Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D....

45
March 2010 V. Hessel [email protected] 1 Institut für Mikrotechnik Mainz GmbH Directorate Chemical Milli and Micro Process Technologies 2 Eindhoven University of Technology Department of Chemical Engineering and Chemistry 3 Technische Universität Darmstadt Technische Chemie / Cluster of Excellence Smart Interfaces Limburg Horhausen Mainz Eindhoven Darmstadt 22th March 2010 – CPAC Satellite Workshop, Rome Micro Process Technology for Holistic Process Intensification - From Ex-Ante Cost/Eco-Efficiency Considerations via Scaling Out to Novel Process Windows

Transcript of Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D....

Page 1: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

V. Hessel [email protected] Institut für Mikrotechnik Mainz GmbHDirectorate Chemical Milli and Micro Process Technologies

2 Eindhoven University of TechnologyDepartment of Chemical Engineering and Chemistry

3 Technische Universität DarmstadtTechnische Chemie / Cluster of Excellence Smart Interfaces

Limburg Horhausen Mainz Eindhoven Darmstadt

22th March 2010 – CPAC Satellite Workshop, Rome

Micro Process Technology for Holistic Process Intensification

- From Ex-Ante Cost/Eco-Efficiency Considerations via Scaling Out to Novel Process Windows

Page 2: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

GATEWAYS STAND FOR OPENNESSAND ENTRANCE INTO NEW WORLDS

Miyajima Torii – Miyajima Island, next to Hiroshima

Torii is commonly found at the entrance or within a Shinto shrine, where it symbolically marks the transition from the sacred to the profane

Page 3: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

‘SYNFLOW’

„Changing customer needs“

„More fast and flexible future production strategies“

„New, intensified process and plant concepts forspeeding up market penetration, for enhancing the

product life-cycle and improving sustainable production“

„Develop new production concepts, new start-up and shut-down strategies“

NEW HORIZONS – FUTURE FACTORY CONCEPTS

„Exploit the full potential of micro process technologies“

NMP Large ScaleEU Projects, started 2009-2010

NMP Quests – European Strategy

Page 4: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

FIVE PRIME DEVELOPMENT ISSUES & SUCCESS FACTORS

FABRICATIONCATALYSTS

REACTORS

PLANTS

PROCESSESOH

OH

OH

OH

COOHKHCO3 (aq)

Volume: ~17 Mio €; funding: 11.0 Mio €, 30% industry15 partners – Coordinator: IMM

Container Platforms (‚Fence-to-Fence‘)Least-Cost-Investment Plants

• Sugar oxidation hydrogenation (Abo Akademi)• Epoxidation (Mythen)• Biodiesel production (Chemtex)• Ammonia production (ITI Energy)• Polymer chemistry reaction 1 (Evonik-Degussa)• Polymer chemistry reaction 2 (Evonik-Degussa)

Page 5: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010S. Hübschmann, D. Kralisch, V. Hessel, U. Krtschil, C. Kompter Chem. Eng. Technol. 32, 11 (2009) 1757-1765.

“Early bird" – ex-ante

EARLY BIRD MEASURING RODS –DO NOT DECIDE TOO LATE

Free

dom

of c

hoic

e, k

now

ledg

e

R & D Scale up Production

Application of decision support and optimisation tools

KnowledgeCosts & Sustainability

Degree of freedomApparatus & Processing

Stage of development

Simplified Life-Cycleand Cost Analysis(SCLA)

“Do not lock the stable door after the horse has bolted"

Process intensification: New processes & plants with step-change performance shift

Page 6: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

SOME PI CRITERIA- HIERARCHICALLY GROUPED

“Be holistic"

Selectivity

ProductivityEnergy

Cost (cap/op)

Price (product)

Flexibility

Footprint –Land use

Emissions

ToxicitySafety – Plant operational time

Depreciation

Society / Environmental

Company / Economy

Plant / Process

Reaction / ReactorReactivity

Transport – use of local feedstock

Page 7: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

“Be holistic"

