Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in...

35
GSA Data Repository 2016208 Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18 O and 2 H geochemistry and 40 Ar/ 39 Ar dating of neoformed clays in brittle fault rocks S. Haines et al. 2016208.zip

Transcript of Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in...

Page 1: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

GSA Data Repository 2016208

Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by

18O and 2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks

S. Haines et al.

2016208.zip

Page 2: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016,

Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O

and 2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks:

Lithosphere, v. 8, doi:10.1130/L483.1.

Detachments sampled

1 Ruby Mountains

The Ruby Mountains are a metamorphic core complex in northeastern Nevada

(Howard, 1980, Snoke, 1980). The complex was exhumed by a large WNW-dipping, 1-2

km thick shear zone that strikes along the NW side of the range. The detachment was

active from the late Cretaceous to the Miocene (McGrew & Snee, 1994 Colgan &

Metcalf, 2006). The fault system evolved from a well-defined mid-crustal mylonite zone

found in the footwall of the brittle detachment. The detachment fault system is well

exposed in 3 closely spaced road cuts along Nevada Rt. 229, west of Secret Pass. The

main detachment (samples SEC 4-2 and SEC 4-3), an overlying brittle detachment in the

hanging wall (not analyzed for this study), and a high-angle normal fault (SEC 1-2 -

illite) that soles into the main detachment all have well-developed clay-rich illitic and

smectitic gouges (Haines and van der Pluijm, 2010; Figure 1E). XRD analysis indicates

that both the SEC 1-2 and SEC 4-2 gouges are predominantly the low-temperature 1Md

polytype of illite, formed by the alteration of cataclasticaly-derived micas from hanging

wall shales (Figure 3A and 3B, Haines and van der Pluijm, 2010). Where hanging wall

lithologies are tuffs, gouges are smectite-dominated (SEC 4-3, Haines and van der

Pluijm, 2010, 2012, Figure 1E). 40Ar/39Ar dating of the illitic gouge shows the clays

formed at 11-13 Ma, marking the final period of activity on the detachment fault system

(Haines and van der Pluijm, 2010). The stable isotopic analysis for both O and H was

Supplementary DR 1

Page 3: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

performed on splits of the fine fraction of SEC 1-2 and SEC 4-2 as reported in Haines

and van der Pluijm, (2010, 2012).

Page 4: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

2 Death Valley area detachments – Badwater, Mormon Point, and Amargosa

Detachments

The Black Mountains on the east side of Death Valley have several spectacularly

exposed LANFs. The faults record considerable extension in the Death Valley area from

the Miocene to Recent, although the exact timing and magnitude of extension remains the

subject of controversy (see Miller & Pavlis, 2005, for discussion). Three low-angle

normal faults, known colloquially as ‘turtlebacks’ (from north to south, the Badwater,

Copper Canyon, and Mormon Point turtlebacks) are exposed along the east side of Death

Valley (Curry, 1938, Miller & Pavlis, 2005; Hayman et al., 2006). Each turtleback

(detachment) has a distinctive turtleshell-like form with an anticlinal carapace of

mylonitic mid-crustal rocks separated from a hanging wall of unmetamorphosed Miocene

to Recent sediments by a ductile to brittle LANF.. Gouges from one exposure of the

Badwater Detachment and two exposures of the Mormon Point Detachment were

analyzed. Two older, possibly kinematically-linked brittle detachments, the Gregory Peak

detachment and the Amargosa Detachment, are exposed further to the south (Figure 1).

One gouge sample from the Amargosa Detachment was analyzed for this study.

2.1 – Badwater Detachment

The Badwater Detachment was sampled at 2 localities, in an unnamed wash near

the southern edge of the detachment, (Badwater-1, Table 1, geospatial data 1) and at the

Natural Bridge trail (Badwater-2). At both localities the fault juxtaposes epidote +

chlorite-altered mylonitic granite and schist in the footwall against Pleistocene gravels

and fanglomerates. Both the illite-dominated clay gouge and chloritally-altered footwall

were sampled, samples BAD-1 (F) and BAD-1 (G) respectively. See Figures 2A, 3A and

3C. Although not brecciated, the chloritic footwall at Badwater-1 (BAD-1 (G)) was

Page 5: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

fractured sufficiently that it disaggregated readily in water, permitting chlorite to be

easily separated out by suspension in water and subsequent centrifugation.

2.2 – Mormon Point Detchment

Two exposures of the Mormon Point Detachment were sampled for material for

stable isotopic analysis (Mormon-2, Mormon-3, both on the western edge of the northern

flank of the detachment) and one for geochronology (Mormon-1, on the western flank of

the detachment). At both Mormon-2 and Mormon-3, accessed by walking up Mormon

Point Canyon, the hanging wall consists of Plio-Pleistocene gravels, while the footwall

lithology varies. At Mormon-2, accessed by walking up a wash to the east (samples

MOR-2 (M) and MOR-2 (F),) the footwall consists of chlorite-altered diorite. The gouge

consists entirely of fragmental footwall chlorite/epidote-altered diorite without

discernable alteration (Haines and van der Pluijm, 2012). Two size fractions of the

fragmental gouge sample were analyzed (0.2 – 0.05 m (“M”) and <0.05 m (“F”)

Figure 3).

At Mormon-3, accessed by walking up an unnamed wash from the Badwater

Road on the west side of Mormon Point (sample MOR-3 (M), Figure 1D)) the footwall

consists of chlorite-altered dioritic gneiss and interlayered dolomite. At Mormon-3, the

gouge consists of two distinct layers, a fragmental chlorite-dominated footwall gouge,

consisting of chlorite structurally and compositionally indistinguishable from that found

in the footwall (Haines and van der Pluijm, 2012), which was sampled (Figure 3), and a

low-temperature, Mg-rich silicate assemblage consisting of smectite, sepiolite, talc, and

lizardite (Haines and van der Pluijm, 2012), which was not analyzed for this study.

Insufficient <0.05 m fraction material was recovered from centrifugation to analyze,

consistent with a cataclastic origin (Haines and van der Pluijm, 2012).

Page 6: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Illite-dominated gouge was sampled at a third locality to the south of Mormon

Point on the western flank of the detachment (Mormon-1). The finest size fraction of the

material contained too much carbonate for stable isotopic analysis, but was suitable for

Ar-Ar dating, with an age of 2.8 +/- 0.5 Ma. The chloritic material at Mormon-2 and -3

ilikely formed at greater depths than the illitic material, and is likely older.

