Methode d Elements Frontieres

183
ethode d’´ el´ ements de fronti` ere Marc Bonnet UMA (Dept. of Appl. Math.), POems, UMR 7231 CNRS-INRIA-ENSTA 32, boulevard Victor, 75739 PARIS cedex 15, France [email protected] ´ Ecole doctorale MODES Methodes num´ eriques avanc´ ees, 28 mars 2013 http://uma.ensta.fr/ mbonnet/enseignement.html Marc Bonnet (POems, ENSTA) ethode d’´ el´ ements de fronti` ere 1 / 183

Transcript of Methode d Elements Frontieres

Page 1: Methode d Elements Frontieres

Methode d’elements de frontiere

Marc Bonnet

UMA (Dept. of Appl. Math.), POems, UMR 7231 CNRS-INRIA-ENSTA32, boulevard Victor, 75739 PARIS cedex 15, France

[email protected]

Ecole doctorale MODES Methodes numeriques avancees, 28 mars 2013

http://uma.ensta.fr/~mbonnet/enseignement.html

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 1 / 183

Page 2: Methode d Elements Frontieres

Outline1. Review of boundary integral equation formulations

ElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equationMultipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methodsExponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 2 / 183

Page 3: Methode d Elements Frontieres

Review of boundary integral equation formulations

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts3. The GMRES iterative solver4. The fast multipole method (FMM) for the Laplace equation

Multipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics6. The fast multipole method for elastodynamics7. Other acceleration methods

Exponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 3 / 183

Page 4: Methode d Elements Frontieres

Review of boundary integral equation formulations Electrostatics

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equation

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methods

8. PreconditioningMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 4 / 183

Page 5: Methode d Elements Frontieres

Review of boundary integral equation formulations Electrostatics

Electrostatics

I Well-known, and simple, physical setting

I Allows to introduce important concepts of integral equation formulationswith a clear physical meaning

I Said concepts will generalize to other settings (elasticity, electromagnetics...)

I Also helpful later for a physical understanding of the fast multipole method(FMM)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 5 / 183

Page 6: Methode d Elements Frontieres

Review of boundary integral equation formulations Electrostatics

Electrostatics: discrete charged particles

I Coulomb interaction force:

F12 =q1q2

4πε

1

r 2r12

q1r

q2r12

I Electrostatic field:

F12 = q2E12, E12 =q1

4πε

1

r 2r12

I Electrostatic potential:

E12 = −∇2V , V =q1

4πε

1

r

(with ε: permittivity of the medium (material constant))

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 6 / 183

Page 7: Methode d Elements Frontieres

Review of boundary integral equation formulations Electrostatics

Electrostatics: continuous charge distributions

I Continuous charge distribution: dq = % dV :

E(x) =1

4πε

∫V

%(ξ)

r 2r dVξ r = ξ−x, r = ‖r‖, r = r/r

I Gauss theorem:

div E =%

ε

I Poisson equation (Gauss theorem with E = −∇V ):

∆V +%

ε= 0

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 7 / 183

Page 8: Methode d Elements Frontieres

Review of boundary integral equation formulations Electrostatics

Electrostatics: continuous charge distributions

Proof of Gauss theorem:∫V

div E dV =

∫∂V

E·n dS

=1

4πε

∫V

∫∂V

1

r 2(r·n(x)) dSx

%(ξ) dVξ

=1

4πε

∫V

Θ(ξ)%(ξ) dVξ

where Θ(ξ) is the solid angle of the (closed) surface ∂V from origin ξ:

Θ(ξ) = 4π (ξ ∈V ), Θ(ξ) = 0 (ξ ∈R3 \ V )

Hence: ∫V

div E dV =

∫V

%

εdV

Since this is true for any domain V , one has div E = %/ε, i.e. the Gauss theoremholds.

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 8 / 183

Page 9: Methode d Elements Frontieres

Review of boundary integral equation formulations Electrostatics

Electrostatic volume potential

The electrostatic volume potential results from the superposition of electric fieldsgenerated by elementary charges % dV distributed in a volume V :

V[%,V ](x) =1

4πε

∫V

%(ξ)

rdVξ

As already seen, V[%,V ] satisfies the Poisson equation:

∆V[%,V ] +%

ε= 0 (x∈V ), ∆V[%,V ] = 0 (x∈R3 \ V )

Properties of electrostatic volume potentials

I The volume integral is weakly singular (i.e. singular, but integrable) forx∈V , so that V[%,V ] is well-defined inside the charged domain V : one has

dVx = r 2 dr dΘ = O(r 2)

I V[%,V ] is continuous everywhere, and in particular across the boundary ∂V .

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 9 / 183

Page 10: Methode d Elements Frontieres

Review of boundary integral equation formulations Electrostatics

Electrostatic single-layer potential

The electrostatic single-layer potential results from the superposition of electricfields generated by elementary charges % dS distributed on a surface S :

S[%, S ](x) =1

4πε

∫S

%(ξ)

rdSξ

S[%, S ] is harmonic outside of S :

∆S[%, S ] = 0 (x∈R3 \S)

Properties of electrostatic single-layer potentials

I The surface integral is weakly singular (i.e. singular, but integrable) for x∈ S ,so that S[%,S ] is well-defined on the charged surface V : one has

dSx = r dr dθ = O(r)

I S[%, S ] is continuous everywhere, and in particular across S .

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 10 / 183

Page 11: Methode d Elements Frontieres

Review of boundary integral equation formulations Electrostatics

Electrostatic double-layer potentialThe electrostatic double-layer potential is the limiting case of the superposition oftwo single-layer potentials of (i) arbitrary close supports S±, (ii) opposite chargedensity, (iii) finite dipolar moment q:

D[q,S ](x) = limh→0S[%h,S

+](x) + S[−%h,S−](x)

with

limh→0[h%h](x) = q(x)

(note: q is analogous to a concentrated moment)

n

x+x

x−x+ = x + h

2n

x− = x− h2n

S+

S−

Performing the limit h→ 0, one finds:

D[q,S ](x) = − 1

4πε

∫S

1

r 2r·n(ξ) q(ξ) dSξ

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 11 / 183

Page 12: Methode d Elements Frontieres

Review of boundary integral equation formulations Electrostatics

Electrostatic double-layer potential

D[q,S ](x) = − 1

4πε

∫S

1

r 2r·n(ξ) q(ξ) dSξ

Properties of electrostatic double-layer potentials

I D[q,S ] is harmonic outside of S :

∆D[q,S ] = 0 (x∈R3 \S)

I The surface integral is weakly singular (i.e. singular, but integrable) for x∈ S ,so that D[q,S ] is well-defined on the charged surface V .This is not obvious and stems from

dSx = r dr dθ = O(r) and1

r 2r·n = O(

1

r)

I D[q,S ] is discontinuous across S , with

D[q,S ](x+)−D[q,S ](x−) = q(x)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 12 / 183

Page 13: Methode d Elements Frontieres

Review of boundary integral equation formulations Electrostatics

Electrostatic potentials: comments

(a) Electrostatic potentials have a clear physical meaning as the potential fieldsassociated with volume, surface or dipolar charge distributions.

(b) Electrostatic potentials, as mathematical constructs, define harmonic fields forarbitrary choices of supports V ,S and densities %, q.

(c) As we will shortly see, any harmonic function can be expressed in terms ofsuch potentials.

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 13 / 183

Page 14: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equation

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methods

8. PreconditioningMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 14 / 183

Page 15: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Physical problems governed by the Laplace or Poisson equation

Poisson equation:

∆u + b = 0 (on Ω) + unspecified well-posed BCs

(Laplace equation if b = 0)

I Electrostatics (u: electrostatic potential);

I Potential fluid flow (u: velocity potential);

I Thermal equilibrium (u: temperature);

I Torsion (u: warping function defined on 2-D section of shaft)

...

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 15 / 183

Page 16: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Reciprocity identity and integral representation

∆u + b = 0 (in Ω) + unspecified well-posed BCs

Integral representation of u based on two ingredients:(i) Reciprocity identity:∫

Ω

(u∆v − v∆u) dV =

∫∂Ω

(uv,n − vu,n) dV (u,n ≡∇u ·n)

(ii) Fundamental solution:

∆G (x, ·) + δ(·−x) = 0 (in O⊃Ω)

Choosing v = G (x, ·) in (i) yields the integral representation formula:

u(x) =

∫Ω

G (x, ξ)b(ξ) dVξ +

∫∂Ω

(G (x, ξ)u,n(ξ)− G,n(x, ξ)u(ξ)

)dSξ (x∈Ω)

Full-space fundamental solution (O=R3):

G (x, ξ) =1

4πr(r = ‖ξ−x‖)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 16 / 183

Page 17: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Volume and single-layer potentials

I The single-layer potential S solves the Laplace equation in R3 \∂Ω, where

S[ϕ, ∂Ω](x) :=

∫∂Ω

G (x, ξ)ϕ(ξ) dSξ

The volume potential V solves the Poisson equation, where

V[b,Ω](x) :=

∫Ω

G (x, ξ)b(ξ) dVξ

I Continuity across ∂Ω (with [[f ]] := f +− f −):

[[V(x)]] = 0, [[S(x)]] = 0, (x∈ ∂Ω)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 17 / 183

Page 18: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Double-layer potentialsI The following potential solve the Laplace equation in R3 \∂Ω:

D[ψ, ∂Ω](x) :=

∫∂Ω

G,n(x, ξ)ψ(ξ) dSξ (double-layer potential)

I Jump relation:

[[D(x)]] = ψ(x) (x∈ ∂Ω)

I Boundary traces of double-layer potential:

D[ψ, ∂Ω](x−) = (c(x)− 1)ψ(x) +D[ψ, ∂Ω](x),

D[ψ, ∂Ω](x+) = D[ψ, ∂Ω](x−) + ψ(x)

with the definitions (Θ(x): solid angle of Ω seen from x∈ ∂Ω):

D[ψ, ∂Ω](x) :=

∫∂Ω

G,n(x, ξ)ψ(ξ) dSξ, c(x) = Θ(x)/(4π) (x∈ ∂Ω)

x

Ω

Θ(x)

When ∂Ω is smooth at x (the usual case), Θ(x) = 2π and c(x) = 1/2Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 18 / 183

Page 19: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Integral representation as sum of potentials

Expressing the integral representation formula in terms of potentials yields

u(x) = V[b,Ω](x) + S[u,n, ∂Ω](x)−D[u, ∂Ω](x)

Any harmonic function is representable as a single-layer, or a double-layerpotential, or a linear combination of both.

Any solution of the Poisson equation is representable as a sum of the volumepotential of density b and arbitrary surface potentials.

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 19 / 183

Page 20: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Singular integral equationsBoundary integral equations are obtained as the limiting situation whenz∈Ω→ z∈ ∂Ω of integral representations:

u(x) = limz→x

u(z)

= limz→x

[V[b,Ω](z) + S[u,n, ∂Ω](z)−D[u, ∂Ω](z)

]= V[b,Ω](x) + S[u,n, ∂Ω](x)−D[u, ∂Ω](x) + (1−c(x))u(x)

to obtain:

c(x)u(x) +D[u, ∂Ω](x)− S[u,n, ∂Ω](x) = V[b,Ω](x) (x∈ ∂Ω)

i.e. (in expanded form)

c(x)u(x) +

∫∂Ω

(G,n(x, ξ)u(ξ)− G (x, ξ)u,n(ξ)

)dSξ =

∫Ω

G (x, ξ)b(ξ) dVξ

(x∈ ∂Ω)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 20 / 183

Page 21: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Outline of the boundary integral equation method

c(x)u(x) +D[u, ∂Ω](x)− S[u,n, ∂Ω](x) = V[b,Ω](x) (x∈ ∂Ω)

1. Insert given boundary data;Solve for the remaining boundary unknown

2. Then, invoke integral representation for evaluation of u (and relatedquantities, e.g. ∇u) at interior points

Example (∂Ω = Su ∪Sq, with u = uD on Su and u,n = qD on Sq):

1. Solve for u|Sq and u,n|Su the integral equation system

c(x)u(x) +D[u,Sq](x)− S[u,n,Su](x)

= −D[uD,Su](x) + S[qD,Sq](x) + V[b,Ω](x) (x∈ Sq)

D[u,Sq](x)− S[u,n,Su](x)

= −c(x)uD(x)−D[uD,Su](x) + S[qD,Sq](x) + V[b,Ω](x) (x∈ Su)

2. Integral representation:

u(x) = V[b,Ω](x) + S[u,n, ∂Ω](x)−D[u, ∂Ω](x)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 21 / 183

Page 22: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Fundamental solution, Green’s function

∆u + b = 0 (in Ω) u = uD (on Su), u,n = qD (on Sq)

I Fundamental solution (again):

∆G (x, ·) + δ(·−x) = 0 (in O⊃Ω)

i.e. any field induced in Ω by a unit point source placed at x∈ΩI Green’s function: fundamental solution with homogeneous BCs on ∂Ω:

∆ξG(x, ·) + δ(· − x) = 0 (in Ω)

H(x, ·) := ∇G(x, ·)·n(·) = 0 (on Sq),

G(x, ·) = 0 (on Su)

I Fundamental solution −→ boundary unknowns u (on Sq) and u,n (on Su)(boundary integral equation needed)

I Green’s function −→ explicit integral representation formula (boundaryintegral equation not needed)

u(x) =

∫Ω

G(x, ξ)b(ξ) dVξ +

∫Sq

G(x, ξ)qD(ξ) dSξ−∫Su

H(x, ξ)uD(ξ) dSξ (x∈Ω)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 22 / 183

Page 23: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Green’s functions (Laplace): half-space”Method of images”:

G(x, ξ) = G (x, ξ) + G (xsym, ξ) Neumann BC on free surface

G(x, ξ) = G (x, ξ)− G (xsym, ξ) Dirichlet BC on free surface

xsym

x

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 23 / 183

Page 24: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Green’s functions (Laplace): sphere

ρ22 x=x_

(a / )

a

G(x, ξ) =1

(1

r− a

ρ

1

r

)(Dirichlet BC on surface)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 24 / 183

Page 25: Methode d Elements Frontieres

Review of boundary integral equation formulations Laplace

Indirect boundary integral equations:

I Seek solutions of Laplace equation using potentials:

u(x) = S[ϕ, ∂Ω](x) +D[ψ, ∂Ω](x) (x∈Ω)

Dirichlet problem (u = uD on ∂Ω) using double-layer potential:

−c(x)ψ(x) +D[ψ, ∂Ω](x) = uD(x) (x∈ ∂Ω)

Neumann problem (u,n = pD on ∂Ω) using single-layer potential:

c(x)ϕ(x)− ∂n(x)S[ϕ, ∂Ω](x) = pD(x) (x∈ ∂Ω)

