Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische...

100
Microkinetic Modeling Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Berlin, January 8, 2010 Modern Methods in Heterogeneous Catalysis Lectures at Fritz-Haber-Institute

Transcript of Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische...

Page 1: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Microkinetic ModelingMicrokinetic Modeling

Cornelia Breitkopf

Technische Universität München

Institut für Technische Chemie

Berlin, January 8, 2010Berlin, January 8, 2010

Modern Methods in Heterogeneous Catalysis

Lectures at Fritz-Haber-Institute

Page 2: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Introduction

• Traditional approach

introduce reactants in a black box (catalytic reactor)

obtain macroscopic kinetic rate constants

use rate equation for reactor design

• New approachfeed “new-age” black box (computer) with rate constants of

elementary steps in catalytic cycle

obtain reaction rate, selectivity + information on each step

(irreversible, reversible, kinetically significant, rate determining, information about intermediates)

Page 3: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Microkinetic analysis is a different approach !

Traditional approach

Page 4: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Outline

• What is microkinetic analysis ?

• Which parameters and theories are needed ?– How to derive BrØnsted-Evans-Polanyi and volcano plots ?– How to apply Sabatier principle and bond energy descriptors ?– What are “Ying-Yang” models ?

• Which informative experiments exist ?• How to build a microkinetic model ?

• Literature and examples for self study

Page 5: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Why Kinetic Studies ?

• Industrial catalysis– Major aspect: effective catalytic processes

Need for efficient approaches to enhance development

• Development and optimization of catalytic processes– Chemical intuition and experience– Supplement with quantitative analysis

Page 6: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Aspects of kinetics studies

• Kinetics studies for design purposes• Kinetics studies of mechanistic details• Kinetics as consequence of a reaction mechanism

Page 7: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

1. Kinetics studies for design purposes

• Results of experimental studies are summarized in the form of an empirical kinetic expression– Design of chemical reactors– Quality control in catalyst production– Comparison of different brands of catalysts– Studies of deactivation– Studies of poisoning of catalysts

Page 8: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

2. Kinetics studies of mechanistic details

• Experimental kinetic study used to determine details in the mechanism– Problem:

Different models may fit data equally well

• Mechanistic considerations as guidance for kinetic studies

Page 9: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

3. Kinetics studies as a consequence of a reaction mechanism

• Deduction of kinetics from a proposed reaction mechanism

• Historically macroscopic descriptions of the reaction kinetics were used

• Today, detailed scientific information available– Guidance for catalytic reaction synthesis at

various levels of detail– Hierarchical studies

Page 10: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Levels of Catalytic Reaction Synthesis

Page 11: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Study of reaction mechanisms

Experiments on

well-defined systems

- Spectroscopic studies on single crystal surfaces

- Structure and reactivity of well-defined catalyst models

Detailed calculations

for individual molecules

and intermediates

- Electron structure calculations including calculations for transition states

- Monte Carlo (Kinetic MC)

Page 12: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Key Problems of Kinetic Studies

Page 13: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Key problems for kinetic studies

• Deduction of kinetics from net reaction is not possible

Page 14: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Key problems for kinetic studies

• Analogy may misleading

Page 15: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Key problems for kinetic studies

• Simple kinetics simple mechanism

Page 16: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Key problems for kinetic studies

• Different reaction mechanisms may predict the same overall reaction rate; unable to distinguish between the two mechanisms

Page 17: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Microkinetic Analysis

Page 18: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Microkinetics

• Reaction kinetic analysis that attempt to incorporate into the kinetic model the basic surface chemistry involved in the catalytic reaction

• The kinetic model is based on a description of the catalytic process in terms of information and /or assumptions about the active sites and the nature of elementary steps that comprise the reaction scheme.

Page 19: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Microkinetics

• Convenient tool for the consolidation of fundamental information about a catalytic process and for extrapolation of this information to other conditions or catalysts involving related reactants, intermediates and products.