V. Hessel Chem. Eng. Technol. 32, 11 (2009) 1655-1681.

BE HOLISTIC – HAND-IN-HAND DEVELOPMENT OF REACTOR DESIGN AND CHEMISTRY

Maximise transport

Maximise kinetics

Check ex-ante

Previous New, COPIRIDE

Page 8: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

µ-Mixing

FASTNESS OF REACTIONS

µ-Heat exchange

Met

al/h

alog

en e

xcha

nge,

G

rigna

rd k

eton

ead

ditio

n

Low

-T G

rigna

rd

Nitr

atio

ns,

pept

ide

coup

lings

SN2

reac

tions

10-2 10-1 1 10 100 1000 10,000

Proc

ess

prot

ocl

times

in o

rgan

ic

text

book

s

Man

y, m

any

reac

tions

Intrinsic chemistry * Effective chemistry

* from: Schwalbe, S., Kursawe, A., Sommer, J. Chem. Eng. Tech. 28, 4 (2005) 408-419

conv-Mixing

conv-Heat exchange

MCPT: MASS & HEAT TRANSFERNPW: KINETICS

Intensified chemistry

Mos

t rea

ctio

ns

LONZA-class A (8%) LONZA-class B (9%) ‘LONZA-class D’ (81%)

Roberge, D.M., Ducry, L., et al. Chem. Eng. Tech. 28, 3 (2005) 318-323

Time [s]

Page 9: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

T. Razzaq, T. N. Glasnov, C. O. Kappe, Eur. J. Org. Chem. 2009, 1321–1325.

Page 10: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

V. Hessel Chem. Eng. Technol. 32, 11 (2009) 1655-1681.

NOVEL PROCESS WINDOWS

German NPW Research Cluster: 7 projects

Page 11: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

EARLY LITERATURE REVIEWS

High temperature

High pressure

Supercritical fluids

Ultrasound

Plasma

Microwaves

Page 12: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Page 13: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Comparable yields were obtained for the continuous process, but with much shorter reaction times:

Reaction time reduction at best up to 2000 times; increase in space-time yield by factor 440

0

10

20

30

40

50

0 20 40 60 80 100 120 140Time (min)

Yiel

d(%

)

At reflux conditions

0

10

20

30

40

0 0.18 0.37 0.72 1Time (min)

Yiel

d(%

) Continuous process

Batch process

T= 180oCp= 40 bar

OH

OH

OH

OH

COOHKHCO3 (aq)

V. Hessel, C. Hofmann, P. Löb, J. Löhndorf, H. Löwe, A. Ziogas Org. Proc. Res. Dev. 9, 4 (2005) 479-489

KOLBE-SCHMITT SYNTHESIS: SPEED-UP OF REACTION BY HIGH-p,T PROCESSING

Page 14: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

PROCESS INTENSIFICATION: INCREASE IN SPACE-TIME YIELD BY HIGH-p,T PROCESSING

160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50

200°C, previous results

140°C, previous results

200°C, previous results

140°C, previous results

65 32 16 12 8

Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50200 C, Vorversuche140 C, Vorversuche

65 32 16 12 8

Residence time (s)

5400

4

10800

10700 15400

18300 30750

560

200 C, Projekt250 C, Projekt

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50

200°C, previous results

140°C, previous results

200°C, previous results

140°C, previous results

65 32 16 12 8

Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50200 °C, Vorversuche140 °C, Vorversuche

65 32 16 12 8

Residence time (s)

5400

4

10800

10700 15400

18300 30750

560

200 °C, Ölbad, wässrig250 °C,

6064200

Ölbad, wässrigÖlbad, BMIM-HC200 °C,

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50

200°C, previous results

140°C, previous results

200°C, previous results

140°C, previous results

65 32 16 12 8

Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50200 C, Vorversuche140 C, Vorversuche

65 32 16 12 8

Residence time (s)

5400

4

10800

10700 15400

18300 30750

560

200 C, Projekt250 C, Projekt

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50

200°C, previous results

140°C, previous results

200°C, previous results

140°C, previous results

65 32 16 12 8

Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results160°C, previous results200°C, previous results