2.3 – Amargosa Detachment

The Amargosa detachment lacks mylonites in the footwalls and apparently was

active entirely in the brittle regime (Hamilton, 1988, Castonguay, 2013). The detachment

was sampled at a klippe north of Ashford Canyon, accessed by walking northwest along

the range front from the Ashford Canyon Trail head road, where the fault juxtaposes

weakly lithified conglomerates in the hanging wall against chloritcally-altered and

brecciated granite in the footwall (Figure 1C). The clay fraction of the gouge consists of

the low-temperature 1Md polytype of illite, formed from the breakdown of fragmental

2M1 polytype (the high-temperature polytype) illite/mica, likely derived from the

footwall (Figure 3, Haines and van der Pluijm, 2012).

We dated clays in gouges from the Badwater, Mormon Point and Amargosa

detachment using Illite Age Analysis (IAA), which are 2.8-3.3 Ma in age.

Page 7: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

3 Panamint Mountains

The Panamint Mountains are partially bounded on their west flank by a series of

west-dipping low-angle normal faults that formed during the latter stages of the

exhumation (Hodges et al., 1989). A separate low-angle fault outcrops further south

along the east side of Panamint Valley, the Panamint Valley low-angle fault (Cichanski,

2000).

3.1 – Panamint Range Front Detachment

The Panamint Valley low-angle normal fault was sampled in South Park Canyon,

where the fault dips 20° west and juxtaposes Pliocene and older Pleistocene

conglomerates against a footwall of Proterozoic schists. The Panamint Valley low-angle

normal fault lacks a mylonitic footwall and was apparently active entirely in the brittle

regime. The gouge consists of the 1Md polytype of illite, derived from the dissolution of

K-feldspar (Haines and van der Pluijm, 2012, Figure 3). The Panamint Valley gouge was

dated with IAA, resulting in an age of 3.6 Ma (see below).

3.2 – Mosaic Canyon Detachment

The Mosaic Canyon fault (also known as the Harrisburg Fault, Hodges et al.,

1990) bisects the northern portion of the Panamint Mountains. The fault dips moderately

to the east and has been argued to be an overturned west-dipping normal fault that may be

contiguous with the Emigrant fault on the west side of the range. The Mosaic Canyon

fault was sampled at Mosaic Canyon, where the fault juxtaposes Neoproterozoic

metasediments (Johnnie Quartzite in the hanging wall and Noonday Dolomite in the

footwall). The Mosaic Canyon Detachment was sampled in Mosaic Canyon on the trail

into Mosaic Canyon. Gouge was suitable for dating, but owing to the presence of

Page 8: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

carbonate in the fine fraction, and uncertainty about the effect of acid treatments on H

isotopes in clays, the sample was not used for isotopic analysis.

Page 9: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

4 Chemehuevi Detachment

The Chemehuevi detachment is a Miocene-age NE-dipping detachment fault in

southeastern California, part of the suite of metamorphic core complexes with LANFs

known as the Colorado River Extensional Corridor (Spencer and Reynolds, 1991). The

detachment fault was sampled on the northwest side of Lobeck Pass where the fault

juxtaposes a post 18.5 Ma monomict megabreccia (Miller & John, 1999) against a

chloritized but unmylonized 19.1 Ma granite (Foster et al, 1996). The gouge zone

consists of 3 mineralogically distinct layers on the basis of XRD characterization (Haines

and van der Pluijm, 2012). The upper and middle layers are dominated by authigenic tri-

octahedral phyllosilicates saponite in the middle layer, and palygorskite in the upper

layer, both formed from low-temperature alteration of chlorite-dominated fragmental

gouge. Only the lower fragmental chlorite-dominated gouge (LOBECK-3 (M), Figure

1B) was analyzed for this study.

Page 10: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

5 Buckskin-Rawhide Mountains Detachment

The Buckskin-Rawhide detachment is a Miocene NE-dipping LANF located in

central-western Arizona, and is also part of the Colorado River Extensional Corridor

(Spencer and Reynolds, 1991, Singleton et al., 2014). The detachment was sampled at

“A-Bomb Canyon”, (Spencer & Reynolds, 1986) where the fault juxtaposes a granite in

the upper plate over a chlorite tectonic breccia in the footwall. The gouge consists of two

layers: cataclastically-reworked footwall epidote-chlorite microbreccia, and an upper

layer dominated by tri-octahedral smectite, formed by low-temperature alteration of the

lower fragmental gouge (Haines and van der Pluijm, 2012). Only the 0.2 – 0.05 m size

fraction of the fragmental gouge (A-BOMB-3 (M)) was analyzed for this study.

Page 11: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

6 Central Mojave Detachment (Waterman Hills detachment)

The Central Mojave metamorphic core complex is exposed in the Waterman

Hills, Mitchell Range and Newberry Mountains of southeastern California, The

detachment is exposed in a cliff face 150 m WNW of the KDUC radio transmitter 10 km

N of Barstow (Figure 1F). The detachment accommodated 40-50 km of NE-directed

extension during the early Miocene (Walker et al., 1990). The detachment fault trace

trends roughly northwest-southeast and dips gently to the east. The detachment fault was

sampled in the northern Waterman Hills where it juxtaposes Tertiary rhyolites in the

hanging wall and mylonitic granodiorite in the footwall. The temporal and kinematic

relationship of the brittle fault to the mylonitic detachment is complex in that kinematic

indicators associated with the brittle fault records north-south extension as opposed to the

northeast-southwest extension recorded by the mylonites (Anderson, 2007). Gouge

material was visibly segregated at outcrop; grayish material is illitic, formed from the

dissolution of K-feldspar, while yellowish material is smectitic, formed from dissolution

and reprecipitation of hanging wall acid volcanic lithologies.

Page 12: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

References

Anderson,R.E.,2007.AblisterhypothesisfortheCentralMojavemetamorphiccorecomplexnearBarstow,California.GeologicalSocietyofAmericaAbstractswithPrograms,vol39,pp.227.

Castonguay,S.,2013,StructuralevolutionoftheVirginSpringsphaseoftheAmargosaChaos,DeathValley,California,USA.UnpublishedM.Sc.Thesis,UniversityofOregon.150pp.