I Seek solutions of Poisson equation using potentials:

u(x) = V[b, ∂Ω](x) + S[ϕ, ∂Ω](x) +D[ψ, ∂Ω](x) (x∈Ω)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 25 / 183

Page 26: Methode d Elements Frontieres

Review of boundary integral equation formulations Elastostatics

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equation

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methods

8. PreconditioningMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 26 / 183

Page 27: Methode d Elements Frontieres

Review of boundary integral equation formulations Elastostatics

Reciprocity identity and integral representation

I Additive decomposition of strain into elastic and initial (e.g. thermal, plastic,visco-plastic) parts (assuming infinitesimal strain):

ε = εE + εI where σ = C :εE

I Constitutive equation (C: fourth-order tensor of elastic moduli):

σ = C : (ε− εI)

I For isotropic elasticity (µ: shear modulus, ν: Poisson ratio):

Cijk` = µ[ 2ν

1− 2νδijδk` + (δikδj` + δi`δjk)

]I Governing field equation for unknown displacement field u(ξ):

Cijab(ua,bj − εI

ab,j) + bi = 0 (ξ ∈Ω)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 27 / 183

Page 28: Methode d Elements Frontieres

Review of boundary integral equation formulations Elastostatics

Elastostatic fundamental solution

Kelvin fundamental solution: unit point force applied at x∈R3 alongk-direction in unbounded elastic medium, i.e.:

CijabUka,bj + δ(· − x)δik = 0 (ξ ∈R3)

Uki (x, ξ) =

1

16πµ(1− ν)

1

r

[ri rk + (3− 4ν)δik

]Σk

ij(x, ξ) = − 1

8π(1− ν)

1

r 2

[3ri rk rj + (1− 2ν)(δik rj + δjk ri − δij rk)

]x, ξ ∈R3

T ki (x, ξ) = Σk

ij(x, ξ)nj(ξ)

( r = |ξ−x| , ri = (ξi −xi )/r )

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 28 / 183

Page 29: Methode d Elements Frontieres

Review of boundary integral equation formulations Elastostatics

Reciprocity identity and integral representationGoverning field equation for unknown displacement field u(ξ):∫

Ω

Cijab(ua,bj − εI

ab,j) + bi

× Uk

i (x, ξ) dVξ = 0 (1)

Governing field equation for fundamental solution:∫Ω

CijabUk

a,bj + δ(ξ − x)δik× ui (ξ) dVξ = 0 (2)

Performing (1)-(2) and invoking the divergence identity, one obtains the integralrepresentation formula of the displacement:

uk(x) =

∫∂Ω

Uki (x, ξ)ti (ξ)− T k

i (x, ξ)ui (ξ)

dSξ

+

∫Ω

Uki (x, ξ)bi (ξ) + Σk

ij(x, ξ)εI

ij(ξ)

dVξ

I Partially unknown contribution of ∂Ω (BC + unknown trace)I Known contribution of Ω (if εI is known beforehand)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 29 / 183

Page 30: Methode d Elements Frontieres

Review of boundary integral equation formulations Elastostatics

Displacement boundary integral equation

Limiting process as x∈Ω −→ z∈ ∂Ω in integral representation:

uk(x) =

∫∂Ω

Uki (x, ξ)ti (ξ)− T k

i (x, ξ)ui (ξ)

dSx

+

∫Ω

Uki (x, ξ)bi (ξ) + Σk

ij(x, ξ)εI

ij(ξ)

dVξ

Γε

xnsε

εz

Ω

Non-integrable singularity of Tk(x, ξ):

I Limit to the boundary approach

I Direct approach using exclusion neighbourhood of z

I Indirect regularization approach

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 30 / 183

Page 31: Methode d Elements Frontieres

Review of boundary integral equation formulations Elastostatics

Displacement boundary integral equationIntegral equation, singular form:

1

2uk(x) + P.V.

∫∂Ω

T ki (x, ξ)ui (ξ) dSx −

∫∂Ω

Uki (x, ξ)ti (ξ) dSx

=

∫Ω

Uki (x, ξ)bi (ξ) + Σk

ij(x, ξ)εI

ij(ξ)

dVξ

Integral equation, regularized form:∫∂Ω

T ki (x, ξ)[ui (ξ)− ui (x)]− Uk

i (x, ξ)ti (ξ)

dSx

=

∫Ω

Uki (x, ξ)bi (ξ) + Σk

ij(x, ξ)εI

ij(ξ)

dVξ

I Both forms require u∈C 0,α (otherwise process x∈Ω→ z∈ ∂Ω breaks down)I Numerical implementation based on (well-documented) singular element

integration methods.I Boundary-only formulations in the absence of body forces and initial strains.I Treatments (double / multiple reciprocity methods) sometimes allow to

convert domain integrals with b, εI into boundary integrals.Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 31 / 183

Page 32: Methode d Elements Frontieres

Review of boundary integral equation formulations Elastostatics

Volume, single-layer and double-layer elastic potentials

I Volume potential (prescribed body forces):

Vbk [b,Ω](x) =

∫Ω

Uki (x, ξ)bi (ξ) dVξ

(displacement field created in R3 by b given on Ω)I Volume potential (prescribed initial strains):

Vεk [εI,Ω](x) =

∫Ω

Σkij(x, ξ)εI

ij(ξ) dVξ

(displacement field created in R3 by εI given on Ω)I Single-layer elastic potential:

S[ϕ, ∂Ω]k(x) =

∫∂Ω

Uki (x, ξ)ϕi (ξ) dSx

I Double-layer elastic potential:

D[ψ, ∂Ω]k(x) =

∫∂Ω

T ki (x, ξ)ψi (ξ) dSx

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 32 / 183

Page 33: Methode d Elements Frontieres

Review of boundary integral equation formulations Elastostatics

Green’s tensor (elasticity): half-space (Mindlin solution)

Uki (x, ξ) =

1

16πµ(1− ν)

κ

rδik +

1

rδik +

r,i r,kr

+ κr,i r,kr

+2x3y3

r 3[δik − 3r,i r,k ]

r(1 + r,3)

[δik − r,i r,k

1 + r,3

]Uk

3 (x, ξ) =1

16πµ(1− ν)

r,3r,kr

+ κr,kr

[r,3 − 2x3

r

]− 6x3y3

r 3r,3 r,k + χ

r,kr(1 + r,3)

U3

i (x, ξ) =1

16πµ(1− ν)

r,i r,3r

+ κr,kr

[r,3 − 2x3

r

]+

6x3y3

r 3r,i r,3 − χ r,i

r(1 + r,3)

U3

3 (x, ξ) =1

16πµ(1− ν)

κ

r+

1 + χ

r+

r 2,3

r+ κ

r3 r3

r− 2x3y3

r 3[1− 3r,3 r,3]

xsym

r_

xr

ξ

(κ = 3− 4ν, χ = 4(1− ν)(1− 2ν))

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 33 / 183

Page 34: Methode d Elements Frontieres

Review of boundary integral equation formulations Elastostatics

Green’s tensors (elasticity)

I Full-space (Kelvin):exact solutions (within full-space idealization):−→ Response to arbitrary eigenstrain distribution:

uk(x) =

∫Ω

Σkij(x, ξ)εI

ij(ξ) dVξ

−→ Elastic ellipsoidal inhomogeneity (Eshelby problem), usingequivalent-inclusion approach

I Half-space with free surface (Mindlin, 1936), Boussinesq as special case:exact solutions (within half-space idealization):−→ Soil mechanics and geotechnics;−→ Contact mechanics (Hertz solution, Galin formulae)

I Two perfectly-bonded half spaces (Rongved, 1955) – closed form

I Elastic layer between two parallel planar free surfaces (Benitez and Rosakis1987) – integral transform

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 34 / 183

Page 35: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equation

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methods

8. PreconditioningMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 35 / 183

Page 36: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

Reciprocity identity and integral representation

∆u + k2u = 0 (in Ω) + unspecified well-posed BCs

Time-harmonic problems (u(ξ, t) = Re[u(ξ)e−iωt ]); wavenumber k = ω/c .e.g. linear acoustics (u: pressure, (iρω)−1∇u: velocity)

I Reciprocity identity:∫Ω

(u∆v − v∆u) dV =

∫∂Ω

(uv,n − vu,n) dV (u,n ≡∇u ·n)

I Fundamental solution (full space):

∆G (x, ·) + k2G (x, ·) + δ(·−x) = 0 (in O⊃Ω)

G (x, ξ) =eik‖ξ−x‖

4π‖ξ−x‖ (O=R3)

Integral representation:

u(x) =

∫∂Ω

G (x, ξ)u,n(ξ)− G,n(x, ξ)u(ξ)

dSξ (x∈Ω)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 36 / 183

Page 37: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

Singular integral equationI Dynamic (Helmholtz) and static (Laplace) fundamental solutions have same

singularity:

G (x, ξ) =eik‖ξ−x‖

4π‖ξ−x‖ =1

4π‖ξ−x‖ + O(1) (ξ → x)

I Limit to the boundary (or other) approach yields the same free term c(x) aswith Laplace problems

I Singular integral equation:

c(x)u(x) +

∫∂Ω

G,n(x, ξ)u(ξ)− G (x, ξ)u,n(ξ)

dSξ = 0 (x∈ ∂Ω)

I Singular integrals: invoke methods for handling static singular kernels:∫∂Ω

G,n(x, ξ)u(ξ) dSξ =

∫∂Ω

G,n(x, ξ)− G,n(x, ξ;ω= 0)

u(ξ) dSξ

+

∫∂Ω

G,n(x, ξ;ω= 0)u(ξ) dSξ

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 37 / 183

Page 38: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

Half-space problemsMethod of images still applicable:

G(x, ξ) = G (x, ξ) + G (xsym, ξ) Neumann BC on free surface

G(x, ξ) = G (x, ξ)− G (xsym, ξ) Dirichlet BC on free surface

xsym

x

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 38 / 183

Page 39: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

Unbounded media

Wave equations (scalar, elastic, Maxwell...) frequently employed for mediaidealized as unbounded

Ω∂ R

Ω

SR

ΩR

Limiting case as R −→∞ of

c(x)u(x) +∫

SR

+

∫∂Ω

(G,n(x, ξ)u(ξ)− G (x, ξ)u,n(ξ)

)dSξ = 0 (x∈ ∂Ω)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 39 / 183

Page 40: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

Unbounded media, radiation conditionsIntegral equation

c(x)u(x) +

∫∂Ω

(G,n(x, ξ)u(ξ)− G (x, ξ)u,n(ξ)

)dSξ = 0 (x∈ ∂Ω)

valid if u satisfies a radiation condition at infinity:I Integral form:

limR→∞

∫SR

(G,n(x, ξ)u(ξ)− G (x, ξ)u,n(ξ)

)dSξ = 0

I Local form, sufficient, known as Sommerfeld condition:

∇u ·x− iku = o(‖x‖−1) ‖x‖ −→ ∞

(Sommerfeld is known to imply u = o(1), i.e. decay of u at infinity)

The radiation condition is satisfied by G (x, ·), and consequently also by

• The fundamental solution

• Volume, single-layer, double-layer potentials

• Integral representation formula

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 40 / 183

Page 41: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

Scattering of incident waves by hard obstacles

I Governing equations (hard obstacle[s])

∆u + k2u = 0 in Ω

∇u ·n = 0 on ∂Ω (no normal velocity, i.e. hard obstacle)

I Known incident wave (or ’free-field’) uF; radiation conditions not assumed(e.g. plane wave):

∆uF + k2uF = 0 (in R3)

I Decomposition:

u = uF + v = incident + scattered, + radiation conditions for v

Ω∂

Ω

uF

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 41 / 183

Page 42: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

Scattering of incident waves by hard obstacles

I Scattered field verifies integral equation (by virtue of radiation cnds):

c(x)v(x) +

∫∂Ω

G,n(x, ξ)v(ξ)− G (x, ξ)v,n(ξ)

dSξ = 0 (a)

I Free-field verifies integral equation for interior of scatterer:

[c(x)− 1]uF(x) +

∫∂Ω

G,n(x, ξ)uF(ξ)− G (x, ξ)uF

,n(ξ)

dSξ = 0 (b)

I Simplified integral equation formulation (a)+(b) in terms of total field:

c(x)u(x) +

∫∂Ω

G,n(x, ξ)u(ξ) dSξ = uF(x)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 42 / 183

Page 43: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

Fictitious eigenfrequencies

BIE formulations for exterior problems break down when ω is an eigenfrequencyfor a certain interior problem.

Example:

I Direct BIE formulation for exterior Neumann problem (scattering by rigidobstacle):

c(x)u(x) +

∫∂Ω

G,n(x, ξ)u(ξ) dSξ = uF(x) (a)

I Indirect BIE formulation (using a double-layer potential representation) forinterior homogeneous Dirichlet problem (using same normal as (a)):

c(x)ψ(x) +

∫∂Ω

G,n(x, ξ)ψ(ξ) dSξ = 0 (b)

I (b) has non-trivial solutions if ω is a Dirichlet eigenvalue.

I Therefore, so does (a) as the governing integral operator is the same

Remedies include:(i) enforcing an extra set of integral identities at interior points;(ii) combining (with complex coefficients) two BIE formulations having differenteigenvalues (see treatment in Pyl, Clouteau, Degrande 2004)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 43 / 183

Page 44: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

Scattering of incident waves by penetrable obstacles

I Penetrable inclusion (ρ?(ξ), c?(ξ) and with definitions β = ρ/ρ?, γ = c/c?):

(∆ + k2)u = 0 (in Ω \ B) (∆ + γ2k2)u? = 0 (in B)

u = u?, u,n = βu?,n (on ∂B)

I Domain integral equation of Lippman-Schwinger type (proof: combinereciprocity identities written on B for u? and on R3 \B for u−uF):

u(x) +

∫B

[(β − 1)∇G (x, ξ)∇u(ξ) + (1− βγ2)k2G (x, ξ)u(ξ)

]dVξ = uF(x)

c ( ), ( )* *ρ xx uF

Ω

B

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 44 / 183

Page 45: Methode d Elements Frontieres

Review of boundary integral equation formulations Frequency-domain wave equations

Linear elastodynamics

Governing field equation:

div (C :ε[u]) + ρω2u + b = 0 (in Ω)

Fundamental solution (full space):

Uki (x, ξ) =

1

k2Sµ

[(δqsδik − δqkδis)

∂xq

∂ξsG (‖x−ξ‖; kS) +

∂xi

∂ξkG (‖x−ξ‖; kP)

]G (z ; k) =

eikz

4πz, k2

S =ρω2

µ, k2

P =1−2ν

2(1−ν)k2

S

Radiation conditions for unbounded media, local form:

σ[uP]·x− iρωcP = o(‖x‖−1)

σ[uS]·x− iρωcS = o(‖x‖−1)

‖x‖ −→ ∞

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 45 / 183

Page 46: Methode d Elements Frontieres

Review of classical BEM concepts

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts3. The GMRES iterative solver4. The fast multipole method (FMM) for the Laplace equation

Multipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics6. The fast multipole method for elastodynamics7. Other acceleration methods

Exponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 46 / 183

Page 47: Methode d Elements Frontieres

Review of classical BEM concepts

InterpolationI Partition ∂Ω into elements (possibly curvilinear and with curvilinear edges):

∂Ω = ∪Nee=1Ee

I Isoparametric representation (most commonly used) of ∂Ω and unknown φ:

x =

n(e)∑q=1

Nq(a)xq

φ(x) =

n(e)∑q=1

Nq(a)φq

(a = (a1, a2) ∈ ∆e)

ξ( )

a

1

2

3

12

a

e

E

_

a

_

a

ex

xx

I Connectivity table:

Q(e, q) global number of q-th node of Ee (1≤ e ≤Ne , 1≤ q≤ n(e))

I Isoparametric interpolation: N = NN (for scalar problems).

