold when the gold surface was coated with a surface-associated monolayer (SAM) of 11-mercapto-undecanoic acid, 7 even though the SAM would beexpectedto haveinsula tingproper ties . 8 These result s indicated that the gold surface was either toxic to the cells or otherwise poorly suited to interact with electron-transfer cell components. Redo x-ac tiv e prot eins , suchas cyto chro mes,may adso rb str ongl y to goldresult ing in denat uration and los s of thei r electron-transf er capabilities. 9 Gra phi te contains fun cti ona l gro ups , suc h as qui nones, tha t are simila r to those in humic sub stanc es, a nat ura l elect ron accept or for anaerobic resp irat ion in sedimentar y environments. 10,11 Although gold is highly conductive , it does not contain suc h fun cti ona l gro ups whi ch concei vably are important in the interaction between electron transport compo- nents and electrodes. However, S. putrefaci ens repr esen ts jus t one of a wid e dive rsi ty of microorganisms that might be employed in microbial fuel cells or in biosensors based on microbe -electrode interactions. For examp le, Geobacter species havemany poten tialadvantages over Shewanella species. Shewanella species only incompletely oxidize a limited range of organic acids to acetate, which is ine ffi cie nt because mos t of the ele ctr ons ava ilable in the ori ginal fuel remain in the acetate. 3,12 In contrast, Geobacter species can completely oxidize organic compounds to carbon dioxide with recovery of >90% of the electrons available in the fuels as electricity. 13-15 Shewanella species appear to transfer electrons to anodesvia rel ease of a sol ubl e molecule tha t acts asan ele ctr on shuttle, 12 whereas Geobacter spec ies est abli sh dire ct cont act with the anode surface and transfer electrons to the anode via one or more redox active proteins. 14,16,17 Geobacter species, or close relatives, are the primary organisms that colonize the surface of anodes harvesting electricity from aquatic sediments 13,18,19 and * Towhom corre spon denceshould be addre ssed.Phone: (413) 577- 4669 (H.R.); (413) 545- 2439 (V.M.R. ). Fax: (413) 577- 4660 (H.R.). E-mail: hrichter@mic robio.umass .edu (H.R.); kevind.mccar [email protected] m (K.M.); [email protected] (V.M.R.). Department of Microbiology. Department of Chemistry. (1) Shukla, A. K.; Suresh, P.; Berchmans, S.; Rahjendran, A. Curr. Science 2004, 87 , 455-468. (2) Rabaey, K.; Verstraete, W. Trends Biotechnol. 2005, 23, 291-8. (3) Lovley, D. R. Nat. ReV. Microbiol. 2006, 4, 497-508. (4) Seop, C. I.; Moon, H.; Bretschger, O.; Jang, J. K.; Park, H. I.; Nealson, K. H.; Kim, B. H. J. Microbiol. Biotechnol. 2006, 16 , 163-177. (5) Lowy, D. A.; Tender, L. M.; Zeikus, J. G.; Park, D. H.; Lovley, D. R. Biosens. Bioelectron. 2006, 21, 2058-63. (6) Park, D. H.; Zeikus, J. G. Appl. Microbiol. Biotechnol. 2002, 59, 58-61. (7) Crittenden, S. R.; Sund, C. J.; Sumner, J. J. Langmuir 2006, 22, 9473-6. (8) Boldt, F. M.; Baltes, N.; Borgwarth, K.; Heinze, J. Surf. Sci. 2005, 597 , 51-64. (9) Chen, X.; Ferrigno, R.; Yang, J.; Whitesides, G. M. Langmuir 2002, 18, 7009-7015. (10) Lovl ey, D. R.; Coates, J. D.; Blunt-Harri s, E. L.; Phil lips , E. J. P.; Woodward, J. C. Nature (Lett.) 1996, 382. (11) Lovley, D. R.; Holmes, D. E.; Nevin, K. P. Ad V. Microb. Physiol. 2004, 49, 219-286. (12 ) Lan thi er,M.; Gre gor y, K. B.;Lovl ey,D. R. FEMSMicrobi ol. Lett . 2008, 278, 29-35. (13) Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R. Science 2002, 295, 483-5. (14 ) Bond,D. R.;Lovl ey,D. R. Appl . EnViron. Microbiol. 2003, 69, 1548-55. (15) Nevin, K. P.; Covalla, S. F.; Johnson, J. P.; Woodard, T. L.; Jia, H.; Zhang, M.; Lovley, D. R. EnViron. Microbiol . 2008, submitted for publication. (16) Reguera, G.; Nevin, K. P.; Nicoll, J. S.; Covalla, S. F.; Woodard, T. L.; Lovl ey, D. R. Appl. EnViron. Microbiol. 2006, 72, 7345-8. (17) Holmes, D. E.; Chaudhuri, S. K.; Nevin, K. P.; Mehta, T.; Methe, B. A.; Liu , A.;Ward,J. E.;Wooda rd,T. L.;Webst er,J.; Lov ley , D. R. EnViron.Microbiol. 2006, 8, 1805-15. (18) Holmes, D. E.; Bond, D. R.; O’Neil, R. A.; Reimers, C. E.; Tender, L. R.; Lovley, D. R. Microb. Ecol. 2004, 48, 178-90. (19) Tender, L. M.; Reimers, C. E.; Stecher, H. A., 3rd; Holmes, D. E.; Bond, D. R.; Lowy, D. A.; Pilobello, K.; Fertig, S. J.; Lovley, D. R. Nat. Biotechnol. 2002, 20, 821-5. 10.1021/ la70 3469 y CCC: $40 .75 © xxxx America n Chemi cal Soci ety PAGE EST: 4 Published on Web 02/28/2008

Transcript of Micropbial cell5

8/7/2019 slidepdf.com | 522: Connection timed out

http://slidepdf.com/reader/full/micropbial-cell5 1/1

Error 522 Ray ID: 502505b27d1dcf30 • 2019-08-07 00:10:02UTC

Connection timed out

You

Browser

WorkingAshburn

Cloudflare

Workingslidepdf.com

Host

Error

What happened?

The initial connection between Cloudflare's network and the origin web server timed out. As a result, the web pagecan not be displayed.

What can I do?

If you're a visitor of this website:

Please try again in a few minutes.

If you're the owner of this website:

Contact your hosting provider letting them know your web server is not completing requests. An Error 522 meansthat the request was able to connect to your web server, but that the request didn't finish. The most likely cause isthat something on your server is hogging resources. Additional troubleshooting information here.

Cloudflare Ray ID: 502505b27d1dcf30 • Your IP: 54.39.129.97 • Performance & security by Cloudflare