Cichanski,M.,2000,Low‐anglerange‐flankfaultsinthePanamint,InyoandSlateranges,California:ImplicationsforrecenttectonicsoftheDeathValleyregion,GeologicalSocietyofAmericaBulletin,v.112,p.871‐883.

Colgan,J.,&Metcalf,J,2006,RapidmiddleMioceneunroofingofthesouthernRubyMountains,Nevada:GeologicalSocietyofAmericaAbstractswithPrograms,v. 38,no.7,p.417.

Curry,H.,1938,“Turtleback”faultsurfacesinDeathValley,California[abs.],GeologicalSocietyofAmericaBulletin,v.49,p.1875.

Foster,D.,John,B.,Campbell,E.,&Fanning,C.,1996.ThetimingandroleofsyntectonicplutonismindevelopmentoftheColoradoRiverExtensionalCorridor:SacramentoMountainsexample,Geol.Soc.Am.Abstr.Programs,28(7),450,1996a.

Haines,S.&vanderPluijm,B.,2008,ClayquantificationandAr‐Ardatingofsyntheticandnaturalgouge:ApplicationtotheMioceneSierraMazatándetachmentfault,Sonora,Mexico.J.StructuralGeology30,pp.525‐538.

Haines,S.,andvanderPluijm,B.,2010,DatingthedetachmentfaultsystemoftheRubyMountains,Nevada:significanceforthekinematicsoflow‐anglenormalfaults,Tectonics,v.29,doi:10.1029/2009TC002552.

Haines,S.,andvanderPluijm,B.,2012.Patternsofmineraltransformationsinclaygouge,withexamplesfromlow‐anglenormalfaultrocksinthewesternUSA,JournalofStructuralGeology,v.43,p.2–32.

Hayman,N.,2006,ShallowcrustalfaultrocksfromtheBlackMountaindetachments,DeathValley,California,JournalofStructuralGeology,v.28,p.1767‐1784.

Hamilton,W.,1988,DetachmentfaultingintheDeathValleyregion,CaliforniaandNevada,U.S.GeologicalSurveyBulletin1790,p.51–85.

Page 13: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Hodges,K.,McKenna,L.,Stock,J.,Knapp,J.,Page,L.,Sternlof,K.,Silverberg,D.,Wust,G.&Walker,J.,1989.EvolutionofextensionalbasinsandBasinandRangetopographywestofDeathValley,California.Tectonics8,pp.453‐467.

Hodges,K.,McKenna,L.,&Harding,M.,1990.StructuralunroofingofthecentralPanamintMountains,DeathValleyregion,southeasternCalifornia.In:BasinandRangeextensionaltectonicsnearthelatitudeofLasVegas,Wernicke,B.,ed.GeologicalSocietyofAmericaMemoir176,pp.377‐390.

Howard,K.,1980.MetamorphicinfrastructureinthenorthernRubyMountains,Nevada,in:Cordilleranmetamorphiccorecomplexes.Crittenden,M.etal.eds.,GeologicalSocietyofAmericaMemoir153,pp.335‐347.

McGrew,A.&Snee,L.,199440Ar/39ArthermochronologicconstraintsonthetectonothermalevolutionofthenorthernEastHumboldtRangemetamorphiccorecomplex,Nevada.Tectonophysics238,pp.425‐450.

Miller,J.,&John,B.,1999.Sedimentationpatternssupportseismogeniclow‐anglenormalfaulting,southeasternCaliforniaandwesternArizona.GeologicalSocietyofAmericaBulletin111,pp.1350‐1370.

Miller,M.,andPavlis,T.,2005,TheBlackMountainsturtlebacks:RosettastonesofDeathValleytectonics,EarthScienceReviews,v.73,p.115‐138.

Singleton,J.,Stockli,D.,Gans,P.,andPrior,M.,2014,Timing,rateandmagnitudeofslipontheBuckskin‐Rawhidedetachmentfault,westcentralArizona,Tectonics,v.33,doi:10/1002/2013TC003517.

Snoke,A.,1980.TransitionfrominfrastructuretosuperstructureintheNorthernRubyMountains,Nevada.in:Crittenden,M.etal.,(1980)eds.CordilleranmetamorphiccorecomplexesGeologicalSocietyofAmericaMemoir153,pp.287‐333.

Spencer,J.&Reynolds,S.,1986.FieldtripguidetoselectedpartsoftheHarquahala,GraniteWashandBuckskinmountains,west‐centralArizona.ArizonaGeologicalSocietyDigest,volumeXVI,pp.382‐388.

Spencer,J.,andReynolds,S.,1991,Tectonicsofmid‐TertiaryextensionalongatransectthroughwestcentralArizona,Tectonics,v.10,p.1204‐1221.

Walker,J.,Bartley,B.&Glazner,A.,1990.Large‐magnitudeMioceneextensioninthecentralMojavedesert:ImplicationsforPaleozoictoTertiarypaleogeographyandtectonics.J.GeophysicalResearchB95,pp.557‐569.

Page 14: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

L483_DR2.kml 

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016,

Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by δ18O

and δ2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks:

Lithosphere, v. 8, doi:10.1130/L483.1.

Supplementary DR 2

Page 15: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks: Lithosphere, v. 8, doi:10.1130/L483.1.

Methods

Oxygen isotope measurements Mineral separates and whole rock powders were analyzed in the University of Wisconsin Stable Isotope Laboratory by laser fluorination. Isotope ratios were measured on a dual-inlet gas-source Finnigan/MAT 251 mass spectrometer. Refractory minerals such as quartz were loaded in a sample holder and pre-exposed to BrF5 reagent at room temperature overnight to remove water and traces of other contaminants that react readily at room temperature. For these minerals there is no mineral reaction at room T, and accuracy and precision of this technique are better than ±0.1‰. Because our samples contain fine-grained clay minerals that will react with BrF5 at room temperature, samples were introduced to the reaction chamber from an adjoining ”air lock'' vacuum chamber, which was not exposed to BrF5 at any time (Spicuzza et al. 1998). This step serves to avoid pre-reaction and contamination of the sample from the otherwise excessive blank produced by room temperature reaction with BrF5 during pre-treatment. Before analysis, a blank was measured with reagent but no heating. Comparisons of whole rock analyses with conventional analyses in externally heated Ni reaction vessels show excellent agreement. Oxygen was liberated from ~2mg powdered samples with BrF5 using a 30W CO2 laser (λ = 10.6µm), then purified cryogenically, passed through hot Hg to remove any residual F2, and finally converted to CO2 with a hot carbon rod. All analyses were standardized daily by four or more analyses of UWG-2, Gore Mountain garnet standard, and sample δ18O values were corrected to the accepted value of 5.80‰ VSMOW for UWG-2 (31 Valley et al. 1995).