(with NN: number of nodes and N: number of unknown nodal DOFs)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 47 / 183

Page 48: Methode d Elements Frontieres

Review of classical BEM concepts

Collocation BEMSample integral equation (Laplace + Dirichlet, direct or single-layer formulation):∫

∂Ω

G (x, ξ)ϕ(ξ) dSξ = b(x) (x∈ ∂Ω)

I Principle: enforce integral equation at the NN nodes x = x1, . . . , xNN .I Leads to linear system of equations

Aϕ = b (A∈RN×N , b∈RN)

where

APQ =∑

e∈I (Q)

∫∆e

G (xP , ξ(a))NQ(a)J(a)da (1 ≤ P,Q ≤ N)

bP = b(xP)

I Matrix A square, fully-populated, invertible, non-symmetric obtained byassembly of element matrices

Ae(xP) ∈ R1,n(e) =

[∫∆e

G (xP , ξ(a))Nq(a)J(a)da

]1≤q≤n(e)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 48 / 183

Page 49: Methode d Elements Frontieres

Review of classical BEM concepts

Evaluation of element integrals

Ae(xP) ∈ R1,n(e) =

[∫∆e

G (xP , ξ(a))Nq(a)J(a)da

]1≤q≤n(e)

I If xP 6∈Ee (nonsingular element integral): Gaussian quadrature

Ae(xP) ≈G∑

g=1

wgG (xP , ξ(ag ))Nq(ag )J(ag )

I If xP ∈Ee (singular element integral): specialized treatment:I Weakly singular integrals (O(r−1) kernel in 3-D) removed by suitable

transformaation of parametric coordinates aI Strongly singular integrals (O(r−2) in 3-D) either

(i) recast into weakly singular integrals using regularization techniques(ii) evaluated directly as Cauchy principal values

I For simple element shapes and interpolations (e.g. 3-noded isoparametrictriangle), analytic singular integration available

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 49 / 183

Page 50: Methode d Elements Frontieres

Review of classical BEM concepts

Galerkin BEMExample (simplest): solve Dirichlet problem for Laplace equation using single-layerpotential

∀ϕ∈H−1/2(∂Ω), find ϕ∈H−1/2(∂Ω), B(ϕ, ϕ) = 〈b, ϕ〉∂Ω

with B(ϕ, ϕ) =

∫∂Ω

∫∂Ω

ϕ(ξ)G (x, ξ)ϕ(x) dSξ dSx

I Leads to linear system of equations

Aϕ = b (A∈RN×N , b∈RN)

where

APQ =∑

e′∈I (P)

∑e∈I (Q)

∫∆e′

NP(a′)∫

∆e

G (x(a′), ξ(a))NQ(a)J(a)da

J(a′)da′ (1 ≤ P,Q ≤ N)

bP =∑

e′∈I (P)

∫∆e′

NP(a′)b(x(a′))J(a′)da′

I Matrix A square, fully-populated, invertible, symmetric

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 50 / 183

Page 51: Methode d Elements Frontieres

Review of classical BEM concepts

Limitations of “traditional” BEM

CPU for the main steps of traditional BEMs:

(a) Set-up of A: CPU = O(N2);

(b) Solution using direct solver (usually LU factorization): CPU = (N3);

(c) Evaluation of integral representations at M points: CPU = O(N ×M).

Besides:

(d) O(N2) memory needed for storing A.=⇒ Problem size N at most O(104)

Reasons fors (a)-(d):

I G (x, ξ) non-zero for all (x, ξ);

I Element matrices Ae(xP) recomputed for each new collocation point xP .

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 51 / 183

Page 52: Methode d Elements Frontieres

Review of classical BEM concepts

Overcoming the limitations of “traditional” BEM

Two issues:

1. To accelerate the BEM (i.e. to reduce its O(N3) complexity)

2. To increase permitted problem sizes.

Main ideas:

(i) Iterative solution of BEM matrix equation=⇒ CPU = O(N2 × NI), with usually NI/N → 0;

(ii) Acceleration of matrix-vector product Aϕ for given density ϕ.=⇒ complexity lower than O(N2).

Several strategies available for developing fast BEMsThe Fast Multipole Method (FMM) is the most developed to date.

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 52 / 183

Page 53: Methode d Elements Frontieres

The GMRES iterative solver

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts3. The GMRES iterative solver4. The fast multipole method (FMM) for the Laplace equation

Multipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics6. The fast multipole method for elastodynamics7. Other acceleration methods

Exponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 53 / 183

Page 54: Methode d Elements Frontieres

The GMRES iterative solver

The GMRES algorithm

I Linear system

Au = b

A∈RN×N or CN×N , A invertibleu∈RN ou CN ,b∈RN ou CN

I Generalized Minimal RESiduals (GMRES): principle

u(k) = arg minu∈u(0)+Vk

‖b−Au‖2, Vk = Vectv1, . . . , vk to be specified

Explicit form of minimisation:

u(k) = u(0) +k∑

j=1

α(k)j vj

with α(k) ≡ (α(k)1 , . . . , α

(k)k ) = arg min

α1,...,αk

∥∥∥∥r(0) −k∑

j=1

αj Avj

∥∥∥∥2

I Iteration k : basis (v1, . . . , vk−1) augmented with a new vector vk , hence

Vk−1⊂Vk .

Minimization problem size increases with k : restart when k >m, GMRES(m)Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 54 / 183

Page 55: Methode d Elements Frontieres

The GMRES iterative solver

The GMRES algorithm

I If k = N, one must have u(N) = u (hence convergence within ≤ N iterationsI In practice: (i) Niter N is desired, (ii) exact convergence not necessary.

r (k) ≡ ‖b− Au(k)‖ ≤ εr (0) (ε: tolerance)

I Construction of subspace Vk = Vectv1, . . . , vk using Krylov vectors:

Vk = Vectw1, w2 = Aw1, . . . , wk = Awk−1 with w1 = r(0)

I Sequence (v1, . . . , vk) constructed using orthonormalization of Krylovvectors (w1, . . . ,wk):

vT

`vk = 0

‖vk‖ = 1

Vectw1, . . . ,wk = Vectv1, . . . , vk = Vk

for all k ≥ 1

Main contribution to computational cost: evaluation of matrix-vectorproducts Aw for given w.

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 55 / 183

Page 56: Methode d Elements Frontieres

The GMRES iterative solver

PreconditioningI Left preconditioning:

M−1Au = M−1b

Improved convergence (i.e. less iterations) if M−1A better conditioned thanA

I Krylov sequence associated with matrix M−1A:

r(0) = M−1b−M−1Au(0) = w1 i.e. Mw1 = b− Au(0)

wk+1 = M−1Awk i.e. Mwk+1 = Awk (k ≥ 0)

I Modified convergence criterion:

‖M−1b−M−1Au(k)‖ ≤ ε‖M−1b‖

I Many approaches available for definir preconditioning matrices M:→ Diagonal preconditioneur Mij = Aijδij ;→ Incomplete LU factorization of A;→ Sparse approximate inverses;→ Multigrid approaches;→ Preconditioners exploiting specific features of the problems, e.g.

single-inclusion case for many-inclusion problems.

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 56 / 183

Page 57: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts3. The GMRES iterative solver4. The fast multipole method (FMM) for the Laplace equation

Multipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics6. The fast multipole method for elastodynamics7. Other acceleration methods

Exponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 57 / 183

Page 58: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation

Origins of the FMM: fast computation of potentials

Φ(xi ) = C

Nξ∑j=1

qj

‖ξj −xi‖(1≤ i ≤Nx)

C = (4πε0)−1, electric charges qj (electrostatic); C =G, masses qj (gravitation)

I Straightforward computation: CPU = O(NxNξ);I Reason: influence coefficient ‖ξj −xi‖−1 depends on both xi and ξj ;I Fast summation (Greengard, 1985): CPU = O(Nx + Nξ)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 58 / 183

Page 59: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation

Iterative solution of integral equation

Model problem:

find ϕ,

∫∂Ω

G (x, ξ)ϕ(ξ) dSξ = b(x), i.e. S[ϕ, ∂Ω](x) = b(x) (x ∈ ∂Ω)

Krylov vector: Aϕ discretized version of

S[ϕ, ∂Ω](x) :=

∫∂Ω

G (x, ξ)ϕ(ξ) dSξ

Integral operator S: a generalization to infinite-dimensional function spaces (hereH−1/2(∂Ω)) of the concept of matrix.

I Using traditional BEM: CPU = O(N2) for each evaluation of Aϕ;

I Aim of the Fast Multipole Method: evaluation of Aϕ at CPU cost lowerthan O(N2).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 59 / 183

Page 60: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation

FMM: main ideas

S[ϕ, ∂Ω](x) :=

∫∂Ω

G (x, ξ)ϕ(ξ) dSξ

I Main idea: seek to reuse element integrations (w.r.t. ξ) when collocationpoint x is changed;

I Method: express the fundamental solution as a series of products:

G (x, ξ) =∞∑n=0

gn(x)hn(ξ)

and truncate the series at suitable level p:

G (x, ξ) =

p∑n=0

gn(x)hn(ξ) + εG (p)

I Consequence:

S[ϕ, ∂Ω](x) =

p∑n=0

gn(x)

∫∂Ω

hn(ξ)ϕ(ξ) dSξ + ε(p)

The p integrations are independent on x and are reusable as x is changed.Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 60 / 183

Page 61: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation

FMM: main ideas

How to express G (x, ξ) as a sum (series) of products? Taylor expansionabout origins x0 and ξ0:

G (x, ξ) =∑m≥0

1

m![∂mξ G ](x, ξ0) (ξ−ξ0)m

=∑n≥0

∑m≥0

1

m!n![∂nx∂

mξ G ](x0, ξ0) (x−x0)n(ξ−ξ0)m

ξ

ξ0 x0

x

r r0

For Laplace kernel 1/r : sophisticated version of Taylor expansion leads tomultipole expansion (see next).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 61 / 183

Page 62: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation Multipole expansion of 1/r

1. Review of boundary integral equation formulations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equationMultipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methods

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 62 / 183

Page 63: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation Multipole expansion of 1/r

Multipole expansion of 1/rThe Multipole expansion of 1/r is given (see proof later) by:

1

‖ξ−x‖ =+∞∑n=0

n∑m=−n

Rn,m(x−x0)+∞∑n′=0

n′∑m′=−n′

(−1)nSn+n′,m+m′(ξ0−x0)Rn′,m′(ξ−ξ0)

Rn,m(z) =1

(n + m)!Pmn (cosα)e imβρn

Sn,m(z) = (n −m)!Pmn (cosα)e imβ 1

ρn+1

with z = ρ[sinα(cosβ e1 + sinβ e2)

)+ cosα e3

]Conditions for convergence of the multipole expansion:

‖x−x0‖ < ‖ξ − x0‖ and ‖ξ−ξ0‖ < ‖x−ξ0‖

ξ

ξ0 x0

x

r r0

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 63 / 183

Page 64: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation Multipole expansion of 1/r

Multipole expansion of 1/r : computation of solid harmonics Rn,m,Sn,m

Solid harmonics Rn,m and Sn,m evaluated using Cartesian coordinates usingrecursion formulae derived from those for Legendre polynomials:

I The Rn,m(z) are computed recursively by setting R0,0(z) = 1 and using

Rn+1,n+1(z) =z1 + iz2

2(n + 1)Rn,n(z)

((n + 1)2 −m2)Rn+1,m(z)− (2n + 1)z3Rn,m(z) + |z|2 Rn−1,m(z) = 0 (n≥m)

I The Sn,m(z) are computed recursively by setting S0,0(z) = 1/ |z| and using

Sn+1,n+1(z) =(2n + 1)(z1 + iz2)

|z|2Rn,n(z)

|z|2 Sn+1,m(z)− (2n + 1)z3Sn,m(z) + (n2 −m2)Sn−1,m(z) = 0 (n≥m)

I Finally, Rn,m(z) and Sn,m(z) for negative values of m are computed via theidentities

Rn,−m(z) = (−1)mRn,m(z) Sn,−m(z) = (−1)mSn,m(z)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 64 / 183

Page 65: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation Multipole expansion of 1/r

Multipole expansion of 1/r : computation of solid harmonics Rn,m,Sn,m

Derivatives of the Rn,m:

∂z1Rn,m(z) =

1

2(Rn−1,m−1 − Rn−1,m+1)(z)

∂z2Rn,m(z) =

i

2(Rn−1,m−1 + Rn−1,m+1)(z)

∂z3Rn,m(z) = Rn−1,m

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 65 / 183

Page 66: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation Multipole expansion of 1/r

Multipole expansion of 1/r : proof (1/4)

ξ

ξ0

xr

G (x, ξ) =1

4π‖ξ−x‖ξ − x = (ξ−ξ0)− (x−ξ0)

Spherical coordinates:

(ξ−ξ0) = ρ[sinα(cosβ e1 + sinβ e2) + cosα e3

](x−ξ0) = R

[sin θ(cosϕ e1 + sinϕ e2) + cos θ e3

]1

‖ξ−x‖ = (R2 − 2ρR cos Φ + ρ2)−1/2

cos Φ =1

ρR(ξ−ξ0)·(x−ξ0) = sinα sin θ cos(β − ϕ) + cosα cos θ

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 66 / 183

Page 67: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation Multipole expansion of 1/r

Multipole expansion of 1/r : proof (2/4)

1

‖ξ−x‖ = (R2 − 2ρR cos Φ + ρ2)−1/2

=1

R(1− 2zt + t2)−1/2

(z = cos Φ, t =

ρ

R

)Since (1−2zt + t2)−1/2 is the generating function of the Legendre polynomials,i.e.:

(1− 2zt + t2)−1/2 =∑n≥0

Pn(z)tn (t < 1)

one has:

1

‖ξ−x‖ =+∞∑n=0

Pn(cos Φ)

Rn+1ρn (ρ < R)

ξ

ξ0

xr

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 67 / 183

Page 68: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation Multipole expansion of 1/r

Multipole expansion of 1/r : proof (3/4)

1

‖ξ−x‖ =+∞∑n=0

Pn(cos Φ)

Rn+1ρn (ρ < R)

To recast as a series of products g(ρ, α, β)h(R, θ, ϕ): addition theorem forLegendre polynomials:

Pn(cos Φ) =n∑

m=−n

(n −m)!