140°C, previous results

6532 16

12 8Residence time (s)

Total flow rate (ml/h)

Yiel

d(%

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Yiel

d(%

)

0

10

20

30

40

50200 °C, Vorversuche140 °C, Vorversuche

65 32 16 12 8

Residence time (s)

5400

4

10800

10700 15400

18300 30750

560

200 °C, Ölbad, wässrig250 °C,

6064200

Ölbad, wässrigÖlbad, BMIM-HC200 °C,

OH

OH

OH

OH

COOHKHCO3 (aq)

V. Hessel, C. Hofmann, P. Löb, J. Löhndorf, et al. Org. Proc. Res. Dev. 9, 4 (2005) 479-489.V. Hessel, U. Krtschil, P. Löb, A. Stark, et al. Org. Proc. Res. Dev. 13, 5 (2009) 970-982.U. Krtschil, V. Hessel, A. Stark, D. Reinhard Chem. Eng. Technol. 32, 11 (2009) 1774-1789.

Reaction time reduction at best up to 2000 times; increase in space-time yield by factor 3200

4 t / a64200 kg/(m³ h)

4 sFlow chem (9 ml)

Batch (1 l)2 h – 7200 s20 kg/(m³ h)

1 t / a

140°C, (initial)200°C, aq (initial)200°C, aq250°C, aq200°C, IL BMIM-HC

Elevated temperature

Page 15: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010IMM Presentation 15

0

5

10

15

20

25

30

35

40

45

0,0000 0,0500 0,1000 0,1500 0,2500 0,3000

Residence time [s] (reciprocal)

Yiel

d2,

4-D

HB

A [%

]

1/16 in. capillary, 200 °C, 35 bardedicated µ-reactor, 206-219 °C, 35 bardedicated µ-reactor, 200 °C, 70 bardedicated µ-reactor, 220 °C, 70 barnondedicated µ-reactor, 220 °C, 35 bar

46.5811163265130

196

34450

STY[kg/m³h]15500

200 g/h

9 g/h

20300

90 g/h

productivity

38250

225 g/h

29800

175 g/hgas formation,

intermittent flowgas formation,

intermittent flow

25-fold productivity25-fold productivity

GOOD MICROREACTORS STILL NEEDED … FOR SCALE-OUT

Page 16: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

INCREASE IN REACTIVITY VS. SELECTIVITY

at high temperatures and for longer residence times:

minor variation in yield

at high temperatures and for longer residence times:

minor variation in yield

substantial increase in selectivity substantial increase in selectivity

Capillary reactor, O.D. 1/8 inch 35 bar

0

5

10

15

20

25

30

35

40

45

0,0000 0,0100 0,0200 0,0300 0,0400 0,0500 0,0600 0,0700 0,0800 0,0900

Residence time [s] (reciprocal)

Yiel

d2,

4-D

HB

A a

nd 2

,6-D

HB

A [

%]

((

2,4-DHBA, 160°C2,4-DHBA, 180°C2,4-DHBA, 200°C

2,6-DHBA, 160°C2,6-DHBA, 180°C2,6-DHBA, 200°C

130385 33 25 20 17 1113

1

65

O OH

OH

OH

rearrangement

ΔT

O

OHOH

OHΔT

OH

OH

+ CO2

2,4-Dihydroxybenzoic acid 2,6-Dihydroxybenzoic acid Resorcinol

Page 17: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

HCO3- donating ionic liquids

M-IL-KSM-A-KSMicrowave

CH-IL-KSCH-A-KSConventional

Ionic liquidAqueousHeating

Solvent

BRIDGING PI TECHNOLOGIES

Faysal Benaskar (TUe)Internship at IMM

V. Hessel, U. Krtschil, P. Löb, A. Stark, et al. Org. Proc. Res. Dev. 13, 5 (2009) 970-982.

V. Hessel, D. Kralisch, U. Krtschil Energy Environ. Sci. 1, 4 (2008) 467- 478.

Page 18: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

‚Footprint‘ - distinct LCA (and costing) patterns; determining factors: here, energy and raw materials