Hydrogen isotope measurements were made at the Stable Isotope Laboratory at Leibniz Universität Hannover except for sample WH68-1 (F), which was analyzed at the USGS lab in Denver. Isotope ratios were measured by continuous flow mass spectrometry with a ThermoElectron TC-EA coupled on-line to a ThermoElectron deltaV advantage mass spectrometer. Clay mineral separates (0.8 to 1.0 mg) were wrapped in Ag-foil, loaded into an Al sample holder, and dried at 150-200°C over night. To minimize the effects of potential rehydration of swelling clays with atmospheric moisture, samples were rapidly (<120 s) transferred into a sealed autosampler assembly and immediately exposed to dry He. Hydrogen was liberated at 1450°C in the TC-EA. Three internationally referenced standard materials and two in-house quality control standards were run with the samples, and the raw isotope data were corrected for mass bias, daily drift of the reactor, and offset from the certified reference values. After correction, standards NBS30 (biotite), CH-7

Supplementary DR 3

Page 16: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

(polyethylene foil), and NBS22 (oil) yielded D values within 3% of the certified reference values. All isotopic ratios are reported relative to standard mean ocean water (SMOW).

Page 17: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

L483_DR4.xls 

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks: Lithosphere, v. 8, doi:10.1130/L483.1.

Supplementary DR 4

Page 18: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released

0

50

100

150

200

250

300

Age

inM

a

Total gas age = 139.7 0.2 MaRetention age = 164.6 0.3 Mafrecoil = 0.157

0.000

0.005

0.010

0.015

0.020

0.025

Cl/K

0.0

0.1

0.2

0.3

0.4

0.5

Ca/

K

mc24-14 Ashland-1(C) Illite

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal faultsystems as indicated by d18O and d2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks:

Lithosphere, v. 8, doi:10.1130/L483.1.

Supplementary DR 5

Page 19: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released

0

20

40

60

80

100

120

140

160

180

Age

inM

a

Total gas age = 49.52 0.17 MaRetention age = 63.94 0.22 Mafrecoil = 0.230

0.000

0.001

0.002

0.003

0.004

Cl/K

0.0

0.1

0.2

0.3

0.4

0.5

Ca/

K

mc24-1 Ashland 1(M) Illite

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal faultsystems as indicated by d18O and d2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks:

Lithosphere, v. 8, doi:10.1130/L483.1.

Page 20: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released

0

10

20

30

40

50

60

70

Age

inM

a Total gas age = 11.54 0.18 MaRetention age = 15.95 0.25 Mafrecoil = 0.283

0.000

0.005

0.010

0.015

0.020

0.025

Cl/K

0.0

0.1

0.2

0.3

0.4

0.5

Ca/

K

mc24-7 Ashland-1(F) Illite

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by d18O and d2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks:

Lithosphere, v. 8, doi:10.1130/L483.1.

Page 21: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released

0

5

10

15

20

25

Age

inM

a Total gas age = 2.76 0.45 MaRetention age = 4.74 1.00 Mafrecoil = 0.556

0

1

2

3

4

Cl/K

0

1

2

3

4

5

Ca/

Kmc24-2 Mormon-1(F) Illite

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by d18O and d2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks:

Lithosphere, v. 8, doi:10.1130/L483.1.

Page 22: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released

0

2

4

6

8

10

12

Age

inM

a

Total Gas age = 6.99 0.21 MaRetention age = 8.31 0.23 Mafrecoil = 0.1491

0.00

0.01

0.02

0.03

0.04

Cl/K

0.0

0.0

0.1

0.2

0.2

Ca/

K

mc47-10 BW2C <2 Illite

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by d18O and d2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks:

Lithosphere, v. 8, doi:10.1130/L483.1.

Page 23: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released

0

2

4

6

8

10

12

Age

inM

a

Total Gas age = 5.64 0.20 MaRetention age = 7.09 0.26 Mafrecoil = 0.2099

0.00

0.01

0.02

0.03

0.04

Cl/K

0.0

0.0

0.1

0.2

0.2

Ca/

K

mc47-11 BW2C <1 Illite

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by d18O and d2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks:

Lithosphere, v. 8, doi:10.1130/L483.1.

Page 24: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released

0

2

4

6

8

10

12

Age

inM

a

Total Gas age = 4.87 0.17 MaRetention age = 8.04 0.26 Mafrecoil = 0.3917

0.000

0.005

0.010

0.015

Cl/K

0.0

0.0

0.1

0.2

0.2

Ca/

K

mc47-12 BW2C <0.2 Illite

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by d18O and d2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks:

Lithosphere, v. 8, doi:10.1130/L483.1.

Page 25: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released

0

2

4

6

8

10

12

14

16

18

Age

inM

a Total Gas age = 3.25 0.55 MaRetention age = 6.18 1.01 Mafrecoil = 0.4848

0.00

0.05

0.10

0.15

Cl/K

0.0

0.1

0.2

0.3

0.4

0.5

Ca/

K

mc47-13 BW2C <0.05 Illite

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by d18O and d2H geochemistry and 40Ar/39Ar dating of neoformed clays in brittle fault rocks:

Lithosphere, v. 8, doi:10.1130/L483.1.

Page 26: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar dating of neoformed clays in

brittle fault rocks: Lithosphere, v. 8, doi:10.1130/L483.1.