(n + m)!

(Pmn (cosα)e imβ

)(Pmn (cos θ)e−imϕ

)1

‖ξ−x‖ =+∞∑n=0

n∑m=−n

Rn,m(ξ−ξ0)Sn,m(x−ξ0)

Rn,m(z) =1

(n + m)!Pmn (cosα)e imβρn

Sn,m(z) = (n −m)!Pmn (cos θ)e imϕ 1

Rn+1

The series is convergent if ‖ξ−ξ0‖ < ‖x− ξ0‖.Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 68 / 183

Page 69: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation Multipole expansion of 1/r

Multipole expansion of 1/r : proof (4/4)

1

‖ξ−x‖ =+∞∑n=0

n∑m=−n

Rn,m(ξ−ξ0)Sn,m(x−ξ0)

Application to evaluation of potentials:

Φ(xi ) = C

Nξ∑j=1

qj

‖ξj − xi‖= C

+∞∑n=0

n∑m=−n

Mn,m(ξ0)Sn,m(xi −ξ0)

with multipole moments defined by

Mn,m(ξ0) =

Nξ∑j=1

qjRn,m(ξj −ξ0)

Truncation of series to n< p (with error control available, see later):

I Evaluation of NξNx influence coefficients ‖ξj −xi‖−1 replaced with

evaluation of p2Nx products Mn,m(ξ0)Sn,m(xi −ξ0)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 69 / 183

Page 70: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation Multipole expansion of 1/r

Multipole expansion of 1/r : proofInsertion of local origin x0 into xi −ξ0:

I Note identity

Sn,m(z) = (−1)n( ∂

∂z1+ i

∂z2

)m ∂n−m

∂zn−m3

1

‖z‖ (m > 0) (a)

= (−1)n+m( ∂

∂z1− i

∂z2

)−m ∂n+m

∂zn+m3

1

‖z‖ (m < 0) (b)

I Invoke multipole expansion of 1/‖z‖ with z = (xi −x0)− (ξ0−x0):

1

‖xi −ξ0‖=

+∞∑n′=0

n∑m′=−n′

Rn′,m′(xi −x0)Sn′,m′(ξ0−x0)

I Use representation (a,b) for Sn′,m′(ξ0−x0);I Exploit harmonicity of 1/‖ξ0−x0‖ via( ∂

∂ξ01

+ i∂

∂ξ02

)( ∂

∂ξ01

− i∂

∂ξ02

) 1

‖ξ0−x0‖+

∂2

∂ξ03

2

1

‖ξ0−x0‖= 0

I Reorder and reorganize resulting formula

Sn,m(xi −ξ0) =+∞∑n′=0

n∑m′=−n′

Rn′,m′(xi −x0)Sn+n′,m+m′(ξ0−x0)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 70 / 183

Page 71: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation Multipole expansion of 1/r

Multipole expansion: truncation error

Assume one can find R > 0 and χ > 1 such that(‖x−x0‖ < R et ‖ξ − x0‖ > χR

)et

(‖ξ−ξ0‖ < R et ‖x−ξ0‖ > χR

)An upper bound of the error arising from truncating the multipole expansion atorder p is:∣∣∣∣ 1

‖ξ−x‖ −p∑

n=0

n∑m=−n

Rn,m(x−x0)

p∑n′=0

n′∑m′=−n′

(−1)nSn+n′,m+m′(ξ0−x0)Rn′,m′(ξ−ξ0)

∣∣∣∣ ≤ 1

R(χ− 1)χp+1

ξ

ξ0 x0

x

r r0

The truncation error is scale-independentMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 71 / 183

Page 72: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The single-level fast multipole method

1. Review of boundary integral equation formulations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equationMultipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methods

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 72 / 183

Page 73: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The single-level fast multipole method

Single-level fast multipole methodBoundary of interest enclosed ina cubic grid d

∂Ω

Convergence of multipoleexpansion guaranteed if x and ξlie in non-adjacent cells, with

χ ≥√

3

Cx

Cξ ∈ (A(Cx))Cξ 6∈ (A(Cx))

Ω

d

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 73 / 183

Page 74: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The single-level fast multipole method

Single-level FMM

I Matrix-vector product ←− integral operator evaluation

S[ϕ, ∂Ω](x) =

∫∂Ω

G (x, ξ)ϕ(ξ) dSξ

I Split into near and far contributions:∫∂Ω

=∑

Cξ∈A(Cx )

∫∂Ω∩Cξ

+∑

Cξ /∈A(Cx )

∫∂Ω∩Cξ

S[ϕ, ∂Ω](x) = S[ϕ, ∂Ω]near(x) + S[ϕ, ∂Ω]far(x)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 74 / 183

Page 75: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The single-level fast multipole method

Single-level FMMFar contribution S[ϕ, ∂Ω]far(x):

S[ϕ, ∂Ω]far(x) =∑

Cξ /∈A(Cx )

∫∂Ω∩Cξ

G (x, ξ)ϕ(ξ) dSξ (x∈Cx)

Introduce (truncated) multipole expansion of G (x, ξ), with ξ0 and x0 chosen ascentres of cells Cξ and Cx :

S[ϕ, ∂Ω]far(x) ≈∑

Cξ /∈A(Cx )

1

p∑n=0

n∑m=−n

Rn,m(x−x0)

p∑n′=0

n′∑m′=−n′

(−1)nSn+n′,m+m′(ξ0−x0)

×∫∂Ω∩Cξ

Rn′,m′(ξ−ξ0)ϕ(ξ) dSξ

=1

p∑n=0

n∑m=−n

Rn,m(x−x0)∑Cξ /∈A(Cx )

p∑n′=0

n′∑m′=−n′

(−1)nSn+n′,m+m′(ξ0−x0) Mn′,m′(Cξ)

=

p∑n=0

n∑m=−n

Rn,m(x−x0)Ln,m(Cx)Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 75 / 183

Page 76: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The single-level fast multipole method

Single-level FMM

Cx

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 76 / 183

Page 77: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The single-level fast multipole method

Single-level FMM: complexity

1. Compute and store multipole moments Mn,m(Cξ) for each integration cell:CPU = O(p2 × NB × (N/NB)) = O(p2 × N).

2. For each collocation cell Cx :

(a) Compute local coefficients Ln,m(Cx , Cξ) (M2L):CPU = O(p2 × p2 × NB) = O(p4 × NB);

Ln,m(Cx) =∑

Cξ /∈A(Cx )

p∑n′=0

n′∑m′=−n′

(−1)nSn+n′,m+m′(ξ0−x0) Mn′,m′(Cξ)

(b) Far contribution S[ϕ, ∂Ω]far(x) to integral operator, for all x∈Cx :CPU = O(p2 × (N/NB))

S[ϕ, ∂Ω]far(x) =+∞∑n=0

n∑m=−n

Rn,m(x−x0)Ln,m(Cx)

(c) Near contribution S[ϕ, ∂Ω]near(x) to integral operator, using standard BEMprocedures: CPU = O

(|A(Cx)| × (N/NB)× (N/NB)

)= O(|A

(Cx)| × N2/N2

B

)Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 77 / 183

Page 78: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The single-level fast multipole method

Single-level FMM: optimal complexity

Total CPU time for one evaluation of S[ϕ, ∂Ω]:

CPU = Ap2N + NB

(Bp4NB + Cp2(N/NB) + D |A(Cx)|N2/N2

B

)= (A + C )p2N + Bp4N2

B + DN2/NB

Optimal choice: NB = O(N2/3), yielding CPU / GMRES iteration = O(N4/3)

I Single-level FMM (Laplace and other elliptic PDEs): CPU = O(N4/3);

I To further improve complexity: multi-level FMM

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 78 / 183

Page 79: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

1. Review of boundary integral equation formulations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equationMultipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methods

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 79 / 183

Page 80: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM1

1

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 80 / 183

Page 81: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: initialization of multipole moments

24

19

20 21

27

31

33

35

36 37

40

41

42 43

18

22 28

32 39

23

26

30

38

25

34 44

29

9 11 12 13 14 1615106 7 8 17

3 5

1

2 4

20 21 22 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 4339 441918 23 24 25

Computation of multipole moments, leaf level cells (`= ¯= 3 here):

Mn,m(C(¯)ξ ; ξ

(¯)0 ) =

∫∂Ω∩C( ¯)

ξ

Rn,m(ξ−ξ(¯)0 )ϕ(ξ) dSξ

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 81 / 183

Page 82: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: upward pass7

11

15

171413

12

8

16

1096

3 5

1

2 4

166 7 8 9 10 11 12 13 14 15 17

Computation of multipole moments, parent cells (`= 3→ `= 2 here):

Mn,m(C(`−1)ξ ; ξ

(`−1)0 ) =

∑C(`)ξ ∈Children(C(`−1)

ξ )

Mn,m(C(`)ξ ; ξ

(`−1)0 ) (M2M)

Upward pass needs translation of origin ξ(`)0 → ξ

(`−1)0 in

Mn,m(C(`)ξ ; ξ

(`)0 )

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 82 / 183

Page 83: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: M2M translation formula for upward pass

Mn,m(C(`−1)ξ ; ξ

(`−1)0 ) =

∑C(`)ξ ∈Children(C(`−1)

ξ )

∫∂Ω∩C( ¯)

ξ

Rn,m(ξ−ξ(`−1)0 )ϕ(ξ) dSξ

M2M translation identity:

Rn,m(ξ−ξ(`−1)0 ) =

∞∑n′=0

n′∑m′=−n′

Rn′,m′(ξ(`)0 −ξ

(`−1)0 )Rn−n′,m−m′(ξ−ξ(`)

0 )

Mn,m(C(`)ξ ; ξ

(`−1)0 ) =

∞∑n′=0

n′∑m′=−n′

Rn′,m′(ξ(`)0 −ξ

(`−1)0 )Mn−n′,m−m′(C(`)

ξ ; ξ(`)0 )

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 83 / 183

Page 84: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: M2M translation formula for upward passProof:

I write ‖x−ξ‖−1 in two ways (inserting either ξ(`−1)0 or ξ

(`)0 as pole):

1

‖x−ξ‖ =+∞∑n=0

n∑m=−n

Rn,m(ξ−ξ(`)0 )Sn,m(x−ξ(`)

0 ) (a)

=+∞∑n=0

n∑m=−n

Rn,m(ξ−ξ(`−1)0 )Sn,m(x−ξ(`−1)

0 ) (b)

I Invoke identity

Sn,m(x−ξ(`−1)0 ) = (−1)n

+∞∑n′=0

n∑m′=−n′

Rn′,m′(ξ(`−1)0 −ξ(`)

0 )Sn+n′,m+m′(x−ξ(`)0 )

I Redefine summation indices ((n,m)← (n + n′, m + m′)), reorder summations

I Identify cofactors of Sn,m(x−ξ(`−1)0 ) in (a) and (b)

Rn,m(ξ−ξ(`−1)0 ) =

∞∑n′=0

n′∑m′=−n′

Rn′,m′(ξ(`)0 −ξ

(`−1)0 )Rn−n′,m−m′(ξ−ξ(`)

0 )

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 84 / 183

Page 85: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: definition of interaction list

Definition of interaction list I(C):

C′ ∈ I(C)⇐⇒ C′ 6∈ A(C) but Father(C′) ∈ A(Father(C))

C′ ∈ I(C)

C′′ ∈ A(C)

`= 2 `= 3

Note: C′ ∈ I(C)⇐⇒ C′ 6∈ A(C) for level `= 2.

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 85 / 183

Page 86: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: definition of interaction list

General case, for generic cell C:

C

C′ ∈ I(C)

C′′ ∈ A(C)

I(C) contains up to

I 63−33 = 189 cells (3-D);

I 62−32 = 27 cells (2-D)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 86 / 183

Page 87: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: M2L translation, upper level `= 2

M2L translation formula between disjoint same-level cells:

Ln,m(C(`)x ) =

∑Cξ /∈A(C(`)

x )

p∑n′=0

n′∑m′=−n′

(−1)nSn+n′,m+m′(ξ(`)0 −x

(`)0 ) Mn′,m′(C(`)

ξ )

x0

ξ0

(2)

(2)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 87 / 183

Page 88: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: M2L translation, upper level `= 2

1716

15

1413

12

11

1096

8

7

I Collocation cell C(0)x : no action taken

I Collocation cell C(1)x : no action taken

I Collocation cell C(2)x : initialize M2L

Ln,m(C(2)x ) =

∑C(2)ξ /∈A(C(2)

x )

p∑n′=0

n′∑m′=−n′

(−1)nSn+n′,m+m′(ξ(2)0 −x

(2)0 ) Mn′,m′(C(2)

ξ )

To apply M2L to A(C(2)x ): subdivision

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 88 / 183

Page 89: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: M2L translation, downward pass

23

24 25

9 11 12 13 14 1615106 7 17

3 5

1

2 4

20 21 22 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 4339 441918 23 24 25

8

Ln,m(C(`)x ; x

(`)0 ) = Ln,m(C(`−1)

x ; x(`)0 )

+∑

C(`)ξ ∈I(C(`)

x )

p∑n′=0

n′∑m′=−n′

(−1)nSn+n′,m+m′(ξ(`)0 −x

(`)0 ) Mn′,m′(C(`)

ξ )

Downward pass entails translation of origin x(`−1)0 → x

(`)0

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 89 / 183

Page 90: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: M2L translation formula for downward pass

Ln,m(C(`−1)x ; x

(`)0 ) =

∞∑n′=0

n′∑m′=−n′

Rn′−n,m′−m(x(`)0 −x

(`−1)0 )Ln′,m′(C(`−1)

x ; x(`−1)0 )

Proof: one must have

∞∑n=0

n∑m=−n

Rn,m(x−x(`)0 )Ln,m(C(`−1)

x ; x(`)0 ) (a)