Linear extrapolation to productivity 100 g 2,4-dihydroxy benzoic acid

GLOBAL WARMING POTENTIAL

Standard

IL Supercritical

S. Hübschmann, D. Kralisch, V. Hessel, U. Krtschil, C. Kompter Chem. Eng. Technol. 32, 11 (2009) 1757-1765.

Global warming potential [kg CO2/FE]

Page 19: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

REACTION TIME IS DETERMINING FACTOR NO. 1

Fast reaction processing has much better global warming potentialEfficient use of reactor capacities is prime issue for eco-efficient processing

Glo

bal w

arm

ing

pote

ntia

l[k

g C

O2

/ FE;

0.1

kg

prod

uct]

V. Hessel, D. Kralisch, U. Krtschil Energy Environ. Sci. 1, 4 (2008) 467- 478.

Waste waterElectrical energySolvent / ILKHCO3

Resorcinol

Reaction timereduction

Reaction timereduction

Page 20: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Multi Criteria Decision Support

A. Azapagic, R. Clift, Computers and Chemical Engineering 23 (1999) 1509–1526.

Multiobjective Optimisation (MO)

BUNDLING OF PI CRITERIA INTO ONE DECISION – GREEN OR STOP LIGHT

Page 21: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

‘Lukewarm’ ex-cryogenico processes –MOFFAT-SWERN OXIDATION

T. Kawaguchi, H. Miyata, K. Ataka, K. Mae, J.-i. Yoshida, Angew. Chem. Int. Ed. 44 (2005) 2413 –2416.

S O + (CF3CO2)2O S+ OCOCF3

HOR'

RS+ O

R

R'

OR'

RS+

1st Step

2nd Step

3rd Stepbase

• Batch: very low temperatures (<-50°C)• Microreactor: temperatures between -20 and 20°C

• Microreactor yields >> batch yields (e.g. 95% opposed to 20%) at very short residence times of 0.01 s

Elevated temperature

Page 22: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

GLYCOSYLATIONS

D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580.

OBnOBnO OAc

OBn

O

CCl3

NHO

OBn

OOBnO

OOO

O

OO

OBn

+OO

O OH

OO

OO

O O

OO

OOAcBnOBnO

OBn

+TMSOTfCH2Cl2

• Batch: good yields at -60°C and 213 s• Microreactor: same yield at -35°C and 25.7 s

Mannosylation of diisopropylidene galactosewith mannosyl trichloroacetimidate

Elevated temperature

Page 23: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

‘Scalding hot’ pressurized ex-reflux processes –BROMINATIONS

P. Löb, H. Löwe, V. Hessel, J. Fluorine Chem. 125, 11 (2004) 1677-1694.

CH3 CH3

Br

CH3

Br

CH2BrBr2

+ +

CH2

NO2

CH2Br

NO2

Br2

• High temperature: core-substitution

• 0°C: 20% side-chain bromination

•190°C: side-chain bromination• Higher conversion (40% to 95%)

with temperature and pressure

Elevated temperature

Page 24: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

COPPER-FREE SONOGASHIRA COUPLING

H. Kawanami, K. Matsushima, M. Sato, Y. Ikushima, Angew. Chem. Int. Ed. 46 (2007) 5129 –5132.

H

+I

RR

cat., base

rapid mixing andheating in HPHT-time: 0.012 - 4 s

H2O

• Green process: water-mediated, without organic solvents

• Copper-free process without specific ligands for Pd catalyst

• Nearly quantitative yield at 0.1–4.0 s, 250°C and 16 MPa

• Even at 0.035 s: yield was >96% yield, but decreased to 1.5% at 0.012 s

Elevated temperature

Page 25: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

NEWMAN-KUART REARRANGEMENT

X. Zhang, S. Stefanick, F.J. Villani, Org. Process Res. Dev. 8, 3 (2004) 455.

NO2

O

NMe2S

NO2

S

NMe2O

170°C90 %

• Scale-up prohibited in multi-purpose plants > 140°C

• Safe operation in microreactors > 200°C

• Yield near 100% at 170°C > yield by laboratory equipment (90%)