• Use of kinetic model for description of– Reaction kinetic data– Spectroscopic observations– Microcalorimetry and TPD

Page 20: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Microkinetic Analysis

• Combination of available experimental data, theoretical principles and appropriate correlations relevant to the catalytic process in a quantitative fashion

• Starting point is the formulation of the elementary chemical reaction steps that capture the essential surface chemistry

• Working tool that must be adapted continually to new results from experiments

Page 21: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

MA – what is different ?

• No initial assumptions !– Which steps of the mechanism are kinetically

significant ?– Which surface species are most abundant ?

• Estimations of the rates of elementary reactions and surface coverages are a consequence of the analysis not a basis !

• Beyond the fit of steady-state reaction kinetic data

Page 22: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

What delivers MA ?

• Expected to describe experimental data from– Steady-state reaction kinetic data +– Data from related experimental studies

• TPD• Isotope-tracer studies• Spectroscopic studies

• Feature: usage of physical and chemical parameters that can be measured independently or estimated by theory

Page 23: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Reaction Mechanism

• Net reaction A2 + 2 B 2 AB

consists of a number of steps

A2 + B A2B

A2B + B 2 AB

• Concept of elementary steps: further subdivision and introduction of hypothetical intermediates

A2 + B A2B

A2B + B A2B2

A2B2 2 AB

Page 24: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Elementary Reactions

• A step in a reaction mechanism is elementary if it is the most detailed, sensible description of the step.

• A step which consists of a sequence of two or more elementary steps is a composite step.

• What makes a step in a reaction mechanism elementary ?– depends on available information

The key feature of a mechanistic kinetic model is that it is reasonable, consistent with known data and amenable to analysis.

Page 25: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Langmuir-Hinshelwood mechanisms

• Simplest class of reaction mechanisms• Three types of reaction steps

– Adsorption of molecules from gas phase– Reaction between adsorbed molecules– Desorption of adsorbed molecules

• Neglect of surface diffusion (surface diffusion is fast !)• Validity of LH models has been subject of long and

heated discussions

Page 26: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Arguments for LH mechanisms

• Adequate description of essential physics– Description of adsorbates competing for

adsorption sites based on thermodynamic stability– Limits for r 0 and p 0 are qualitatively correct

• Many catalytic reactions happen to proceed at high coverages by intermediates. At these conditions the assumptions in the LH treatment are more or less correct.

• Different kinetic expressions results in the same fits.

Page 27: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Complications in Kinetic Studies

• Kinetic equations are non-linear– Elementary steps are not necessarily first-order.

• Inerts– Inert surface species need to be treated.

• Non-consecutive steps• Elusive intermediates

– The mechanism may contain intermediates, which have not been observed experimentally.

• Undetectable steps– Order of slow and fast steps !

• Dead ends

Page 28: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Parameters and Theory

Page 29: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Parameters for MA

– Sticking coefficients– Surface bond energies– Preexponential factors for surface reactions– Activation energies for surface reactions– Surface bonding geometries– Active site densities and ensemble sizes

Page 30: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Theory behind the parameters

• Collision and transition-state theory• Molecular orbital correlations

– Bond-order-conservation– Electronegativity scales– Drago-Wayland correlations– Proton affinity and ionization potential correlations

• Activation-energy-bond-strength correlations– Evans-Polanyi-correlation (volcano, Sabatier)

• Bond-energy-desciptors

Page 31: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Concepts

- A fundamental principle in microkinetic analysis is the use of kinetic parameters in the rate expressions that have physical meaning and, as much as possible, that can be estimated theoretically or experimentally.

- Framework for quantitative interpretation, generalization, and extrapolation of experimental data and theoretical concepts for catalytic processes

Page 32: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

- Rate for a gas-phase bimolecular reaction

Collision Theory (CT)

BAb

a

AB

bABsAB nn

Tk

ETkPr

exp

82

energyactivationE

factorstericP

massreduced

ondistributivelocityBoltzmannMaxwellfromvelocityrelativeaverageTk

factorcollision

a

s

AB

AB

b

AB

...

...

...

...8

...