References reporting paired 18O and 2H measurements of illite (I), smectite (S), and/or chlorite (C)

Abdioglu, E., Arslan, M., (2005). Mineralogy, geochemistry and genesis of bentonites of the Ordu area, NE Turkey. Clay Minerals 40, pp. 131-151. (S)

Addy, S., Ypma,, P., (1977). Origin of massive sulfide deposits at Ducktown, Tennessee: an oxygen, carbon and hydrogen isotope study. Economic Geology 72, pp. 1245-1268. (C)

Alderton, D., Fallick, A., (2000). The nature and genesis of gold-silver-tellurium mineralization in the Metaliferi Mountains, of western Romania. Economic Geology 95, pp. 495-516. (I)

Alexandre, P., Kyser, K., Polito, P., Thomas, D., (2005). Alteration mineralogy and stable isotope geochemistry of paleoproterozoic basement-hosted unconformity-type unranium deposits in the Athabasca Basin, Canada. Economic Geology 100, pp. 1547-1563. (I,C)

Bechtel, A., Shieh, Y-N., Elliott, W., Oszczepalski, S., Hoernes, S., (2000). Mineralogy, crystallinity and stable isotopic composition of illitic clays within the Polish Zechstein basin: implications for the genesis of Kupferschiefer mineralization. Chemical Geology 163, pp. 189-205. (I)

Benavides, J., Kyser, T., Clark, A., Oates, C., Zamora, R., Tarnovschi, R., Castillo, B., (2007). The Mantoverde Iron Oxide-Copper-Gold District, III Región, Chile: The Role of Regionally Derived, Nonmagmatic Fluids in Chalcopyrite Mineralization Economic Geology 102, pp. 415-440. (C)

Benthke, P. Rye, R., (1979). Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado; Part IV, Source of fluids, from oxygen, hydrogen, and carbon isotope studies. Economic Geology 74, pp. 1832-1851. (I,C)

Boulvais, P., de Parseval, P., D’Hulst, A., Paris, P., (2006). Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the St. Barthelemy Massif. Mineralogy and Petrology 88, pp. 499-592. (C)

Cadrin, A., Kyser, T., Caldwell, W., Longstaffe, F., (1995). Isotopic and chemical compositions of bentonites as paleoenvironmental indicators of the Cretaceous

Supplementary DR 5

Page 27: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

western interior seaway. Paleogeography, Paleoclimatology, Paleoecology 119, pp. 301-320. (S)

Clark, C., Hand, M., Faure, K., Schmidt Mumm, A., (2006). Up-temperature flow of surface-derived fluids in the mid-crust: the role of pre-orogenic burial of hydrated fault rocks. J. Metamorphic Geology 24, pp. 367-387. (C)

Clauer, N., Honty, M., Fallick, A., Sucha, V., Aubert, A., (2014). Regional illitization in bentonite beds from the East Slovak Basin based on isotopic characteristics (K-Ar, 18O and D) of illite-type nanoparticles. Clay Minerals 49, pp. 247-275. (I)

Compton, J., Conrad, M., Vennemann, T., (1999). Stable isotopic evolution of volcanic ash layers during diagenesis of the Miocene Monterey Formation, California. Clays and Clay Minerals 47, pp. 84-95 (S)

Eslinger, E., Yeh, H., (1986). Oxygen and hydrogen isotope geochemistry of Cretaceous bentonites and shales from the Disturbed Belt, Montana. Geochimical et Cosmochimica Acta 50, pp. 59-68. (I,S)

Fallick, A., Macualay, C., Haszeldine, R., (1993). Implications of linearly correlated oxygen and hydrogen isotopic compositions for kaolinite and illite in the Magnus Sanstone, North Sea. Clays and Clay Minerals 41, pp. 184-190. (I)

Faure, K., Matsushisa, Y., Metsugi, H., Mizota, C., Hayashi, S., (2002). The Hishikari Au-Ag epithermal deposit, Japan: Oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids. Economic Geology 97, pp. 481-498. (S)

Gilg, H., Weber, B., Kasbohm, J., Frei, R., (2003). Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits, Saxony Germany. Clay Minerals 38, pp. 95-112. (I)

Girard, J-P., Munz, I., Johansen, H., Lacharpagne, J-C., Sommer, F., (2002). Diagenesis of the Hild Brent sandstones, northern North Sea: Isotopic evidence for the prevailing influence of deep basinal water. J. Sedimentary Research 72, pp. 746-759. (I)

Glasmann, J., Lundergard, P., Clark, R., Penny, B., Collins, I., (1989). Geochemical evidence for the history of diagenesis and fluid migration: Brent Sandstone, Heather Field, North Sea. Clay Minerals 24, pp. 255-284 (I)

Heaton, T., Sheppard, S., (1977). Hydrogen and oxygen isotope evidence for sea-water-hydrothermal alteration and ore deposition, Troodos Complex, Cyprus. In: Volcanic processes in ore genesis, Inst. Mining Metallurg., London, pp. 42-57. (C)

Page 28: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Hillier, S., Fallick, A., Matter, A., (1996). Origin of pore-lining chlorite in the Aeolian Rotliegand of northern Germany. Clay Minerals 31, 153-171. (C)

Hogg, A., Pearson, M., Fallick, A., Hamilton, P., (1995). An integrated thermal and isotopic study of the diagenesis of the Brent Group, Alwyn South, UK North Sea. Applied Geochemistry 10, pp. 531-546. (I)

Horton, T., Sojstrom, D., Abruzzese, M., Poage, M., Waldbauer, J., Hren, M., Wooden, J., Chamberlin, C. (2004). Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada. American Journal of Science 304, pp. 862-888. (S)

Horton, T., Chamberlin, C., (2006). Stable isotopic evidence for Neogene surface downdrop in the Central Basin and Range Province. Geological Society of America Bulletin 118, pp. 475-490. (S)

Isik, V., Tonguc Uysal, I., Caglayan, A., Seyitoglu, G., (2014). The evolution of intraplate fault systems in central Turkey: Structural evidence and Ar-Ar and Rb-Sr age constraints for the Savcili Fault Zone. Tectonics 33, pp. 1875-1899. doi: 10.1002/2014TC003565. (I)

Klein, E., Ribeiro, J., Harris, C., Moura, C., Giret, A., (2008). Geology and fluid characteristics of the Mina Velha and Mandiocal orebodies and implications for the genesis of the orogenic Chega Tudo gold deposit, Gurupi Belt, Brazil. Economic Geology 103, pp. 957-980. (C)

Klein, E., Harris, C., Giret, A., Moura, C., (2007). The Cipoeiro gold deposit, Gurupi belt, Brazil: Geology, chlorite geochemistry and stable isotope study. J. South American Earth Sciences 23, pp. 242-255. (C)

Kerrich, R., Rehrig, W., 1987. Fluid motion associated with Tertiary mylonitization and detachment faulting: 18O/16O evidence from the Picacho metamorphic core complex, Arizona. Geology 15, p. 58-62. (C)

Lacroix, B., Charpintier, D., Buatier, M., Vennemann, T., Labaume, P., Adatte, T., Trave, A., Dubois, M., (2012). Formation of chlorite during thrust fault reactivation. Record of fluid origin and P-T conditions in the Monte Perdido thrust fault (southern Pyrenees). Contrib. Min. Petrol. 163, pp. 1083-1102. (C)