O-(2-nitrophenyl)-N,N-dimethylthiocarbamate to S-(2-nitrophenyl)- N,N-dimethylthiocarbamothioate

Elevated temperature

Page 26: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Alternative solvents

Elevated temperature

Page 27: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

HYDROSILYLATION

A. Odedra, K. Geyer, T. Gustafsson, R. Gilmour, P. H. Seeberger, Chem. Commun. 2008, 3025–3027.

• Reduction of deoxy sugars at excellent yield (>90%)

• No toxic or chlorinated solvents such as CCl4• Process simplicity as compared to literature procedure

• Enhanced reactivity and changes in stereochemistry / cis/trans selectivities

Reduction with TTMSS, tris(trimethylsilyl)silane of various alcohol-derived thiocarbonyl derivatives in superheated toluene at 130°C with 5 min

Ph + H Si(TMS)3Ph

H Si(TMS)3

Elevated temperature

Page 28: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

NUCLEOPHILIC AMINATION

T. Razzaq, T. N. Glasnov, C. O. Kappe, Eur. J. Org. Chem. 2009, 1321–1325.

N Cl N

O

H

N NO

+NMP (0.04 M)

270 °C, 70 bar0.4 mL/min

Full conversion and 82% yield within 8 min at 270 °C and 70 bar as opposed to reaction times of several days in conventional equipment

Elevated temperature

Page 29: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

toluene thiophene

Br2 [ml/h] / Educt [ml/min]:

meta-nitrotoluene

18.6 / 42.824.5 / 49.8

18.4 / 28.4

reaction speed

formation of gaseous hydrogen bromide

CORE AND SIDE-CHAIN BROMINATIONS WITH ELEMENTAL BROMINE

Solvent-free

Page 30: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

S Br S Br

BrBr

BrS Br

Br

BrS BrBr

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5Molar ratio bromine : thiophene

sele

ctiv

ity [%

]

2-BrT2,5-DiBrT2,3,5-TriBrT2,3,4,5-TetraBrT

• T = 0°C• Pure bromine

Löb, P.; Löwe, H.; Hessel, V.; Letters of Organic Chemistry 2, 8 (2005) 767-779

Löb, P.; Löwe, H.; Hessel, V. J. FluorineChem. 125, 11 (2004) 1677-16946

100

Solvent-free

THIOPHENE BROMINATION

• Figure of merit: optimum for formation of 2,5-dibromothiophenetherefore processing at molar ratios of 2

Page 31: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

• Large heat releases – in batch addition of reactants drop per drop over 24h – micro-reactor operation needs only some minutes (1.6 – 29 min)

S. Hubbard Master thesis, Fresenius Europa Fachhochschule Idstein/Germany (2005).

H. Löwe, V. Hessel, S. Hubbard, P. Löb Org. Proc. Res. Dev. 10, 6 (2006) 1144-1152.

• Large increases in space-time yield by micro-flow processing (8 – 652 x, based on g /ml h)-1)

Solvent-free

MICHAEL ADDITION

Page 32: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Alternative solventsN

OH

scH 2O ONH

no catalyst

Sulfuric acid 383 0.1 5400 72Zeolites 623 0.1 3600 95H2O 523 40 180 0scH2O 673 40 0.63 83scH2O-HCl 648 40 0.73 99

Process T [K] p [MPa] t [s] Y [%]

Y. Ikushima, K. Hatakeda, O. Sato, M. Sato, oral presentation, ACHEMA Congress (2003)

BECKMANN REARRANGEMENT – NYLON 6 INTERMEDIATE

Process simplification: elimination of need for acid at increased reaction speed

Page 33: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

T. Razzaq, T. Glasnov, C. Kappe, Eur. J. Org. Chem. (2009) 1321.

Ph

O

OEtscMeOH

350°C, 180 barPh

O

OMe

Ph

O

OHscEtOH

330°C, 180 barPh

O

OEt

G. Socher et al., Fresenius J. Anal. Chem. 371 (2001) 369.

Transesterification

Esterification

Tc = 268°C; pc = 61 bar.