=∞∑n=0

n∑m=−n

Rn,m(x−x(`−1)0 )Ln,m(C(`−1)

x ; x(`−1)0 ) (b)

Then, insert identity

Rn,m(x−x(`−1)0 ) =

∞∑n′=0

n′∑m′=−n′

Rn′,m′(x−x(`)0 )Rn−n′,m−m′(x

(`)0 −x

(`−1)0 )

into (b) and identify cofactors of Rn,m(x−x(`)0 ) in (a) and (b)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 90 / 183

Page 91: Methode d Elements Frontieres

The fast multipole method (FMM) for the Laplace equation The multi-level fast multipole method

Multi-level FMM: overall complexityFixed number M of DOFs per leaf cell

=⇒ ¯ = O(log N) and O(N/M) leaf cells;Each non-empty level-` cell has (on average) 4 non-empty children cells

=⇒ on average, N(`) = O(4−`N) DOFs per level-` cell

(i) Evaluation of multipole moments in leaf cells:CPU = O(p2 ×M × (N/M)) = O(p2N)

(ii) Upward pass (M2M):

CPU = O(p4 × (N/M)[1 + 4−1 . . .+ 43− ¯] = O(p4N/M)

(iii) Transfer (M2L) at each level 2≤ `≤ ¯ from interaction list of each cell:

CPU = O(p4 × (N/M)[1 + 4−1 . . .+ 42− ¯] = O(p4N/M);

(iv) Downward pass (L2L) at each level:

CPU = O(p4 × (N/M)[1 + 4−1 . . .+ 43− ¯] = O(p4N/M)

(v) Evaluation of local expansions at leaf cells:CPU = O(p2N/M)

(vi) Evaluation of near contributions S[ϕ, ∂Ω]near(x) using standard BEMtechniques:

CPU = O((N/M)×M × |A(C)|M) = O(|A(Cx)|MN)

Overall complexity: CPU = O(N)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 91 / 183

Page 92: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts3. The GMRES iterative solver4. The fast multipole method (FMM) for the Laplace equation

Multipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics6. The fast multipole method for elastodynamics7. Other acceleration methods

Exponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 92 / 183

Page 93: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Elastostatics

Reformulation of Kelvin solution in terms of 1/r :

Uki (x, ξ) =

1

16πµ(1−ν)

(3−4ν)δik

1

r+ (ξi − xi )

∂xk

1

r

(a)

T ki (x, ξ) = − 1

8πµ(1−ν)

(1−2ν)

[nk(ξ)

∂xi

1

r− ni (ξ)

∂xk

1

r

]+ 2(1−ν)δiknj(ξ)

∂xj

1

r+ (ξj − xj)nj(ξ)

∂2

∂xi∂xk

1

r

(b)

Substitute multipole expansion of 1/r into (a) and (b):

1

‖ξ−x‖ =+∞∑n=0

n∑m=−n

Rn,m(x−x0)+∞∑n′=0

n′∑m′=−n′

(−1)nSn+n′,m+m′(ξ0−x0)Rn′,m′(ξ−ξ0)

(again)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 93 / 183

Page 94: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Elastostatics: multipole expansion of Kelvin solution

Uki (x, ξ) =

1

16πµ(1− ν)

+∞∑n′=0

n′∑m′=−n′

F n′,m′

ki (x−ξ0)Rn′,m′(ξ−ξ0)

+ G n′,m′

k (x−ξ0)(ξi −ξi0)Rn′,m′(ξ−ξ0)

F n′,m′

ki (x−ξ0) =+∞∑n=0

n∑m=−n

(−1)nSn+n′,m+m′(ξ0−x0)

[(3− 4ν)δikRn,m(x−x0) + (ξi0−xi0 − xi −xi0)

∂xkRn,m(x−x0)

]G n′,m′

k (x−ξ0) =+∞∑n=0

n∑m=−n

(−1)nSn+n′,m+m′(ξ0−x0)∂

∂xkRn,m(x−x0)

A similar formula (not shown) can be established for the multipole representationof T k

i (x, ξ)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 94 / 183

Page 95: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Elastostatics: multipole moments

M tn′,m′;i (Cξ; ξ0) =

∫∂Ω∪Cξ

Rn′,m′(ξ−ξ0) ti (ξ) dSξ

M tn′,m′(Cξ; ξ0) =

∫∂Ω∪Cξ

Rn′,m′(ξ−ξ0) (ξi −ξi0)ti (ξ) dSξ

Mun′,m′;ki (Cξ; ξ0) =

∫∂Ω∪Cξ

Rn′,m′(ξ−ξ0) nk(ξ)ui (ξ) dSξ

Mun′,m′;k(Cξ; ξ0) =

∫∂Ω∪Cξ

Rn′,m′(ξ−ξ0) nk(ξ)(ξi −ξi0)ui (ξ) dSξ

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 95 / 183

Page 96: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

M2M, M2L and L2L formulaeM2M, M2L and L2L formulae are derived using those for 1/r . For example, theelastostatic M2M formulae are:

M tn,m;i (C(`)

ξ ; ξ(`−1)0 ) =

∞∑n′=0

n′∑m′=−n′

Rn′,m′(ξ(`)0 −ξ

(`−1)0 )M t

n−n′,m−m′;i (C(`)ξ ; ξ

(`)0 )

M tn,m(C(`)

ξ ; ξ(`−1)0 ) =

∞∑n′=0

n′∑m′=−n′

Rn′,m′(ξ

(`)0 −ξ

(`−1)0 )Mn−n′,m−m′(C(`)

ξ ; ξ(`)0 )

+ (ξ(`)i0 − ξ

(`−1)i0 )M t

n−n′,m−m′;i (C(`)ξ ; ξ

(`)0 )

Mun,m;ki (C(`)

ξ ; ξ(`−1)0 ) =

∞∑n′=0

n′∑m′=−n′

Rn′,m′(ξ(`)0 −ξ

(`−1)0 )Mn−n′,m−m′;ki (C(`)

ξ ; ξ(`)0 )

Mun,m;k(C(`)

ξ ; ξ(`−1)0 ) =

∞∑n′=0

n′∑m′=−n′

Rn′,m′(ξ

(`)0 −ξ

(`−1)0 )Mn−n′,m−m′;k(C(`)

ξ ; ξ(`)0 )

+ (ξ(`)i0 − ξ

(`−1)i0 )M t

n−n′,m−m′;ki (C(`)ξ ; ξ

(`)0 )

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 96 / 183

Page 97: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Numerical example: uniform thermal strain in ellipsoidal region

x

yz

a1

a2

a3

FEM

BEM

e

x

z

y

FEM

BEM

Mesh Nodes Elements Oct-tree DOFs

BEM FEM Max level Leaves NBEM NF NBEM + NF

1 267 346 979 3 42 1050 276 1326

2 822 1038 3153 3 100 3126 903 4029

3 1362 1540 5563 3 103 4632 1770 6402

4 2274 2418 9626 4 301 7266 3189 10455

5 5881 5200 26602 4 422 15612 9837 25449

6 12868 9402 61770 5 1175 28218 24495 52713

7 20258 12842 100200 6 1403 38538 41505 80043

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 97 / 183

Page 98: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Numerical example: uniform thermal strain in ellipsoidal region

-0.096

-0.095

-0.094

-0.093

-0.092

-0.091

0 1 2 3 4 5 6 7 8 9 10

s

Sxx

Exact

Mesh 3

Mesh 5

Mesh 7(a)

-0.077

-0.076

-0.075

-0.074

-0.073

-0.072

0 1 2 3 4 5 6 7 8 9 10

s

Syy

Exact

Mesh 3

Mesh 5

Mesh 7

(b)

-0.057

-0.056

-0.055

-0.054

0 1 2 3 4 5 6 7 8 9 10

s

Szz

Exact

Mesh 3

Mesh 5

Mesh 7

(c)

Mesh Precond. (s) FMM Iters Total time

BEM FEM (s/iter) n (s)

1 10 <1 1 37 43

2 36 <1 2 37 154

3 50 <1 3 37 202

4 64 3 6 36 277

5 169 18 11 37 721

6 349 101 19 38 1425

7 512 279 42 38 2913

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+03 1.E+04 1.E+05

DOFs

Total Time (sec.)

FMM-CBEM

Traditional CBEM

Cross over point

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 98 / 183

Page 99: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Numerical example: many-inclusion problem

Nodes Elements Oct-tree DOFs

BEM FEM Max. level Leaves NBEM NF NBEM + NF

93227 122880 326493 5 7176 374784 92289 467073

Precond. (s) Time (s) Iters Total time

BEM FEM Upw. Downw. Direct Cycle n (s)

6609 19 47 48 84 180 147 39656

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 99 / 183

Page 100: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Numerical example: Pian Telessio dam

Dam

Rock

Water

10501010

448

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 100 / 183

Page 101: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Numerical example: Pian Telessio damDam

Rock

Water

10501010

448

Mesh Nodes Elements Oct-tree DOFs

BEM FEM Levels Leaves NBEM NF Total

1 25443 21684 (T3) 73569 (T4) 9 8953 38118 43797 81915

2 23433 7726 (T6) 10307 (T10) 8 3548 50490 46773 97263

3 51978 15296 (T6) 14462 (T10) 8 6786 96636 64152 160788

A 406035 — 279742 — — — — 1218105

Mesh Precond. (s) Time (s) Iters Total time

BEs FEs Upw. Down. Direct Cycle n (s)

1 186 26 23 27 24 76 83 7916

2 328 114 11 21 23 57 82 5818

3 1215 223 23 36 102 165 85 17775

A — — — — — — — 3749

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 101 / 183

Page 102: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Numerical example: Pian Telessio dam

-4.00E-03

-3.00E-03

-2.00E-03

-1.00E-03

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

0 100 200 300 400 500

s (m)

Ux (m)

ABAQUS

Mesh 1

Mesh 2

Mesh 3

(a)

-1.60E-02

-1.40E-02

-1.20E-02

-1.00E-02

-8.00E-03

-6.00E-03

-4.00E-03

-2.00E-03

0.00E+00

0 100 200 300 400 500

s (m)

Uy (m)

ABAQUS

Mesh 1

Mesh 2

Mesh 3

y

z

x

s

(b)

-1.80E-03

-1.60E-03

-1.40E-03

-1.20E-03

-1.00E-03

-8.00E-04

-6.00E-04

-4.00E-04

-2.00E-04

0 100 200 300 400 500

s (m)

Uz (m)

ABAQUS

Mesh 1

Mesh 2

Mesh 3

(c)

-4.0E+05

-3.5E+05

-3.0E+05

-2.5E+05

-2.0E+05

-1.5E+05

-1.0E+05

0 5 10 15 20 25 30

s (m)

Sxx (N/m2)

ABAQUS

Mesh 1

Mesh 2

Mesh 3

-1.4E+06

-1.2E+06

-1.0E+06

-8.0E+05

-6.0E+05

-4.0E+05

-2.0E+05

0.0E+00

2.0E+05

0 5 10 15 20 25 30

s (m)

Syy (N/m2)

ABAQUS

Mesh 1

Mesh 2

Mesh 3

a=151 m

s

x

y

z

-2.0E+06

-1.6E+06

-1.2E+06

-8.0E+05

-4.0E+05

0.0E+00

4.0E+05

8.0E+05

0 5 10 15 20 25 30

s (m)

Szz (N/m2)

ABAQUS

Mesh 1

Mesh 2

Mesh 3

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 102 / 183

Page 103: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Exemple, calcul d’amortissements dans les MEMS

Figure 5. More realistic model of one-fourth of the MEMS: geometry and mesh.

Frangi A., Spinola G., Vigna B., IJNME 68:1031–1051Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 103 / 183

Page 104: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Exemple, calcul d’amortissements dans les MEMSTable II. Comparison between meshes of increasing refinement.

Mesh employed Mesh 1 Mesh 2 Mesh 3

Number of unknowns 125 058 272 364 548 388

Global force (N) 1.80 × 10−4 2.01 × 10−4 2.12 × 10−4

Figure 6. Convergence of the GMRES solver and of the force computed.

Frangi A., Spinola G., Vigna B., IJNME 68:1031–1051Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 104 / 183

Page 105: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Exemple, homogeneisation numerique

Fig. 10 Contour plot of surface stresses „Ãs`… for a model with 216 ‘‘randomly’’ distributed

and oriented short fibers

Fig. 9 A BEM mesh used for the short fiber inclusion „with 456elements…

Liu Y.J., Nishimura N. et al., ASME J. Appl. Mech. 72:115–128 (2005)Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 105 / 183

Page 106: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Exemple, homogeneisation numerique

Fig. 11 A RVE containing 2197 short fibers with the total DOFÄ3 018 678

Liu Y.J., Nishimura N. et al., ASME J. Appl. Mech. 72:115–128 (2005)Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 106 / 183

Page 107: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Exemple, homogeneisation numerique

Fig. 14 A RVE containing 5832 long fibers with the total DOFÄ10 532 592

Liu Y.J., Nishimura N. et al., ASME J. Appl. Mech. 72:115–128 (2005)Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 107 / 183

Page 108: Methode d Elements Frontieres

The fast multipole method (FMM) for elastostatics

Exemple, homogeneisation numerique

Fig. 15 Estimated effective Young’s moduli in the x-direction for the composite model withup to 5832 long rigid fibers „fiber volume fractionÄ3.85%…

Liu Y.J., Nishimura N. et al., ASME J. Appl. Mech. 72:115–128 (2005)Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 108 / 183

Page 109: Methode d Elements Frontieres

The fast multipole method for elastodynamics

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts3. The GMRES iterative solver4. The fast multipole method (FMM) for the Laplace equation

Multipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics6. The fast multipole method for elastodynamics7. Other acceleration methods

Exponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 109 / 183

Page 110: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Avec: Jean-Francois Semblat (Civil Engineering Research Lab [LCPC], Paris)Nicolas Nemitz (doctoral thesis, 2002-2006)Stephanie Chaillat (doctoral thesis, 2005–)Eva Grasso (doctoral thesis, 2008–)Tekoing Lim (doctoral thesis, Atomic Energy Commission [CEA], 2007–)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 110 / 183

Page 111: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Motivation

Modelling of elastic wave propagation in large/unbounded domains

I Soil-structure interaction

I Site effects

I Computational forward solution method for inverse problems

Pros and cons of BEMs for elastic wavesFEM, FDM, DG...