Page 33: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

- Bimolecular rate constant

- Preexponential factor

- Example: with Ps 1 and estimate of AB

upper limit for preexponential factor

Collision Theory

Tk

ETkPk

b

a

AB

bABsAB exp

82

AB

bABsAB

TkPA

82

Page 34: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

CT- Bimolecular surface reaction

• Modification to represent bimolecular reactions between mobile species on surfaces

BAb

a

AB

bABsAB Tk

ETkPr

exp

22

ionsconcentratsurface

velocityrelativeaverage ldimensionatwoTk

BA

AB

b

...

...2

,

Page 35: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

CT- Adsorption processes

• Use for definition of rate constants for adsorption processes in terms of the number of gas-phase molecules colliding with a unit surface area Fi

– Example: with (sticking coefficient) 1 upper limit for preexponential factor and rate constant for adsorption

Tkm

fTPfTFr

BA

iiA

2

)()()()(

Page 36: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Transition-State Theory (TS)

• Incorporation of details of molecular structure• Critical assumption: equilibrium between reactants and

activated complex and products• Bimolecular gas-phase reaction

A + B AB# C + D• Potential energy diagram as multidimensional surface • Definition of a reaction coordinate

Page 37: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Transition-State Theory

• Ideal gas equilibrium constant for the activated complex AB#

• Rate of chemical reaction

BA

AB

nn

nK

##

BAb

AB nnKh

Tkr #

constantsPlanckh

factorfrequencyh

Tk

ionsconcentratn

b

i

´...

...

...

Page 38: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

TS Theory

• Macroscopic formulation of TS is obtained by writing K# in terms of standard entropy, S0#, and enthalpy, H0# changes

• Microscopic formulation of TS is obtained by writing K# in terms of molecular partition functions Qi

BAbb

bAB nn

Tk

H

k

S

h

Tkr

#0#0

expexp

BAbBA

ABbAB nn

Tk

E

QQ

Q

h

Tkr

#0

exp#

Page 39: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

TS Theory

• Molecular partition function for a gas-phase species is a product of contributions from translational, rotational and vibrational degrees of freedom

vibirotitransii qqqQ ,,,

3

2/3

,

)2(

h

Tkmq bi

transi

)(8

2

2

, moleculelinearh

TkIq

r

biroti

j

b

ijvibi

Tk

hq

exp1

1,

vibrationof

normalofsfrequencie...ij

numbersymmetryrotational...r

inertiaofmoment...iI

modes

Page 40: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

TS Theory

• Order-of-magnitude estimates

kBT/h = 1013 s-1

qi,trans = 5*108 cm-1 (per degree of translational freedom)

qi,rot = 10 (per degree of rotational freedom)

qi,vib = 1 (per degree of vibrational freedom)

BAbBA

ABbAB nn

Tk

E

QQ

Q

h

Tkr

#0

exp#

Page 41: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

TS – Adsorption processes

1) A(g) A# A*

• Rate of reaction for an activated complex of complete surface mobility

A

bgA

AbA n

Tk

E

Q

Q

h

Tkr

#0

exp#

Page 42: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

TS – Adsorption processes

2) A(g) + * A# A*

• Rate of reaction for an immobile activated complex

*#0

exp# A

bgA

AbA n

Tk

E

Q

Q

h

Tkr

vArA

sat

AqqQ ###

Page 43: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

TS – Desorption processes

A* A# A(g)

• Rate of desorption

surfacetheonAspecies

ofionconcentratA ...

AbA

Abd Tk

E

Q

Q

h

Tkr

#0

exp*

#

1*

#

A

A

Q

Q

Ab

bd Tk

E

h

Tkr

#0

exp sh

Tkb /1013

Page 44: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

TS – Preexponential Factors Estimates

Page 45: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

TS – Preexponential Factors Estimates

Page 46: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Estimates for Activation Energies

• Rate constant = f (A ; EA)

• EA estimation difficult

1) Empirical correlations for EA from heats of reaction

– Bond-order conservation (BOC) by Shustorovich

A2 A* + A*

nMetalAAA EDE2

32

atomsmetalnwith

siteonAofstrengthadsorptionE

bondAAofstrengthD

adsorptiondissforenergyactE

nMetalA

A

A

*...