Tc = 239°C; pc = 81 bar.

ESTERIFICATIONS IN SUPERCRITICAL ALCOHOLS

Process simplification: no catalyst used – high ionic product of SCFs

18 min

12 min

Alternative solvents

Page 34: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

HAZARDOUS REACTIONSFLUORINATIONS WITH REACTIVE AGENTS

M. Baumann, I.R. Baxendale, L.J. Martin, S.V. Ley, Tetrahedron 65 2009, 6611–6625.

O

N

N

OCN

OO

O

O

N

N

OCN

O

O

FF

DAST

• DAST: volatile, reacts violently with water and readily undergoesdismutation to SF4 and (Et2N)2SF2

• Nucleophilic fluorination, electrophilic fluorination and trifluoromethylation• Purities >95% & yields up to 95%, eliminating purification• Superheated processing with rate acceleration

Dedicated fluorinations with diethyl-amino-sulfur trifluoride (DAST), (1-chloro-methyl-4-fluoro-1,4-diazo-niabicyclo-[2.2.2]octane), bis(tetra-fluoroborate) (Selectfluor®), and trimethylsilyl trifluoromethane(TMS-CF3, Ruppert’s reagent)

Hazardous reagents

Page 35: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

TRIMETHYLALUMINIUM MEDIATED AMIDE FORMATION

T. Gustafsson, F. Pontén, P.H. Seeberger, Chem. Commun. 2008, 1100–1102.

Cl

O

+Cl

O

CO2Et

OOEt

OEtO

O

Cl

NNCO2Et

ClCl

Cl

NN

ClCl

NH

O

N

a

b

c

• Al-catalyst highly pyrophoric and difficult to handle in larger volumes• Aluminium–amide intermediate is unstable at elevated temperatures • Batch: 16 h; combined microwave and microreactor operation at 2 min• Applied for the synthesis of rimonabant and efaproxiral at 49% yield• Rimonabant is anti-obesity drug & central cannabinoid receptor antagonist

Hazardous reagents

Page 36: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

AUTOCATALYTIC NITRATION OF PHENOL

L. Ducry, D. M. Roberge, Angew. Chem. 117 (2005) 8186–8189.

OHOH

NO2

OHNO2

OH

OH

OH

NO2

NO2OH

O2N NO2HNO3 + + + +

• Even at small batch scale (1 l) thermal runaway with 55 K increase• Hot-spot in microreactor only 5 K• Micro processing with largely increased purities (batch: up to 25%, micro-

flow: up to 79%), and higher yields (batch: up to 32%, micro flow: up to 77%)• Micro processing at concentrated conditions, almost solvent-free and

without H2SO4 or CH3CO2H

• Nitration of phenol: catalyzed by nitrous acid and not by the nitronium ion• Autocatalytic behaviour Hazardous reagents

Page 37: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

IMPROVEMENT OF PRODUCT QUALITY - IONIC LIQUID SYNTHESIS

Conventional, discontinuous manufacture• Unsufficient heat transfer in vessel -> undesired

temperature increase -> product coloration, slowing down of processing

• Large volumina of hazardous reactants

© Solvent Innovation GmbH

Conventional productionprocess

N NEtMe

Et2SO4+N NMe EtSO4

Continuous microreactor processing

Microreactor plant IMM (Laboratory scale)

• Much improved heat transfer -> faster process, no coloration

• Reduction of reactor volume(= safety gains)

Page 38: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

• Continuous processing• Reduction of reaction time down to minutes

Reactor tube segments with in total 7.5 ml inner volume

Mixer

Thermostated bath withembedded reactor parts

Temperature recordingsystemPumps

0

20

40

60

80

100

0 5 10 15 20

Residence time [min]