→ Domain mesh

→ Approx. radiation conditions

→ Sparse matrix

BEM

→ Surface mesh (i.e. reduced dimensionality)

→ Exact radiation conditions

→ Fully-populated matrix

BEM adequate for large (unbounded) media with simple (linear) properties.Fully-populated BEM influence matrix is a priori a severe limiting factor

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 111 / 183

Page 112: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Standard BEM (3-D elastodynamics, frequency domain)

Governing integral equation for boundary displacements and tractions

cik(x)ui (x) =

∫∂Ω

[ti (x)Uk

i (x, ξ;ω)− ui (x)T ki (x, ξ;ω)

]dSξ (x ∈ ∂Ω)

Full-space elastodynamic fundamental solutions

Uki (x, ξ;ω) =

1

4πk2Sµ

((δqsδik − δqkδis) ∂

∂xq

∂ysGS(‖x− ξ‖) +

∂xi

∂ykGP(‖x− ξ‖)

)T ki (x, ξ;ω) = Cijh`

∂y`Uk

h (x, ξ;ω)nj(ξ)

Gα(z) =exp(ikαz)

z(fund. sol. Helmholtz eqn., α = P,S)

BEM discretization =⇒ fully-populated system of linear equations.

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 112 / 183

Page 113: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Computational limitations of standard BEM

Solution of fully-populated matrix equation

I Direct solvers (LU factorisation, . . .) :I Pros: robust, accurate;I Cons: O(N2) memory and O(N3) CPU

I Iterative solvers (GMRES, . . .) :I Pros: O(Niter × N2) CPU;I Cons: O(N2) memory; Niter may be large

(N: number of BE DOFs)

Limitations of standard BEM

I High memory cost→ problem size limit N = O(104) (PC, single-proc.)

I Limited geometric complexity, (piecewise) heterogeneity, frequency range

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 113 / 183

Page 114: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Fast multipole accelerated BEM

Fast Multipole Method (FMM):

I Based on iterative linear equation solvers (GMRES)

I Fast method for evaluating matrix-vector products, i.e. discretized versions ofe.g. ∫

∂Ω

ti (x)Uki (x, ξ;ω) dSξ (for given solution candidate t)

A few milestones

I Laplace: Rokhlin (1985)

I Electrostat.: Greengard (1988)

I Electromag.: Chew (1994), Darve (2000), Sylvand (2002)...

I Elastodyn. freq. domain: Fujiwara (2000)

I Elastodyn., time domain: Nishimura (2002)

I BEM-FEM : Margonari, Bonnet (2004), Gaul et al...

I Effective prop. of composite mater.: Nishimura, Liu (2005)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 114 / 183

Page 115: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Decomposition of Helmholtz fundamental solution

Multipole expansion formula (“diagonal form”, Epton and Dembart 1995)

ξ

ξ0 x0

x

r r0

exp(ik‖ξ − x‖)‖ξ − x‖ =

ik

4πlim

L→+∞

∫s∈S

e ik s.ξGL(s; r0; k)e−ik s.xd s

Transfer function

GL(s; r0; k) =L∑

p=0

(2p + 1)iph(1)p (k‖r0‖)Pp

(cos(s, r0)

)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 115 / 183

Page 116: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Single-level FMM

Boundary of interest enclosed incubic grid d

∂Ω

Convergence of multipoleexpansion assured if x and ξ liein non-adjacent cells

Cx

Cξ ∈ (A(Cx))Cξ 6∈ (A(Cx))

Ω

d

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 116 / 183

Page 117: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Single-level FMM

Matrix-vector product ←− evaluation of integral operator

I Must compute e.g.:

[Kt](x) :=

∫∂Ω

ti (x)Uki (x, ξ;ω) dSξ (for given solution candidate t)

I Split integrals into near and FM contributions:∫∂Ω

=∑

Cξ∈A(Cx )

∫∂Ω∩Cξ

+∑

Cξ /∈A(Cx )

∫∂Ω∩Cξ

[Kt](x) = [Kt]near(x) + [Kt]far(x)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 117 / 183

Page 118: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Single-level FMM algorithm: principle

ξ0

ξ1 ξ2

ξ3 ξ4

Cx

x0

x1

x2

x3

x4

∫∂Ω

ti (x)Uki (x, ξ;ω) dSξ (for given solution candidate t)

exp(ik‖ξ − x‖)‖ξ − x‖ =

ik

4πlim

L→+∞

∫s∈S

e ik s.ξGL(s; r0; k)e−ik s.xd s

I compute multipole moments for each cell Cξ and quadrature point

I Transfer (M2L) from Cξ to non-adjacent CxI Evaluate FM contribution to matrix-vector product

I Add near contribution to matrix-vector product (computed using standardBEM techniques)

Complexity of single-level elastodynamic FMM: O(N3/2) per GMRES iterationMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 118 / 183

Page 119: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Multi-level FMM

level `= 0

level `= 1

level `= 2

level `= 3... level `= ¯ (leaf)

→ highest level for which FMM is applicable.

computation organization based onrecursive subdivision (oc-tree)

Complexity of multi-level elastodynamic FMM: O(N log2 N)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 119 / 183

Page 120: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Computational issues: truncation of transfer function

Transfer function

GL(s; r0; k) =L∑

p=0

(2p + 1)iph(1)p (k‖r0‖)Pp

(cos(s, r0)

)

Choice of truncation parameter:

I L too small: convergence not reached for GL(s; r0; k);

I L too large: divergence of h(1)p

Empirical formula used

L=√

3kSd + Cεlog10(√

3kSd + π)(see Darve 2000 and Sylvand 2002 for Maxwell eqns)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 120 / 183

Page 121: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Computational issues: adjustment of constant Cε

d

L =√

3kSd + Cεlog10(√

3kSd + π)

0 5 10 15 20Cε

10-4

10-2

100

102

RM

S so

lutio

n er

ror

on c

avity

sur

face

erreur

20

30

40

50

60

70

CPU

/ ite

r.

CPU

−→ Cε = 7.5 (consistent with Sylvand 2002, Maxwell eqns)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 121 / 183

Page 122: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Computational issues: number of levels

dmin 2dmin 4dmin

L =√

3kSd + Cεlog10(√

3kSd + π)

# of levels dmin ×kS/2π rel. err. / BEM CPU / iter (s)

4 1.32 1.1 .10−5 367

5 0.66 4.7 .10−4 134

6 0.33 3.7 .10−3 104

7 0.17 5.1 .10−2 200

8 0.083 1.7 .10−1 380

Choice of leaf cell size (⇔ choice of # of levels):

I influence on CPU

I influence on accuracy

→ dmin ≥ 0.3× λS

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 122 / 183

Page 123: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Computational issues: discretization relative to wavelength

10 20points per S wavelength

10-3

10-2

RM

S so

lutio

n er

ror

on c

avity

sur

face

erreur

0

50

100

150

200

250

300

CPU

/ ite

r.

CPU

→ 10 points per S wavelength

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 123 / 183

Page 124: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Numerical verification of theoretical complexity (CPU), Helmholtz

Example: sphere under uniform normal velocity. Mesh refinement, meshdensity / wavelength kept fixed

N. Nemitz, M. Bonnet, Eng. Anal. Bound. Elem (2008)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 124 / 183

Page 125: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Numerical verification of theoretical complexity (CPU),elastodynamics

1e+02 1e+03 1e+04 1e+05 1e+06

N

1e-02

1e+00

1e+02

1e+04

CPU

/ite

r (s

)

BEMO(N

2)

single-level FMM

O(N3/2

)multi-level FMMO(N log

2N)

Chaillat S., Bonnet M., Semblat J.F., Comp. Meth. Appl. Mech. Engng. (2008)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 125 / 183

Page 126: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example (Helmholtz)

Identification of a dual hard scatterer

ξ1/a

ξ2/a

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−12

−10

−8

−6

−4

−2

x 104

N. Nemitz, M. Bonnet, Eng. Anal. Bound. Elem (2008).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 126 / 183

Page 127: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example (Helmholtz)

FMM: numerical parametersElement and DOF count (FM-BEM):

Cube size Cube Obstacle Total GElements DDLs Elements DDLs Elements DDLs

16a 76800 38402 336 170 77136 38572 1003

32a 307200 153602 336 170 307536 153772 1503

CPU timing (single-CPU PC) and GMRES iteration count

Cube size utrue on S ∪Γtrue u on S u on S T on G16a 1444s (Niter = 435) 969s (Niter = 282) 1163s (Niter = 342) 852s

32a 6461s (Niter = 439) 5615s (Niter = 388) 6818s (Niter = 476) 1860s

N. Nemitz, M. Bonnet, Eng. Anal. Bound. Elem (2008).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 127 / 183

Page 128: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by a spherical cavity

Oθ R z

x

yplane wave

Chaillat S., Bonnet M., Semblat J.F., Comp. Meth. Appl. Mech. Engng. (2008)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 128 / 183

Page 129: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by a spherical cavity

θ= 0

1 1.5 2 2.5 3r/R

-2

-1

0

1ra

dial

dis

plac

emen

t

kPa/π = 1 analytical

kPa/π = 1 numerical

kPa/π = 4 analytical

kPa/π = 4 numerical

θ= 0

θ= π/4

1 1.5 2 2.5 3r/R

-0.5

0

0.5

1

radi

al d

ispl

acem

ent

kPa/π = 1 analytical

kPa/π = 1 numerical

kPa/π = 4 analytical

kPa/π = 4 numerical

θ = π/4

θ= π/2

1 1.5 2 2.5 3r/R

-0.4

-0.2

0

0.2

0.4

radi

al d

ispl

acem

ent

kPa/π = 1 analytical

kPa/π = 1 numerical

kPa/π = 4 analytical

kPa/π = 4 numerical

θ = π/2

θ= 3π/4

1 1.5 2 2.5 3r/R

-0.5

0

0.5

1

1.5

2

radi

al d

ispl

acem

ent

kPa/π = 1 analytical

kPa/π = 1 numerical

kPa/π = 4 analytical

kPa/π = 4 numerical

θ = 3π/4

zxy

N = 122, 886

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 129 / 183

Page 130: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by a hemispheric canyon

y

zplane P wave

a

D = 3a

free surface

elastic half-spaceA

B C

(N = 23382)

I Simplified configuration for topographic site effect

I Low frequency: comparison with other published results

I Higher frequency: FMM

Chaillat S., Bonnet M., Semblat J.F., Comp. Meth. Appl. Mech. Engng. (2008)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 130 / 183

Page 131: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by a hemispheric canyon

Comparaison with earlier results, kPa = 0.25 (low frequency)

x, yz

a

D = 3a

A

B Cs

0 1 2 3s / a

0

1

2

3

4

disp

lace

men

t mod

ulus

|uy| (present FMM)

|uy| (Sanchez-Sesma)

|uy| (Reinoso et al.)

|uz| (present FMM)

|uz| (Sanchez-Sesma)

|uz| (Reinoso et al.)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 131 / 183

Page 132: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by a hemispheric canyon

Results for higher frequency kPa = 5N = 287 946 (86 iter., 210 s / iter, single-proc. 3 GHz PC)

x, yz

a

D = 3a

A

B Cs

0 1 2 3s / a

0

1

2

3

disp

lace

men

t mod

ulus

|uy| (present FMM)

|uz| (present FMM)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 132 / 183

Page 133: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by a hemispheric canyon

Study of convergence of GMRES

kPa = 0.25 kPa = 0.5 kPa = 0.75 kPa = 1.5 kPa = 5 kPa = 10

D = 3a 7 (23382) 10 (23382) 12 (23382) 19 (23382) 86 (287946) > 280 (1145700)

D = 5a 7 (61875) 10 (61875) 15 (61875) 28 (61875) 159 (774180)

D = 7a 8 (77565) 13 (77565) 17 (77565) 43 (77565)

D = 20a 14 (98844) 39 (98844) 43 (98844)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 133 / 183

Page 134: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by a semi-elliptical canyon

B

C

Dx

y

z

a

b

a

y

zplane P wave

a

D = 6a

free surface

elastic half-space

D EBA

C

θ0

I Simplified configuration for topographic site effect

I Low frequency: comparison with other published results

I Higher frequency: FMM

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 134 / 183

Page 135: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by a semi-elliptical canyon

Comparaison with earlier results, kSa = 0.5 (low frequency), N = 25 788

-3 -2 -1 0 1 2 3s / R

0.5

1

1.5

2

2.5

3

3.5di

spla

cem

ent m

odul

us

|uy| (present FMM)

|uy| (Reinoso et al.)

|uz| (present FMM)

|uz| (Reinoso et al.)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 135 / 183

Page 136: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by a semi-elliptical canyon

Results for higher frequency ksa = 2

0.012

0.630

1.250

1.870

2.500

x

y0.28

0.97

1.66

2.35

3.05

N = 353 232 (32 iter., 140 s / iter, single-proc. 3 GHz PC)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 136 / 183

Page 137: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by an alluvial hemisphericvalley

x, y

z

plane P wave

R

D = 5R

free surface

elastic half-spaceA

B C

(N = 17409)

I µ2 = 0.3µ1, ρ2 = 0.6ρ1, ν1 = 0.25, ν2 = 0.3

I Low frequency: comparison with Sanchez-Sesma (1983) and Delavaud (2007)

I Higher frequency: FMM

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 137 / 183

Page 138: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by an alluvial hemisphericvalley

Comparaison with earlier results, kPR = 0.5

I Sanchez-Sesma, 1983 (semi-analytical)

I Delavaud, 2007 (spectral finite element method)

x, yz

R

D = 5R

A

B Cs

0 1 2x/R

0

1

2

3

4

5

6

disp

lace

men

t mod

ulus

|uy| (present FMM)

|uy| (Sanchez-Sesma 1983)

|uy| (Delavaud 2007, SEM)

|uz| (present FMM)

|uz| (Sanchez-Sesma 1983)

|uz| (Delavaud 2007, SEM)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 138 / 183

Page 139: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by an alluvial hemisphericvalley

Comparaison with earlier results, kPR = 0.7:

I Sanchez-Sesma, 1983 (semi-analytical)

I Delavaud, 2007 (spectral finite element method)

x, yz

R

D = 5R

A

B Cs

0 2x/R

0

1

2

3

4

5

6

disp

lace

men

t mod

ulus

|uy| (present FMM)

|uy| (Sanchez-Sesma 1983)

|uy| (Delavaud 2007, SEM)

|uz| (present FMM)

|uz| (Sanchez-Sesma 1983)

|uz| (Delavaud 2007, SEM)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 139 / 183

Page 140: Methode d Elements Frontieres

The fast multipole method for elastodynamics

Example: scattering of a plane P wave by an alluvial hemisphericvalley

Results for a higher frequency kPR = 1N = 84 882 (76 iterations, single-proc. 3 GHz PC)

x, yz

R

D = 5R

A

B Cs

0 1 2x/R

0

1

2

3

4

5

6

disp

lace

men

t mod

ulus

|uy| (present FMM)

|uz| (present FMM)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 140 / 183

Page 141: Methode d Elements Frontieres

Other acceleration methods

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts3. The GMRES iterative solver4. The fast multipole method (FMM) for the Laplace equation

Multipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics6. The fast multipole method for elastodynamics7. Other acceleration methods

Exponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 141 / 183

Page 142: Methode d Elements Frontieres

Other acceleration methods Exponential representation of 1/r

1. Review of boundary integral equation formulations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equation

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methodsExponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. PreconditioningMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 142 / 183

Page 143: Methode d Elements Frontieres

Other acceleration methods Exponential representation of 1/r

Exponential representation of 1/rI Partial Fourier transform along (ξ1, ξ2) coordinates (η1, η2 transformed

variable):

∆G (x, ·) + δ(· · · − x) = 0 =⇒ G,33 − η2G +e−iη.x

4π2δ(ξ3−x3) = 0

I Solve analytically for G (η1, η2, ξ3; x) (case (ξ3 > x3)):

G (η1, η2, ξ3; x) =1

8π2exp[−η(ξ3−x3) + i

(η1(ξ1−x1) + η2(ξ2−x2)

) ]I Exponential representation of 1/r (case ξ3 > x3):

1

‖ξ−x‖ =1

∫ +∞

0

∫ 2π

0

e−η[ (ξ3−x3)−i( cosα(ξ1−x1)+sinα(ξ2−x2) ) ] dαdη

I Similar (but distinct) formula available for the case ξ3 < x3.