...

.....

2

Page 47: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Estimates for Activation Energies

2) Conversion of elementary steps into families of reactions

- especially for large mechanisms where limited experimental data are available

- example: reaction of a paraffin over a metal surface including hydrogenation and

dehydrogenation steps

Evans-Polanyi correlation

.)1(

.

0

0

endothHEE

exothHEE

iiA

iiA

stepelementaryi

formationofheatH

family the for

constantsPolanyiEvansE

i

...

...

...,0

Page 48: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Volcano curves

• One of the most fundamental concepts in heterogeneous catalysis is the volcano curve

• Empirically established:

activity of catalysts = f ( parameter relating to the ability of the catalyst surface to form chemical bonds to reactants, reaction intermediates, or products)

• Guidelines in the search for new catalysts

• Problem:

Which parameters determine the catalytic activity ?

Page 49: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Volcano curves

• Which parameters ?• activity = f ( electronic properties )

• activity = f ( bond energies )• Bond energies have been derived for bulk crystalline

structures (carbides, sulfides)*, oxide properties**, various atomic or molecular chemisorption energies***

• Which is the most relevant energy ?

* J. Catal. 216 (2003) 63.** Catal. Lett. 8 (1991) 175.*** J. Catal. 50 (1977) 228.

Page 50: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Volcano curves

• Generally many volcano curves are plotted as function of a bulk heat of formation – only bulk thermo-chemical data are widely available

• Need for databases of relevant surface thermo-chemical data

• Concepts for describing activation energies – BrØnsted-Evans-Polanyi (BEP) relation

Page 51: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

BrØnsted-Evans-Polanyi

• BEP:

Activation energy = linear function of reaction energy• Background: quantum-chemical calculations

• Interesting outcome after extensive DFT calculations

Classes of similar reactions follow the same “universal” relationship*

* J. Catal. 209 (2002) 275.

Page 52: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

• v

J. Catal. 209 (2002) 275.

This linear BEP correlation in a number of cases leads directly tovolcano curves where the fundamental parameter is the dissociative chemisorption energy ofthe key reactant.

BrØnsted-Evans-Polanyi

Page 53: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

J. Catal. 209 (2002) 275.

Case studies:

(1) A2 + 2* 2 A*(2) A* + B AB + *

- A2 binds weakly coverage negligible- (2) may involve several elementary steps including adsorption of B- approximation: negligible coverage of B

Industrial examples:Ammonia synthesis A = N B = 3/2 H2

BrØnsted-Evans-Polanyi

Page 54: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

BrØnsted-Evans-Polanyi

* J. Catal. 209 (2002) 275.

Page 55: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

BrØnsted-Evans-Polanyi

* J. Catal. 209 (2002) 275.

Page 56: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

BrØnsted-Evans-Polanyi

* J. Catal. 209 (2002) 275.

Page 57: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Sabatier principleP. Sabatier, Berichte der Deutschen Chem. Gesellschaft 44 (1911) 1984.

• Significant step in its time toward a rational understanding of catalysis

• Definition: maximum rate will be achieved by a catalyst whose combination with reactants is of intermediate stability to be effectively active

• Rephrase: an optimal heterogeneous catalyst provides neither too weak nor too strong interactions of its surface with the reaction partners in the rate determining step*

• application to design of catalysts by means of quantitative description of interaction strengths - BED

* J. Catal. 216 (2003) 63.

Page 58: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

BrØnsted-Evans-Polanyi - BEP

• Empirical knowledge of catalysis and catalysts is enormous Handbook of Heterogeneous Catalysis

• Pd, Pt-Rh NO removal• Co, Fe, Ru Fischer-Tropsch catalysts• Pt, Pd, Ag Oxidation

• Application to activation of diatomic molecule

N2 + 3 H2 2 NH3

n CO + (2n+1) H2 CnH2n+2 + n H2O

…..NO activation

…..O2 activation

* J. Catal. 209 (2002) 275.