Con

vers

ion

[%]

30°C

40°C50°C

0

20

40

60

80

100

0 5 10 15 20

Residence time [min]

Con

vers

ion

[%]

30°C

40°C50°C

Initial lab rigMicromixer/tube set-up

• Optimised reactor parameters

50

60

70

80

90

100

110

0 20 40 60 80 100

in frontof mixer

50°C, 210 ml/h

1/8´´1/16´´

Flow axis [vol.-%]

Tem

pera

ture

[°C

]

1/8´´

50

60

70

80

90

100

110

0 20 40 60 80 100

in frontof mixer

50°C, 210 ml/h

1/8´´1/16´´

Flow axis [vol.-%]

Tem

pera

ture

[°C

]

1/8´´

PROCESS INTENSIFICATION BY CONTINUOUS PROCESSING

Page 39: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Modular microreactor Multitubular reactorwith switchable tubes

The reactor set-up has been implemented in thedemonstration facility errected at and by RWTH Aachen

Continuous 36 h operationperformed successfully.

REACTOR SETUP FOR 100 kg/d IONIC LIQUID SYNTHESIS

Page 40: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

Zunächst war der 20 kg/d Reaktor des IMM integriert, späterwurde dieser und der folgende RWTH-Reaktor durch den 100 kg/d Gesamtreaktoraufbau des IMM ersetzt.

FABRICATIONCATALYSTS

REACTORS

PLANTS

PROCESSESOH

OH

OH

OH

COOHKHCO3 (aq)OH

OH

OH

OH

COOHKHCO3 (aq)

REACTORS

PILOT PLANT AT RWTH AACHEN FOR 20 AND 100 kg/d IONIC LIQUID SYNTHESIS

Page 41: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

x 10Labor

Pilot

Pilot

x 10Produktion

B. K. Vankayala, P. Löb, V. Hessel, G. Menges, C. Hofmann, D. Metzke, U. Krtschil, H.-J. Kost Int. J. Chem. Reactor Eng. 5 (2007) A 91

SCALE-OUT CONCEPTS FORFALLING FILM MICROREACTORS

Page 42: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

• Performance kept from FFMR-LARGE to STACK-1x-FFMR-LARGE• Basic reactor design thereby proved

Operation conditions: 1 M NaOH 0.5 – 1.6 (5 – 16) ml/min; CO2: 6.22 (62.2) ml/min diluted with N2 35 (350) ml/min; co-current operation mode

DO SCALED-OUT FFMRs BEHAVE THE SAME? TEST BY CO2 ABSORPTION IN ALKALINE SOLUTION

3035404550556065707580

0.02 0.04 0.06 0.08 0.1 0.12NaOH flow rate/structured area [cm/min]

NaO

Hre

acte

d[%

] StandardCylindricalLarge1-stack

Page 43: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

PILOT FALLING FILM MICROREACTORS IN PILOT PLANTS AT EVONIK-DEGUSSA

Ozone generator

Falling film microreactorof IMM for pilot scale

Ozone decomposition unit

Franke, R., Jucys, M., Löb, P., Rehfinger, A., Elements –Evonik Science Newsletter 2007, 22, 20.

BMBF-Projektµ.Pro.Chem

Page 44: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

100 xValidatednumbering-up concept

Outlook: first stepstowards even larger scalereactors have been done

ACHIEVED: THROUGHPUT INCREASE BY FACTOR 100x; FACTOR 1000 UNDERWAY

Page 45: Micro Process Technology for Holistic Process …...D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578–580. BnO O BnO

March 2010

• Be holistic – complete process development view

• Exploit fast kinetics – chemistry is not slow, but is slow made

• Process intensification - new processing – evaluation tools

• Flow chemistry: micro and milli processing tools in cascaded manner

• Scaling-out: numbering-up at micro and smart scaling-up at milli level

• Production flow chemistry is there – future factories need to be developed

CONCLUSIONS