I Cheng, H., Greengard, L., Rokhlin, V. A fast adaptive multipolealgorithm in three dimensions. J. Comp. Phys., 155:468–498 (1999).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 143 / 183

Page 144: Methode d Elements Frontieres

Other acceleration methods Exponential representation of 1/r

Exponential representation of 1/r

1

‖ξ−x‖ =1

∫ +∞

0

∫ 2π

0

e−η[ (ξ3−x3)−i( cosα(ξ1−x1)+sinα(ξ2−x2) ) ] dαdη (ξ3 > x3)

Division of interaction list into 6 (3-D) or 4 (2-D) sublists:

U U U

UUUUUU

U U U U U U

D

DDDDDD

D D

E EW C

I Uplist (U)

I Downlist (D)

I Eastlist (E)

I Westlist (W)

I Northlist (N), for 3-D

I Southlist (S), for 3-D

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 144 / 183

Page 145: Methode d Elements Frontieres

Other acceleration methods Exponential representation of 1/r

Exponential representation of 1/r : numerical quadrature

∣∣∣∣ 1

‖ξ−x‖ −sε∑

k=1

wk

Mk

Mk∑j=1

e−ηk [ (ξ3−x3)−i( cosαj,k (ξ1−x1)+sinαj,k (ξ2−x2) ) ]

∣∣∣∣ < ε

I Outer numerical quadrature: points ηk and weights wk given by Cheng,Rokhlin, Yarvin (1999);

I Inner numerical quadrature: Mk equally-spaced angles αj,k = 2πj/Mk , withMk also given by Cheng, Rokhlin, Yarvin (1999).

I Comparison with ”traditional” multipole expansion:

M1 + . . .+ Msε = O(p2ε )

I Cheng, H., Rokhlin, V., Yarvin, N. Nonlinear optimization, quadratureand interpolation. SIAM J. Optim., 9:901–923 (1999).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 145 / 183

Page 146: Methode d Elements Frontieres

Other acceleration methods Exponential representation of 1/r

Exponential representation of 1/r and diagonal translations∣∣∣∣ 1

‖ξ−x‖ −sε∑

k=1

wk

Mk

Mk∑j=1

e−ηk [ (ξ3−x3)−i( cosαj,k (ξ1−x1)+sinαj,k (ξ2−x2) ) ]

∣∣∣∣ < ε

Insert poles x, ξ, define multipole moments and translation operations.I Multipole moments:

M(k, j) =

∫∂Ω∪Cξ

e−ηk [ (ξ3−ξ3,0)−i( cosαj,k (ξ1−ξ10,)+sinαj,k (ξ2−ξ2,0) ) ]φ(ξ) dSξ

I M2M, M2L, L2L translations are diagonal, e.g.:

L(k , j) = M(k, j) e−ηk [ (ξ3,0−x3,0)−i( cosαj,k (ξ1,0−x1,0)+sinαj,k (ξ2,0−x2,0) ) ]

Speeds up M2M, M2L, L2L operations(O(p2N) instead of O(p4N) using ”traditional” FMM)

I Summation w.r.t. (k, i) performed on local expansions, at the very end (afterupward, M2L and downward phases)

I Exponential expansions available for other kernels, e.g. HelmholtzUseful for FMM for low-frequency wave problems

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 146 / 183

Page 147: Methode d Elements Frontieres

Other acceleration methods FMM using equivalent sources

1. Review of boundary integral equation formulations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equation

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methodsExponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. PreconditioningMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 147 / 183

Page 148: Methode d Elements Frontieres

Other acceleration methods FMM using equivalent sources

FMM using equivalent sourcesMain idea: express fields at remote points in terms of equivalent density, e.g.:∫

∂Ω∩CξG,n(x, ξ)u(ξ) dSξ =

∫Sd

G (x, z)φ(z) dSz for some φ (x 6∈ A(Cξ))

x0

ξ0 Sd

I Ying, L., Biros, G., Zorin, D. A kernel-independent adaptive fastmultipole in two and three dimensions. J. Comp. Phys., 196:591–626 (2004).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 148 / 183

Page 149: Methode d Elements Frontieres

Other acceleration methods FMM using equivalent sources

FMM using equivalent sourcesMain idea: express fields at remote points in terms of equivalent density, e.g.:∫

∂Ω∩CξG,n(x, ξ)u(ξ) dSξ =

∫Sd

G (x, z)φ(z) dSz for some φ (x∈ Sc)

x0

ξ0 Sd

cS

I Solve the above (Fredholm, 1st kind) integral equation for φI Truncation parameter = discretization of φ

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 149 / 183

Page 150: Methode d Elements Frontieres

Other acceleration methods FMM using equivalent sources

FMM using equivalent sources: M2M translations

S(l)d

S(l−1)d

S(l−1)c

Find φ(`−1),

∫S

(`−1)d

G (x, z)φ(`−1)(z) dSz =

∫S

(`)d

G (x, z)φ(`)(z) dSz (x∈ S (`−1)c )

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 150 / 183

Page 151: Methode d Elements Frontieres

Other acceleration methods FMM using equivalent sources

FMM using equivalent sources: L2L translations

(l)dS

S(l−1)d

(l)Sc

Find φ(`),

∫S

(`)d

G (x, z)φ(`)(z) dSz =

∫S

(`−1)d

G (x, z)φ(`−1)(z) dSz (x∈ S (`)c )

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 151 / 183

Page 152: Methode d Elements Frontieres

Other acceleration methods FMM using equivalent sources

FMM using equivalent sources

I Kernel-independent acceleration method;

I Truncation parameter p = discretization of φ (scale-independent for kernelsassociated with elliptic problems);

I Found by Ying, Biros, Zorin (2004) to have O(p2N) complexity / iteration;

I Requires solving 1st kind integral equations (ill-conditioned integral operator)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 152 / 183

Page 153: Methode d Elements Frontieres

Other acceleration methods Clustering and low-rank approximations

1. Review of boundary integral equation formulations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equation

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methodsExponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. PreconditioningMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 153 / 183

Page 154: Methode d Elements Frontieres

Other acceleration methods Clustering and low-rank approximations

DOF clusteringI Spatially local DOFs (e.g. nodal values on a BEM mesh);I Recursive subdivision of set of DOFs into subsets, e.g. by bisection

Example (1-D BE mesh, e.g for a 2-D crack problem):

15141397312 4 6 8 125

7,8,9,10,115,61,2,3,4

1,...,6 7,...,15

1,...,15=I

12,13,14,15

1,2 3,4 5,6 7,8,9 12,13 14,1510,11

1011

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 154 / 183

Page 155: Methode d Elements Frontieres

Other acceleration methods Clustering and low-rank approximations

Block clustering of influence matrixI Let Ω1,Ω2 denote the geometrical support of two clusters (i.e. of two subsets

of the DOF index list K). For instances, Ω1,Ω2 are cubic cells.Ω1,Ω2 are admissible if

Min(Diam(Ω1),Diam(Ω2)

)≤ ηDist(Ω1,Ω2)

Ω1

Ω2Ω1 Ω2Dist( , )

Ω2Diam( )

Ω1Diam( )

I Block clustering of (BEM) influence matrix into n blocks:

(I1×J1) ∪ . . . ∪ (In×Jn) = K×K, Ik , Jkgenerated by DOF clustering of K

Such block clustering is not unique for a given index set K.I Hierarchical, recursive block clustering of (BEM) influence matrix into n

blocks:−→Block K×K is not admissible.−→If block (I ×J) is admissible, do nothing

Else, create sub-blocks of (I ×J) using children sublists of (I , J)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 155 / 183

Page 156: Methode d Elements Frontieres

Other acceleration methods Clustering and low-rank approximations

Block clustering of influence matrix: example

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1515141397312 4 6 8 125

7,8,9,10,115,61,2,3,4

1,...,6 7,...,15

1,...,15=I

12,13,14,15

1,2 3,4 5,6 7,8,9 12,13 14,1510,11

1011

Concept of panel clustering in the BEM (Hackbusch and Nowak, 1989)Concept of H-matrices (Hackbusch, 1999)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 156 / 183

Page 157: Methode d Elements Frontieres

Other acceleration methods Clustering and low-rank approximations

Acceleration via low-rank approximation of blocks

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Idea: use low-rank approximations of blocks:

A(I , J) ≈r∑

k=1

akbT

k

Ideally, r |I |, |J|Matrix-vector product:

A(I , J)u(I ) ≈r∑

k=1

(bT

ku(I ))u(I )

Block clustering + low-rank approximation of blocks = acceleration of matrixoperations

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 157 / 183

Page 158: Methode d Elements Frontieres

Other acceleration methods Clustering and low-rank approximations

SVD and block rank

I Any block A(I , J) of size m×n admits a singular value decomposition(SVD):

A(I , J) = USVT =R∑

k=1

sk ukvT

k s1≥ s2≥ . . . sR > 0, uT

ku` = vT

kv` = δk`

R ≤Min(m, n) is the (numerical) rank of A(I , J)

I A(I , J) has (approximate) low rank r if sk is sufficiently small for k > r

I Computing complete SVD of A(I , J) needs O(mn) memory + O(mn2) CPUnot acceptable; other strategies required−→FMM (analytic decomposition of kernel required)−→Kernel interpolation (analytic decomposition of kernel not required)−→Algebraic treatment of matrix blocks: adaptive cross approximation−→Wavelet transformation of basis functions (not addressed here)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 158 / 183

Page 159: Methode d Elements Frontieres

Other acceleration methods Clustering and low-rank approximations

FMM as block clustering with low-rank approximation of blocks

The multi-level Fast Multipole Method features block clustering (throughhierarchical octree of cubic cells)

and low-rank approximation through truncated multipole expansion

1

‖ξ−x‖ =

p∑n=0

n∑m=−n

Rn,m(x−x0)

p∑n′=0

n′∑m′=−n′

(−1)nSn+n′,m+m′(ξ0−x0)Rn′,m′(ξ−ξ0)

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 159 / 183

Page 160: Methode d Elements Frontieres

Other acceleration methods Kernel-independent acceleration via kernel interpolation

1. Review of boundary integral equation formulations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equation

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methodsExponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. PreconditioningMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 160 / 183

Page 161: Methode d Elements Frontieres

Other acceleration methods Kernel-independent acceleration via kernel interpolation

Kernel-independent acceleration via kernel interpolation

In many cases:

I Fundamental solution available (not necessary ion closed form);Availability of high-order derivatives problematic at best−→Taylor-based expansion impractical

I Analytic expansion (e.g. multipole, exponential) not available−→FMM treatment impossible

Idea: polynomial interpolation of G (x, ξ) in product of two non-adjacent cells(x∈Cx , ξ∈Cξ)

x0

ξ0

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 161 / 183

Page 162: Methode d Elements Frontieres

Other acceleration methods Kernel-independent acceleration via kernel interpolation

Kernel-independent acceleration via kernel interpolation

G (x, ξ) ≈P∑

p=1

Q∑q=1

Pp(x)G (xp, ξq)Qq(ξ)

xp: interpolation nodes in Cx (Cartesian product of 1-D set of nodes);Pp(x): interpolation polynomials (e.g. Cartesian product of 1-D Lagrange polyn.);

ξq: interpolation nodes in Cξ (Cartesian product of 1-D set of nodes);Qq(x): interpolation polynomials (e.g. Cartesian product of 1-D Lagrange polyn.);

xp

Cx

ξq

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 162 / 183

Page 163: Methode d Elements Frontieres

Other acceleration methods Kernel-independent acceleration via kernel interpolation

Kernel-independent acceleration via kernel interpolation

Evaluation of

S[ϕ, ∂Ω]far(x) =∑

Cξ∈A(Cx )

∫∂Ω∩Cξ

G (x, ξ)ϕ(ξ) dSξ

I Multipole moments:

Mq(ξ0) =

∫∂Ω∩Cξ

Qq(ξ)φ(ξ) dSξ

I M2L translation:

Lp(x0) =Q∑

q=1

G (xp, ξq)Mq(ξ0)

I M2M (upward) translations by expressing the Q(`−1)q (ξ; ξ

(`−1)0 ) in terms of

the Q(`)q′ (ξ; ξ

(`)0 ) (e.g. Taylor expansion for polynomials)

I L2L (downward) translations similarly

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 163 / 183

Page 164: Methode d Elements Frontieres

Other acceleration methods Adaptive cross approximation

1. Review of boundary integral equation formulations

2. Review of classical BEM concepts

3. The GMRES iterative solver

4. The fast multipole method (FMM) for the Laplace equation

5. The fast multipole method (FMM) for elastostatics

6. The fast multipole method for elastodynamics

7. Other acceleration methodsExponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. PreconditioningMarc Bonnet (POems, ENSTA) Methode d’elements de frontiere 164 / 183

Page 165: Methode d Elements Frontieres

Other acceleration methods Adaptive cross approximation

Adaptive cross approximation

Aim: find recursively a low-rank approximation of a m×n block A of the form:

A = R + S, S =r∑

k=1

ukvT

k , ‖R‖F≤ ε

To be used in conjunction with a H-matrix block clustering.