Page 59: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

BEP

• Two main parts: dissociation of reacting molecules

removal of dissociation products

• Rate of dissociation is determined by activation barrier for dissociation Ea

• Rate of product removal is given by stability E of surface intermediates

* J. Catal. 209 (2002) 275.

Page 60: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

BEP

* J. Catal. 209 (2002) 275.

fundamental Bronsted-Evans-Polanyicorrelation

Page 61: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

BEP

• Questions– Why is the relationship between Ea and E linear ?– Why is it structure-dependent ?– Why is it adsorbate-independent ?

• Answers– For a given metal surface, the transition state structures are

essentially independent of the molecule and the metal considered

– Transition states do depend on local structure– Transition states are similar for different reactants

* J. Catal. 209 (2002) 275.

Page 62: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

BED – bond energy descriptors

• Application of bond-energy concepts• Descriptors for chemical interactions between X = O,

C, H and metals of the transition state rows of PSE• “Yin-Yang” method

* J. Catal. 216 (2003) 63.

Total energy per unit cellof the bulk compound

Energy of the same unit cellwith atoms X removed

Energy of the same unit cellwith all atoms except X removed

Nearest neighboures

Page 63: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

BED – bond energy descriptors

• Application to LH-mechanisms for adsorption of oxygen, sulfur, ethene

• Description of hydrogenation of ethene, benzene, HDS of DBT, alloying to predict matching effects

* J. Catal. 216 (2003) 63.

Page 64: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Consistency of the Model

1) Stoichiometric consistency

reactants products :

reactants, intermediates have to be formed and consumed to form products

2) Thermodynamic consistency

If two or more different sequences lead from reactants to products, these sequences must describe the same gas-phase

thermodynamics.

Page 65: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Thermodynamic Consistency

• Since the thermodynamic properties of the reactants and products are known, it is essential to ensure that the kinetic model is build so that it is consistent with these properties.

• Depending on how the model is parameterized (e.g. in terms of ki,for and Ki,eq, or in terms of ki,rev and Ki,eq), one of the previous equations of thermodynamic consistency must be used for each linear combination of steps that leads to an overall stoichiometric reaction.

Page 66: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Informative Experiments

Page 67: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Experimental Techniques

How can information from these techniques be used in

microkinetic analysis ?- Physical techniques bulk structure, surface area,

pore structure- Spectroscopic studies probe of composition and

morphology of the surface

- Kinetic & therm. studies probe catalytic properties of the surface; quantification of kinetic parameters

Page 68: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.
Page 69: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

X-ray Diffraction

- Crystal structure determines the coordination of the various catalyst components and bond distances between elements surface structure and nature of active sites

- Measurement of average particle sizes with help of Scherrer equation structure-sensitive behaviour

- Analysis of peak shapes can be used to probe the size of crystallites particle size distribution

Page 70: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Photoelectron Spectroscopy - XPS

- Quantitative analysis of surface composition

! Surface and bulk composition may be different

- Information about surface oxidation state

- Use of treatment chamber – quantification of surface coverage by a particular species

- UPS: probe of valence levels of the catalyst surface

Page 71: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Infrared Spectroscopy

- Probe for vibrational properties of the catalyst surface groups

- Example: O-H stretching vibration– Intensity of O-H band in the IR spectrum provides a

measure of the surface hydroxyl concentration depending on the catalyst treatment

– Position of O-H band gives information about the nature of the hydroxyl group

Page 72: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Building a Microkinetic Model

Page 73: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Building a Microkinetic Model

• Build a set of elementary reactions which reflect all experimental and theoretical information

• Calculate for each reaction the thermodynamics

(for all gaseous species and all adsorbed species)

• Choose material balance of an appropriate reactor and characterize in and out flows

Tk

H

k

S

k

kK

B

i

B

i

revi

forieqi

00

,

,, expexp

Page 74: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Reactor Models

• General types of ideal reactors– Batch reactor– Continuous-flow stirred tank reactor (CSTR)– Plug flow reactor (PFR)

