Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048...

18
Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: [email protected]

Transcript of Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048...

Page 1: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

Michael HessDepartment of Physical Chemistry

University Duisburg-EssenCampus Duisburg

47048 Duisburg, Germanye-mail: [email protected]

Page 2: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

Balance

oven

Thermocouple

ConrollerAnalyzerData output

Zero control

Mass compensation

Optionaltoanalyzer:IRGC-MSetc.

Carrier gas: N2, air, O2, …

Principle scheme of a thermogravimetric system

Page 3: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

TGA-systems can be combined with:

IR-spectrometry GC-MSgas phase absorptionthinlayer chromatographyDSCDTA

Product identification

Enthalpy, phase transitions

Sample mass 1-20 mgSensitivity 10-3 mg

Page 4: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

Processes of interest in polymer science:

In general: m = f(T)dm/dt or m = f(t)T

thermal activated degradation (depolymerization)

thermo-oxidative degradation

Thermal stability i. e. upper limit of use under short-term heat-exposure

Determination of reaction-kinetical data such as:

reaction rate r,

rate constant k

apparent reaction energy Ea

apparent pre-exponential factor A (collision factor)

formal (apparent) reaction order n

Page 5: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

thermal activated degradation (depolymerization)

inert atmosphere, e. g. N2

e. g.: thermal depolymerization of poly(-methyl styrene):

ntmk

dt

dm

T

m

reactionofextend

d

d)(

with n = 1 in this case

This reaction is (during a large part of the reaction) a simple “un-zipping” of the polymer chain from its end, monomer after monomer.

In polystyrene the depolymerization occurs randomly along the chain

Page 6: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

thermo-oxidative degradation

More complex kinetics which is in particular influenced bythe diffusion process of O2 to the reaction site (char formation),the activities of flame retardants and inhibitors etc.

Page 7: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

In many cases

•there are complex kinetics

•there is influence of diffusion rates of reactants and products

•there are solid-state reactions

• there are incomplete polymerizations or crosslink reaktions (in thermosets)

•apparent reaction orders different from n = 1 can be observed

Page 8: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.
Page 9: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

ni = ni0+ i

AA + BB+… mM + LL +…

reactants i 0 products i 0

r•= d/dt= - i-1dni/dt [mol s-1]

(rX•= dX/dt= - i-1dci/dt [mol L-1 s-1])

i= stoichiometric coefficientni = amount of substanceni0 = amount of substance at =0 (initial amount of substance) = extend of reactionci=(molar) concentrationX= conversionr=rate of reaction

Page 10: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

isothermal experiments: w = f(t)T

dynamic experiments: w = f (T)dT/dt = f (t)

w = sample massw0 = initial sample masst = timeT = temperature = heating rateC = conversion

tT

dd

The mass loss at any time is given by:

w = w0-w

so that the conversion C is given by:

C = w/w0 = (w0-w)/w0

(1-C) = w/w0

isothermal experiments are straight forwardbut they are experimentally difficult

(mass-loss fraction)

Page 11: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

rcA(A)

rcB(B

)

.

.

.

r= kn cA(A) cB

(B) …

kn= rate constant(A), (B) … = partial formal order of component A,

component B,…n = formal (total) order of reaction

kn = f(T, p, catalyst, solvent,…)

zi

ai

in

Page 12: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

In case of a pyrolytic reaction frequently the form:

wwnTR

EA

r

tw

tT

nwwTR

EA

tw

nwwnkt

w

0log1

302.2alog

dd

dd

log

1aexpdd

0dd

0

can be used:

Page 13: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

1-C

T [K] 1T [K-1]

slope m = -0.457 Ea/Rlg

1

2

3

2

1

3

Ozawa method

Page 14: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

TR

EAkeAk

a

nnTRaE 1

lnlnfactoryeffectivit

factorcollision factortialpreexponen

Ea = (apparent) activation energy [kJ/mol]

Arrhenius’ law:

rC •= dC/dt= - dm/dt [mg s-1]

C = conversion

In thermogravimetric experiments:

Page 15: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

example of a complex depolymerization

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0,0 100,0 200,0 300,0 400,0 500,0 600,0 700,0 800,0 900,0

temperature [°C]

sa

mp

le m

as

s [

mg

]

nitrogen

Process I

Process II

Process III

Process IV

Residual material

Page 16: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.

(random) bond scission

volatile products

volatile products

radical transfer (chain transfer)

disproportionation

Some examples of pyrolytic reactions

Page 17: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.
Page 18: Michael Hess Department of Physical Chemistry University Duisburg-Essen Campus Duisburg 47048 Duisburg, Germany e-mail: hi259he@uni-duisburg.de.