I Bebendorf, M., Rjasanov, S.. Adaptive low-rank approximation ofcollocation matrices. Computing , 70:1–24 (2003).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 165 / 183

Page 166: Methode d Elements Frontieres

Other acceleration methods Adaptive cross approximation

Adaptive cross approximation: partially-pivoted ACA1. Initialization: S = 0, K = ∅, r = 0

2. Recursion:(a) k = Minj , j 6∈ K, K = K∪k; STOP if |K|= n,(b) Row generation: a = Ak•,

(c) Row of residual, pivot column: Rk• = a−r∑

i=1

vi (ui )k , `= Argmax|Rk`|,

(d) Test: if Max|Rk`| = 0, go to 2(a),(e) Column generation: a = A•`,

(f) Column of residual, pivot row: R•` = a−r∑

i=1

ui (vi )`, k = Argmax|Rk`|,

(g) New vectors: um+1 = (Rk`)−1R•`, vm+1 = Rk•,

(h) Stopping criterion: ‖ur+1‖F‖vr+1‖F ≤ ε‖S‖F,(i) New approximation of block: S = S + ur+1vT

r+1,(j) Recursion: r = r + 1, go to 2(b)

I Algorithm requires O(r 2(m + n)) operations,

I Complete ACA requires O(N1+δε−δ) operations for any δ > 0 if kernelasymptotically smooth

[Kurz, Rain, Rjasanov, 2006]Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 166 / 183

Page 167: Methode d Elements Frontieres

Other acceleration methods Adaptive cross approximation

Example: crack propagation analysis

I N ≈ 45000,

I CPU ≈ 4500s

I RAM= 1.5GB

I Kolk, K., Weber, W., Kuhn, G. Investigation of 3D crack propagationproblems via fast BEM formulations. Comp. Mech., 37:32–40 (2005).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 167 / 183

Page 168: Methode d Elements Frontieres

Preconditioning

1. Review of boundary integral equation formulationsElectrostaticsLaplaceElastostaticsFrequency-domain wave equations

2. Review of classical BEM concepts3. The GMRES iterative solver4. The fast multipole method (FMM) for the Laplace equation

Multipole expansion of 1/rThe single-level fast multipole methodThe multi-level fast multipole method

5. The fast multipole method (FMM) for elastostatics6. The fast multipole method for elastodynamics7. Other acceleration methods

Exponential representation of 1/rFMM using equivalent sourcesClustering and low-rank approximationsKernel-independent acceleration via kernel interpolationAdaptive cross approximation

8. Preconditioning

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 168 / 183

Page 169: Methode d Elements Frontieres

Preconditioning

→ Diagonal preconditioneur Mij = Aijδij ;

→ Sparse matrix of near contributions in FMM;

→ Incomplete LU factorization of A;

→ Sparse approximate inverses;

→ Multigrid approaches;

→ Fast BEM solution method (e.g. FMM, ACA) with low truncation;

→ Preconditioners exploiting specific features of the problems, e.g.single-inclusion case for many-inclusion problems.

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 169 / 183

Page 170: Methode d Elements Frontieres

Preconditioning

Sparse approximate inverse (SPAI)

I Definition:

[A]] = arg min[E ]

‖ [I ]− [E ][A] ‖2F [E ] ∈ RN×N sparse

where [A]] has a sparsity pattern (either predefined or found iteratively).

I Hence each column of [A]] solves an uncoupled, small minimization problem:

A]k = arg minE

‖ ek − E[A] ‖ E ∈ R1×N sparse

I Simplification: choose number m of nonzero entries in each row of [A]] andfind SPAI of [A]:

A]i = arg minE∈R1,m

‖ E[Ai ] ‖2 −2 trace(E[Ai ]) + 1

(1≤ i≤N)

where [A] is the sparse matrix made of the m largest entries of [A].

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 170 / 183

Page 171: Methode d Elements Frontieres

Preconditioning

Further reading

I Benzi, M.Preconditioning techniques for large linear systems: a survey.J. Comp. Phys., 182:418–477 (2002).

I Biros, G., Ying, L., Zorin, D.A fast solver for the Stokes equations with distribuuted forces in complexgeometries.J. Comp. Phys., 193:317–348 (2003).

I Bonnet, M.Boundary Integral Equation Method for Solids and Fluids.Wiley (1999).

I Borm, S., Grasedyck, L., Hackbusch, W.Introduction to hierarchical matrices with applications.Engng. Anal. with Bound. Elem., 27:405–422 (2003).

I Carpentieri, B., Duff, I. S., Giraud, L., Sylvand, G.Combining fast mulrtipole techniques and an approximate inverseprecondfitioner for large electromagnetism calculations.SIAM J. Sci. Comput., 27:774–7923 (2005).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 171 / 183

Page 172: Methode d Elements Frontieres

Preconditioning

I Chaillat, S., Bonnet, M., Semblat, J. F.A multi-level fast multipole BEM for 3-D elastodynamics in the frequencydomain.Comp. Meth. Appl. Mech. Engng. (2008, in press).

I Cheng, H., Crutchfield, W. Y., Gimbutas, Z., Greengard, L. F.,Ethridge, J. F., Huang, J., Rokhlin, V., Yarvin, N.A wideband fast multipole method for the Helmholtz equation in threedimensions.J. Comp. Phys., 216:300–325 (2006).

I Chew, W. C. et al.Fast integral equation solvers in computational electromagnetics of complexstructures.Engng. Anal. with Bound. Elem., 27:803–823 (2003).

I Coifman, R., Rokhlin, V., Wandzura, S.The Fast Multipole Method for the Wave Equation : A Pedestrian Prescription.IEEE Antennas and Propagation Magazine, 35:7–12 (1993).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 172 / 183

Page 173: Methode d Elements Frontieres

Preconditioning

I Colton, D., Kress, R.Integral Equation Method in Scattering Theory .John Wiley and sons (1983).

I Darve, E.The fast multipole method: I. Error analysis and asymptotic complexity.SIAM J. Numer. Anal., 38:98–128 (2000).

I Darve, E.The fast multipole method: numerical implementation.J. Comp. Phys., 160:195–240 (2000).

I Darve, E., Have, P.Efficient fast multipole method for low-frequency scattering.J. Comp. Phys., 197:341–363 (2004).

I Dominguez, J.Boundary elements in dynamics.Comp. Mech. Publ., Southampton (1993).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 173 / 183

Page 174: Methode d Elements Frontieres

Preconditioning

I Epton, M.A., Dembart, B.Multipole translation theory for the three-dimensional Laplace and Helmholtzequations.SIAM J. Sci. Comp., 16:865–897 (1995).

I Ergin, A. A., Shanker, B., Michielssen, E.Fast evaluation of three-dimensional transient wave fields using diagonaltranslation operators.J. Comp. Phys., 146:157–180 (1998).

I Fischer, M., Gaul, L.Application of the fast multipole bem for structural-acoustic simulations.Journal of Computational Acoustics, 13:87–98 (2005).

I Fochesato, C., Dias, F.A fast method for nonlinear three-dimensional free-surface waves.Proc. Roy. Soc. A, 462:2715–2735 (2006).

I Fraysse, V., Giraud, L., Gratton, S., Langou, J.A Set of GMRES Routines for Real and Complex Arithmetics on HighPerformance Computers.Tech. rep., CERFACS (2003).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 174 / 183

Page 175: Methode d Elements Frontieres

Preconditioning

I Fu, Y., Klimkowski, K. J., Rodin, G. J., Berger, E., Browne,J. C., Singer, J. R., van der Greijn, R. A., Vemaganti, K. S.A fast solution method for the three-dimensional many-particle problems oflinear elasticity.Int. J. Num. Meth. in Eng., 42:1215–1229 (1998).

I Fujiwara, H.The fast multipole method for the integral equations of seismic scatteringproblems.Geophys. J. Int., 133:773–782 (1998).

I Fujiwara, H.The fast multipole method for solving integral equations of three-dimensionaltopography and basin problems.Geophys. J. Int., 140:198–210 (2000).

I Greenbaum, A.Iterative methods for solving linear systems.SIAM, Philadelphia, USA (1997).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 175 / 183

Page 176: Methode d Elements Frontieres

Preconditioning

I Greengard, L., Huang, J., Rokhlin, V., Wandzura, S.Accelerating fast multipole methods for the Helmholtz equation at lowfrequencies.IEEE Comp. Sci. Eng., 5:32–38 (1998).

I Greengard, L., Rokhlin, V.A fast algorithm for particle simulations.J. Comp. Phys., 73:325–348 (1987).

I Greengard, L., Rokhlin, V.A new version of the fast multipole method for the Laplace equation in threedimensions.Acta Numerica, 6:229–270 (1997).

I Gumerov, N. A., Duraiswami, R.Fast multipole methods for the Helmholtz equation in three dimensions.Elsevier (2005).

I Hackbusch, W., Nowak, Z. P.On the fast matrix multiplication in the boundary element method by panelclustering.Numerische Mathematik , 54:463–491 (1989).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 176 / 183

Page 177: Methode d Elements Frontieres

Preconditioning

I Hackbusch, W., Wittum, G. (eds.).Boundary elements: implementation and analysis of advanced algorithms.Wieweg, Braunschweig (1996).

I Jiang, L. J., Chew, W. C.A mixed-form fast multipole algorithm.IEEE Trans. Antennas Propagat., 53:4145–4156 (2005).

I Kellogg, O.D.Fundations of potential theory (1929).

I Kolk, K., Weber, W., Kuhn, G.Investigation of 3D crack propagation problems via fast BEM formulations.Comp. Mech., 37:32–40 (2005).

I Kupradze, V.D.Dynamical problems in elasticity.North-Holland , p. 259 (1963).

I Kurz, S., Rain, ; O., Rjasanow, S.The adaptive cross approximation technique for the 3D boundary elementmethod.IEEE Transactions on Magnetics, 38:421–424 (2002).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 177 / 183

Page 178: Methode d Elements Frontieres

Preconditioning

I Lage, C., Schwab, C.Wavelet Galerkin algorithms for boundary integral equations.SIAM J. Sci. Comput., 20:2195–2222 (1999).

I Liu, Y., Nishimura, N.The fast multipole boundary element method for potential problems: a tutorial.Engng. Anal. with Bound. Elem., 30:371–381 (2006).

I Liu, Y., Nishimura, N., Otani, Y., Takahashi, T., Chen, X. L.,Munakata, H.A fast boundary element method for the analysis of fiber-reinforced compositesbased on a rigid-inclusion model.ASME J. Appl. Mech., 72:115–128 (2005).

I Margonari, M., Bonnet, M.Fast multipole method applied to the coupling of elastostatic BEM with FEM.Computers and Structures, 83:700–717 (2005).

I Martinsson, P. G., Rokhlin, V.A fast direct solver for boundarry integral equations in two dimensions.J. Comp. Phys., 205:1–23 (2005).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 178 / 183

Page 179: Methode d Elements Frontieres

Preconditioning

I Nedelec, J. C.Acoustic and electromagnetic equations.Applied mathematical sciences (vol. 144). Springer Verlag (2001).

I Nemitz, N., Bonnet, M.Topological sensitivity and FMM-accelerated BEM applied to 3D acousticinverse scattering.Engng. Anal. with Bound. Elem. (2008).

I Nishimura, N.Fast multipole accelerated boundary integral equation methods.Appl. Mech. Rev., 55:299–324 (2002).

I Rokhlin, V.Rapid solution of integral equations of classical potential theory.J. Comp. Phys., 60:187–207 (1985).

I Rokhlin, V.Rapid solution of integral equations of scattering theory.J. Comp. Phys., 86:414–439 (1990).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 179 / 183

Page 180: Methode d Elements Frontieres

Preconditioning

I Rokhlin, V.Diagonal forms of translation operators for the Helmholtz equation in threedimensions.Appl. Comp. Harmonic Anal., 1:82–93 (1993).

I Rokhlin, V.Sparse diagonal forms for translation operators for the Helmholtz equation intwo dimensions.Appl. Comp. Harmonic Anal., 5:36–67 (1998).

I Saad, Y.Iterative methods for sparse linear systems.SIAM (2003).

I Saad, Y., Schultz, M.H.GMRES: a generalized minimal residual algorithm for solving nonsymmetriclinear systems.SIAM J. Sci. Stat. Comput., 7:856–869 (1986).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 180 / 183

Page 181: Methode d Elements Frontieres

Preconditioning

I Sakuma, T., Yasuda, Y..Fast multipole boundary element method for large-scale steady-state soundfield analysis. Part I: setup and validation.Acta Acustica united with Acustica, 88:513–525 (2002).

I Schmindlin, G., Lage, C., Schwab, C.Rapid solution of first kind boundary integral equations in R3.Engng. Anal. with Bound. Elem., 27:469–490 (2003).

I Song, J., Lu, C.C., Chew, W.C.Multilevel fast multipole algorithm for electromagnetic scattering by largecomplex objects.IEEE Trans. Antennas Propag., 42:1488–1493 (1997).

I Sylvand, G.La methode multipole rapide en electromagnetisme : performances,parallelisation, applications.Ph.D. thesis, ENPC (2002).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 181 / 183

Page 182: Methode d Elements Frontieres

Preconditioning

I Takahashi, T., Kawai, A., Ebisuzaki, T.Accelerating boundary-integral equation method using a special-purposecomputer.Int. J. Num. Meth. in Eng., 66:529–548 (2006).

I Takahashi, T., Nishimura, N., Kobayashi, S.A fast BIEM for three-dimensional elastodynamics in time domain.Engng. Anal. with Bound. Elem., 28:165–180 (2004).

I Tausch, J.Sparse BEM for potential theory and Stokes flow using variable order wavelets.Comp. Mech., 32:312–3185 (2003).

I Wang, P. B., Yao, Z. H..Fast multipole DBEM analysis of fatigue crack growth.Comp. Mech., 38:223–233 (2006).

I Yarvin, N., Rokhlin, V.Generalized Gaussian quadratures and singular value decompositions of integraloperators.SIAM J. Sci. Comput., 20:699–718 (1997).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 182 / 183

Page 183: Methode d Elements Frontieres

Preconditioning

I Ying, L., Biros, G., Zorin, D.A kernel-independent adaptive fast multipole in two and three dimensions.J. Comp. Phys., 196:591–626 (2004).

I Yoshida, K.I.Applications of fast multipole method to boundary integral equation method .Ph.D. thesis, University of Kyoto (2001).

I Yoshida, S., Nishimura, N., Kobayashi, S.Application of fast multipole Galerkin boundary integral equation method toelastostatic crack problems in 3D.Int. J. Num. Meth. in Eng., 50:525–547 (2001).

Marc Bonnet (POems, ENSTA) Methode d’elements de frontiere 183 / 183