Leclere, H., Lacroix, B., Fabbri, O., (2014). Fault mechanics at the base of the continental seismogenic zone: Insights from geomechanical and mechanical analyses of a crustal-scale transpressional fault from the Argentera crystalline massif, French-Italian Alps. J. Structural Geology 66, pp. 115-128. (C)

Page 29: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Longstaffe, F., Ayalon, A., (1987). Hydrogen-isotope geochemistry of diagenetic clay minerals from Cretaceous sandstones, Alberta, Canada: evidence for exchange. Applied Geochemistry 5, pp. 657-668. (I)

Masuda, H., Kusakabe, M., Sakai, H., (1992). Hydrogen and oxygen isotope ratios of shales and characteristics of formation Geochimical et Cosmochimica Acta 56, pp. 3505-3511. (I)

Marumo, K., Longstaffe, F., Matsubaya, O., (1995). Stable isotope geochemistry of clay minerals from fossil and active hydrothermal systems, southwestern Hokkaido, Japan. Geochimical et Cosmochimica Acta 59, pp. 2545-2559. (I,S,C)

Menzies, C., Teagle, D., Craw, D., Cox, S., Boyce, A., Barrie, C., Roberts, S., (2014). Incursion of meteoric waters into the ductile regime in an active orogen. Earth and Planetary Science Letters 399, pp. 1-13. (C)

Montiero, L., Xavier, R., de Carvalho, E., Hitzman, M., Johnson C., de Souza Filho C., Torresi, I., (2008). Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil: paragenesis and stable isotope constraints. Mineralium Deposita 43, pp. 129-159. (C)

Murzin, V., Shanina, S., (2007). Fluid Regime and Origin of Gold-Bearing Rodingites from the Karabash Alpine-Type Ultrabasic Massif, Southern Ural. Geochemistry International 45, pp. 998-1011. (C)

Primmer, T., Shaw, H., (1991). Variations in the D and 18O compositions of illite-smectites in a partially overpressured Tertiary sequence from an offshore well, Texas Gulf Coast, USA. Marine and Petroleum Geology 8, pp. 225-231. (I,S)

Raimondo, T., Clark, C., Hand, M., Faure, K., (2011). Assessing the geochemical and tectonic impacts of fluid-rock interaction in mid-crustal shear zones: a case study from the intracontinental Alice Springs Orogen, central Australia. J. Metamorphic Geology 29, pp. 821-850. (C)

Relvas, J., Barriga, F., Longstaffe, F., (2006). Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. II Oxygen, hydrogen and carbon isotopes. Economic Geology 101, pp. 791-804. (C)

Rossi, M., Rolland, Y., (2014). Stable isotope and Ar/Ar evidence of prolonged multiscale fluid flow during exhumation of orogenic crust: Example from the Mont Blanc and Aar Massifs (NW Alps). Tectonics 33, pp. 1681-1709. Doi: 10.1002/2013TC003438. (C)

Sheppard, S., Nielson, R., Taylor, H., (1969). Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology 64, pp. 755-777. (S)

Page 30: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Sheppard, S., Taylor, H., (1974). Hydrogen and Oxygen Isotope Evidence for the Origins of Water in the Boulder Batholith and the Butte Ore Deposits, Montana. Economic Geology 69, pp. 926-946. (S)

Sjostrom, D., Hren, M., Horton, T., Waldbauer, J., Chamberlin, C., (2006). Stable isotopic evidence for a pre—late Miocene elevation gradiant in the Great Plains-Rocky Mountains region, USA. Geological Society of America Special Paper 398, pp. 309-319. (S)

Tonguç Uysal, I., Golding, S., Baublys, K., (2000) Stable isotope geochemistry of authigenic clay minerals from Late Permian coal measures, Queensland, Australia: implications for the evolution of the Bowen Basin. Earth and Planetary Sciences Letters 180, pp. 149-162. (I,S)

Tonguç Uysal, I., Mutlu, H., Altunel, E., Karabacak, V., (2006). Clay mineralogical and isotopic (K-Ar, 18O, D) constraints on the evolution of the North Anatolian Fault Zone, Turkey. Earth and Planetary Science Letters 243, p. 181-194. (I)

Whitney, G., Northrop, H., (1987). Diagenesis and fluid flow in the San Juan Basin, New Mexico – Regional zonation in the mineralogy and stable isotope composition of clay minerals in sandstone. American Journal of Science 287, pp 353-382. (I,S,C)

Wilkinson, M., Fallick, A., Keaney, G., Hazeldine, R., McHardy, W., (1994). Stable isotopes in illite: The case for meteoric water flushing within the upper Jurassic Fulmar Formation sandstones, UK, North Sea. Clay Minerals 29, pp. 567-574. (I)

Yeh, H., Savin, S., (1977). Mechanism of burial metamorphism of argillaceous sediments, III. O-isotope evidence. Geological Society of America Bulletin 88, pp. 1321-1330. (I,S)

Yeh, H., (1980). D/H ratios and late-stage dehydration of shales during burial. Geochimical et Cosmochimica Acta 44, pp. 341-352. (I,S)

Ziegler, K., Longstaffe, F., (2000). Multiple episodes of clay alteration at the Precambbriand/Paleozoic unconformity, Appalachian Basin: Isotopic evidence for long-distance and local fluid migrations. Clays and Clay Minerals 48, pp. 474-493. (I,C)

Ziegler, K., Longstaffe, F., (2000). Clay mineral authigenesis along a mid-continental fluid conduit in Paleozoic sedimentary rocks from southern Ontario, Canada. Clay Minerals 35, pp. 239-260. (I,C)

Page 31: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Haines, S., Lynch, E., Mulch, A., Valley, J.W., and van der Pluijm, B., 2016, Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar dating of neoformed clays in

brittle fault rocks: Lithosphere, v. 8, doi:10.1130/L483.1.