• Typical characteristics of reactors

– Batch: reactor volume VR and holding time t

– Flow: reactor volume VR and space time

Page 75: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Reactor Models in MA

• For catalytic reactions the space time may be replaced by P, defined as number of catalytic sites in the reactor, SR, divided by the molecular flow rate of feed to the reactor, F

• Material balance for species i in a general flow reactor is given by

dt

dNFRF i

iii0

reactorinispeciesofnumberN

ispeciesofproductionofrateR

reactorofoutflowF

reactorinflowF

i

i

i

i

...

...

...

...0

Page 76: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Reactor Models in MA

• Batch reactor

with I as turnover frequency (number of reaction events per active site per second)

• CSTR

• PFR

iRiRi SrV

dt

dN

iRiRii SrVFF 0

RiRiii SddVrFF 0

Page 77: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Microkinetic Analysis

Combination of available experimental data, theoretical principles and appropriate correlations relevant to the catalytic process in a quantitative fashion

Page 78: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.
Page 79: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Way down South in the land of cottonWhere good mints juleps are not forgottenAn old farmer sits on his plantationThinking up problems to astound the nationLindemann and Hinshelwood can stand it no moreWhile Smith and Carberry have run for the doorNow there is one as he told it to meAnd I give it to you, completely for freeWe know kinetics is a staid sort of sportIf reaction order is all there´s to reportSo we´ve studied about reactor designIn detail and elegance quite so fineMixing models have been disussedWhere proper equations are a mustAge distributions become important hereAn intricate analysis, it is clearNow this is the question to give you fitsAn excellent chance to test your witsOf these distributions there are many it´s sureDerived from a theory assuredly most pure

Page 80: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Residence time, internal, and exit ageAll we owe to Danckwerts, that clever sageWhat are they, please, a clear explanationCombining words with an appropriate equationRelationships between them are almost horrendousA discussion of this would be simply tremendousWhen you´ve written all this consider you´re doneNow wasn´t that all just good clean funIf you did what was asked, and that I hopeThen with chemical reactors you´re able to copeOne final thing I must now sayOf the light of knowledge a final rayReaction kinetics is in a messIn spite of Eyring and ArrheniusAlas, was it ever thus so

The more we learn, the less we know !

John B. Butt

Page 81: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Literature

R.D. Cortright, J.A. Dumesic„Kinetics of Heterogeneous Catalytic Reactions: Analysis of Reaction Schemes“ in: Adv. Catal. 46 (2001) 161-264.

J.A. Dumesic, D.F. Rudd, L.M. Aparicio, J.E. Rekoske„The Microkinetics of Heterogeneous Catalysis“ACS, Washington 1993.

P. Stoltze„Microkinetic simulation of catalytic reactions“in: Progr. Surf. Sci. 65 (2000) 65-150.

O. HinrichsenDechema-Kurs “Angewandte Heterogene Katalyse”, Bochum 2001.

Page 82: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Research Topic task started on Wed Dec 23, 2009 at 8:13 AM

4 Research Topic candidates were identified in CAPLUS and MEDLINE. using the phrase "microkinetic modeling and heterogeneous catalysis"

33 references were found containing both of the concepts "microkinetic modeling" and "heterogeneous catalysis".

-First-Principles Modeling of Coverage-Dependent Rates of Catalytic Oxidations. Schneider, William F. Abstracts, 38th Great Lakes Regional Meeting of the American Chemical Society, Chicago, IL, United States, May 13-16 (2009).-A C1 microkinetic model for methane conversion to syngas on Rh/Al2O3. Maestri, Matteo; Vlachos, Dionisios G.; Beretta, Alessandra; Groppi, Gianpiero; Tronconi, Enrico. AIChE Journal (2009), 55(4), 993-1008. -Heterogeneous catalysis for hydrogen production and purification: First-principles, experiments, and microkinetic modeling. Mavrikakis, Manos. Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, March 22-26, 2009 (2009),

for the latest literature search please contact:[email protected]

Page 83: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Example

Page 84: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Methane Oxidation by Mo/V-Oxides

M.D. Amiridis,J.E. Rekoske, J.A. Dumesic, D.F. Rudd, N.D.Spencer, C.J. Peireira. AIChE J. 37 (1991) 87.