References reporting paired 18O and 2H measurements of illite (I), smectite (S), and/or chlorite (C)

Abdioglu, E., Arslan, M., (2005). Mineralogy, geochemistry and genesis of bentonites of the Ordu area, NE Turkey. Clay Minerals 40, pp. 131-151. (S)

Addy, S., Ypma,, P., (1977). Origin of massive sulfide deposits at Ducktown, Tennessee: an oxygen, carbon and hydrogen isotope study. Economic Geology 72, pp. 1245-1268. (C)

Alderton, D., Fallick, A., (2000). The nature and genesis of gold-silver-tellurium mineralization in the Metaliferi Mountains, of western Romania. Economic Geology 95, pp. 495-516. (I)

Alexandre, P., Kyser, K., Polito, P., Thomas, D., (2005). Alteration mineralogy and stable isotope geochemistry of paleoproterozoic basement-hosted unconformity-type unranium deposits in the Athabasca Basin, Canada. Economic Geology 100, pp. 1547-1563. (I,C)

Bechtel, A., Shieh, Y-N., Elliott, W., Oszczepalski, S., Hoernes, S., (2000). Mineralogy, crystallinity and stable isotopic composition of illitic clays within the Polish Zechstein basin: implications for the genesis of Kupferschiefer mineralization. Chemical Geology 163, pp. 189-205. (I)

Benavides, J., Kyser, T., Clark, A., Oates, C., Zamora, R., Tarnovschi, R., Castillo, B., (2007). The Mantoverde Iron Oxide-Copper-Gold District, III Región, Chile: The Role of Regionally Derived, Nonmagmatic Fluids in Chalcopyrite Mineralization Economic Geology 102, pp. 415-440. (C)

Benthke, P. Rye, R., (1979). Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado; Part IV, Source of fluids, from oxygen, hydrogen, and carbon isotope studies. Economic Geology 74, pp. 1832-1851. (I,C)

Boulvais, P., de Parseval, P., D’Hulst, A., Paris, P., (2006). Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the St. Barthelemy Massif. Mineralogy and Petrology 88, pp. 499-592. (C)

Cadrin, A., Kyser, T., Caldwell, W., Longstaffe, F., (1995). Isotopic and chemical compositions of bentonites as paleoenvironmental indicators of the Cretaceous

Supplementary DR 6

Page 32: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

western interior seaway. Paleogeography, Paleoclimatology, Paleoecology 119, pp. 301-320. (S)

Clark, C., Hand, M., Faure, K., Schmidt Mumm, A., (2006). Up-temperature flow of surface-derived fluids in the mid-crust: the role of pre-orogenic burial of hydrated fault rocks. J. Metamorphic Geology 24, pp. 367-387. (C)

Clauer, N., Honty, M., Fallick, A., Sucha, V., Aubert, A., (2014). Regional illitization in bentonite beds from the East Slovak Basin based on isotopic characteristics (K-Ar, 18O and D) of illite-type nanoparticles. Clay Minerals 49, pp. 247-275. (I)

Compton, J., Conrad, M., Vennemann, T., (1999). Stable isotopic evolution of volcanic ash layers during diagenesis of the Miocene Monterey Formation, California. Clays and Clay Minerals 47, pp. 84-95 (S)

Eslinger, E., Yeh, H., (1986). Oxygen and hydrogen isotope geochemistry of Cretaceous bentonites and shales from the Disturbed Belt, Montana. Geochimical et Cosmochimica Acta 50, pp. 59-68. (I,S)

Fallick, A., Macualay, C., Haszeldine, R., (1993). Implications of linearly correlated oxygen and hydrogen isotopic compositions for kaolinite and illite in the Magnus Sanstone, North Sea. Clays and Clay Minerals 41, pp. 184-190. (I)

Faure, K., Matsushisa, Y., Metsugi, H., Mizota, C., Hayashi, S., (2002). The Hishikari Au-Ag epithermal deposit, Japan: Oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids. Economic Geology 97, pp. 481-498. (S)

Gilg, H., Weber, B., Kasbohm, J., Frei, R., (2003). Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits, Saxony Germany. Clay Minerals 38, pp. 95-112. (I)

Girard, J-P., Munz, I., Johansen, H., Lacharpagne, J-C., Sommer, F., (2002). Diagenesis of the Hild Brent sandstones, northern North Sea: Isotopic evidence for the prevailing influence of deep basinal water. J. Sedimentary Research 72, pp. 746-759. (I)

Glasmann, J., Lundergard, P., Clark, R., Penny, B., Collins, I., (1989). Geochemical evidence for the history of diagenesis and fluid migration: Brent Sandstone, Heather Field, North Sea. Clay Minerals 24, pp. 255-284 (I)

Heaton, T., Sheppard, S., (1977). Hydrogen and oxygen isotope evidence for sea-water-hydrothermal alteration and ore deposition, Troodos Complex, Cyprus. In: Volcanic processes in ore genesis, Inst. Mining Metallurg., London, pp. 42-57. (C)

Page 33: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Hillier, S., Fallick, A., Matter, A., (1996). Origin of pore-lining chlorite in the Aeolian Rotliegand of northern Germany. Clay Minerals 31, 153-171. (C)

Hogg, A., Pearson, M., Fallick, A., Hamilton, P., (1995). An integrated thermal and isotopic study of the diagenesis of the Brent Group, Alwyn South, UK North Sea. Applied Geochemistry 10, pp. 531-546. (I)

Horton, T., Sojstrom, D., Abruzzese, M., Poage, M., Waldbauer, J., Hren, M., Wooden, J., Chamberlin, C. (2004). Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada. American Journal of Science 304, pp. 862-888. (S)

Horton, T., Chamberlin, C., (2006). Stable isotopic evidence for Neogene surface downdrop in the Central Basin and Range Province. Geological Society of America Bulletin 118, pp. 475-490. (S)

Isik, V., Tonguc Uysal, I., Caglayan, A., Seyitoglu, G., (2014). The evolution of intraplate fault systems in central Turkey: Structural evidence and Ar-Ar and Rb-Sr age constraints for the Savcili Fault Zone. Tectonics 33, pp. 1875-1899. doi: 10.1002/2014TC003565. (I)

Klein, E., Ribeiro, J., Harris, C., Moura, C., Giret, A., (2008). Geology and fluid characteristics of the Mina Velha and Mandiocal orebodies and implications for the genesis of the orogenic Chega Tudo gold deposit, Gurupi Belt, Brazil. Economic Geology 103, pp. 957-980. (C)

Klein, E., Harris, C., Giret, A., Moura, C., (2007). The Cipoeiro gold deposit, Gurupi belt, Brazil: Geology, chlorite geochemistry and stable isotope study. J. South American Earth Sciences 23, pp. 242-255. (C)