Development of a microkinetic model of the partial oxidation of methane over MoO3-SiO2 and V2O5- SiO2

catalysts

Problem: limited data availableStart : seek of experimental data and theoretical concepts from related or analogous catalytic systems

Page 85: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

…continued

Aim is to reproduce the kinetic data for methane partial oxidation

CH4 CH3OH, HCHO, CO, CO2, H2O

which includes also independent kinetic data for these subsequent partial oxidations

CH3OH HCHO, CO, CO2, H2O HCHO CO, CO2, H2O CO CO2

Page 86: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Macrokinetic analysis of the problem

- Kinetic investigations showed quantitative differences in the performances of MoO3-SiO2 and V2O5-SiO2

catalysts- Selectivity to CO2 at low CH4 conversion was zero

for the V-catalyst; for the Mo-catalyst it was between 10-20 %

- CO2 is a direct product of methane oxidation over Mo-catalyst and a secondary over V-catalyst

- Need of two pathways to CO2 to describe both catalysts

Page 87: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Macrokinetic analysis of the problem

- Addition of sodium leads to decrease in conversion level and drop in the selectivity to HCHO for both catalysts- Effect to be analyzed by semiempirical MO

calculationsd-band characteristics:

- empty, to reduce CO2 formation- located at sufficient low energy to accept

electrons during methane activation to form methoxy and hydroxyl surface species

- tetrahedral coordination for high conversion

Page 88: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Development of the model

Oxidation of CO

- Kinetic investigations on V-catalyst- @ 733 K reaction is first order in CO and zero order

in oxygen- Activation energy in T: 673-773 K is 25.2 kcal/mol

Page 89: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Development of the model

Oxidation of HCHO

Kinetic investigations on Mo-catalyst @ 600-925 K

- CO is principal product with small amounts of CO2 at higher T

- Kinetic investigations on V-catalyst @ 500-900 K- CO production passes through a maximum near 800 K

and CO2 production increases monotonically with T

- IR data

Page 90: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Development of the model

Oxidation of CH3OH

- Catalytic activity of Mo-catalyst starts at 500 K with

complete conversion at 700 K- Methoxy species (IR, EPR)

Page 91: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Development of the model

Oxidation of CH4

Two possible ways of methane adsorption on the surface

1) initial formation of a precursor state on the surface and consecutive dissociation into methoxy- and hydroxyl groups2) activation of surface Oxygen to O- and consecutive dissociative adsorption of methane

Page 92: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Development of the model

Mechanism as combination of all steps

Page 93: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Development of the model

• Combined consideration of the oxidations of carbon monoxide, formaldehyde, methanol, and methane

• Agreement with available literature

• No assumptions about the existence of rate-determining steps or most abundant surface intermediates

• All steps reversible; two pathways for CO2 formation

Page 94: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Tk

H

k

S

k

kK

B

i

B

i

revi

forieqi

00

,

,, expexp

Page 95: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Calibration of the model

Estimation of preexp. factors

Estimation of H for each elementary step+ additional use of Evans-Polanyi correl.

Estimation of bond strength (constrained to physically reasonable limits)

Page 96: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Comparison of Experiment and Model

Page 97: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Comparison of Experiment and Model

Agreement of model and experimental data for different temperatures and different experimental conditions

Page 98: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Active Steps during CH4 partial oxidation

Page 99: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Molecular Orbital Studies

Coordination number affects the electronic structure of transition metal oxides

Major effect of cation coordination is the energy of the d bands

The number of d-orbitals with high energy number increases with coordination

Page 100: Microkinetic Modeling Cornelia Breitkopf Technische Universität München Institut für Technische Chemie Berlin, January 8, 2010 Modern Methods in Heterogeneous.

Analysis of Adsorption