Kerrich, R., Rehrig, W., 1987. Fluid motion associated with Tertiary mylonitization and detachment faulting: 18O/16O evidence from the Picacho metamorphic core complex, Arizona. Geology 15, p. 58-62. (C)

Lacroix, B., Charpintier, D., Buatier, M., Vennemann, T., Labaume, P., Adatte, T., Trave, A., Dubois, M., (2012). Formation of chlorite during thrust fault reactivation. Record of fluid origin and P-T conditions in the Monte Perdido thrust fault (southern Pyrenees). Contrib. Min. Petrol. 163, pp. 1083-1102. (C)

Leclere, H., Lacroix, B., Fabbri, O., (2014). Fault mechanics at the base of the continental seismogenic zone: Insights from geomechanical and mechanical analyses of a crustal-scale transpressional fault from the Argentera crystalline massif, French-Italian Alps. J. Structural Geology 66, pp. 115-128. (C)

Page 34: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Longstaffe, F., Ayalon, A., (1987). Hydrogen-isotope geochemistry of diagenetic clay minerals from Cretaceous sandstones, Alberta, Canada: evidence for exchange. Applied Geochemistry 5, pp. 657-668. (I)

Masuda, H., Kusakabe, M., Sakai, H., (1992). Hydrogen and oxygen isotope ratios of shales and characteristics of formation Geochimical et Cosmochimica Acta 56, pp. 3505-3511. (I)

Marumo, K., Longstaffe, F., Matsubaya, O., (1995). Stable isotope geochemistry of clay minerals from fossil and active hydrothermal systems, southwestern Hokkaido, Japan. Geochimical et Cosmochimica Acta 59, pp. 2545-2559. (I,S,C)

Menzies, C., Teagle, D., Craw, D., Cox, S., Boyce, A., Barrie, C., Roberts, S., (2014). Incursion of meteoric waters into the ductile regime in an active orogen. Earth and Planetary Science Letters 399, pp. 1-13. (C)

Montiero, L., Xavier, R., de Carvalho, E., Hitzman, M., Johnson C., de Souza Filho C., Torresi, I., (2008). Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil: paragenesis and stable isotope constraints. Mineralium Deposita 43, pp. 129-159. (C)

Murzin, V., Shanina, S., (2007). Fluid Regime and Origin of Gold-Bearing Rodingites from the Karabash Alpine-Type Ultrabasic Massif, Southern Ural. Geochemistry International 45, pp. 998-1011. (C)

Primmer, T., Shaw, H., (1991). Variations in the D and 18O compositions of illite-smectites in a partially overpressured Tertiary sequence from an offshore well, Texas Gulf Coast, USA. Marine and Petroleum Geology 8, pp. 225-231. (I,S)

Raimondo, T., Clark, C., Hand, M., Faure, K., (2011). Assessing the geochemical and tectonic impacts of fluid-rock interaction in mid-crustal shear zones: a case study from the intracontinental Alice Springs Orogen, central Australia. J. Metamorphic Geology 29, pp. 821-850. (C)

Relvas, J., Barriga, F., Longstaffe, F., (2006). Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. II Oxygen, hydrogen and carbon isotopes. Economic Geology 101, pp. 791-804. (C)

Rossi, M., Rolland, Y., (2014). Stable isotope and Ar/Ar evidence of prolonged multiscale fluid flow during exhumation of orogenic crust: Example from the Mont Blanc and Aar Massifs (NW Alps). Tectonics 33, pp. 1681-1709. Doi: 10.1002/2013TC003438. (C)

Sheppard, S., Nielson, R., Taylor, H., (1969). Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology 64, pp. 755-777. (S)

Page 35: Meteoric fluid infiltration in crustal-scale normal fault ... · Meteoric fluid infiltration in crustal-scale normal fault systems as indicated by 18O and 2H geochemistry and 40Ar/39Ar

Sheppard, S., Taylor, H., (1974). Hydrogen and Oxygen Isotope Evidence for the Origins of Water in the Boulder Batholith and the Butte Ore Deposits, Montana. Economic Geology 69, pp. 926-946. (S)

Sjostrom, D., Hren, M., Horton, T., Waldbauer, J., Chamberlin, C., (2006). Stable isotopic evidence for a pre—late Miocene elevation gradiant in the Great Plains-Rocky Mountains region, USA. Geological Society of America Special Paper 398, pp. 309-319. (S)

Tonguç Uysal, I., Golding, S., Baublys, K., (2000) Stable isotope geochemistry of authigenic clay minerals from Late Permian coal measures, Queensland, Australia: implications for the evolution of the Bowen Basin. Earth and Planetary Sciences Letters 180, pp. 149-162. (I,S)

Tonguç Uysal, I., Mutlu, H., Altunel, E., Karabacak, V., (2006). Clay mineralogical and isotopic (K-Ar, 18O, D) constraints on the evolution of the North Anatolian Fault Zone, Turkey. Earth and Planetary Science Letters 243, p. 181-194. (I)

Whitney, G., Northrop, H., (1987). Diagenesis and fluid flow in the San Juan Basin, New Mexico – Regional zonation in the mineralogy and stable isotope composition of clay minerals in sandstone. American Journal of Science 287, pp 353-382. (I,S,C)

Wilkinson, M., Fallick, A., Keaney, G., Hazeldine, R., McHardy, W., (1994). Stable isotopes in illite: The case for meteoric water flushing within the upper Jurassic Fulmar Formation sandstones, UK, North Sea. Clay Minerals 29, pp. 567-574. (I)

Yeh, H., Savin, S., (1977). Mechanism of burial metamorphism of argillaceous sediments, III. O-isotope evidence. Geological Society of America Bulletin 88, pp. 1321-1330. (I,S)

Yeh, H., (1980). D/H ratios and late-stage dehydration of shales during burial. Geochimical et Cosmochimica Acta 44, pp. 341-352. (I,S)

Ziegler, K., Longstaffe, F., (2000). Multiple episodes of clay alteration at the Precambbriand/Paleozoic unconformity, Appalachian Basin: Isotopic evidence for long-distance and local fluid migrations. Clays and Clay Minerals 48, pp. 474-493. (I,C)

Ziegler, K., Longstaffe, F., (2000). Clay mineral authigenesis along a mid-continental fluid conduit in Paleozoic sedimentary rocks from southern Ontario, Canada. Clay Minerals 35, pp. 239-260. (I,C)